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Abstract. In this paper, we analyze the relationship between parameters of brain
tumors obtained through in vivo magnetic resonance imaging (MRI), in vivo mag-
netic resonance spectroscopy (MRS), and ex vivo immunohistochemistry (IHC).
The goal of our project is to provide a quantitative definition of tumor cellular-
ity based on the in vivo parameters. Biopsy samples obtained from previously
untreated patients with a diagnosis of GBM are used to find the link between
imaging parameters at the specific biopsy locations and IHC parameters from the
corresponding tissue samples. A functional tree (FT) model of tumor cellularity
is learned from the in vivo parameters and the remaining histological parameters.
The tumor cellularity model is then tested on examples which contain only in vivo
parameters, by first estimating the remaining IHC parameters by applying the Ex-
pectation Maximization (EM) algorithm, and then using the complete parameter
vector for classification.

1 Introduction

Current brain tumor research involves the analysis of multiple heterogeneous data sets,
like various types of MR images and spectroscopy, as well as clinical and histopathol-
ogy data. The successful integration of these images can provide insight into the status
and development of brain tumors beyond what can be inferred from each single image.
One of the most significant limitations of in vivo MRI is the underlying uncertainty
about whether a voxel contains tumor. While MRI data can be used to detect abnor-
malities and provide good spatial information about different tissue properties, the true
composition of the tissues can only be determined histologically. The histopathological
characterization of brain tumors requires the use of small biopsy samples obtained by
performing an invasive surgical procedure. The analysis of these samples provides pa-
rameters describing the density of the cancer cells (i.e., the tumor cellularity score) and
the proliferative and invasive capacity of the tumor. Based on these parameters, brain
tumors are given a histopathological grade of malignancy. However, a biopsy may not
accurately represent the real grade or proliferative capacity of a tumor as a whole, be-
cause of the heterogeneity which exists within the tumor. Many studies have been done
to assess the correlation between in vivo MRI and MRS and various histological pa-
rameters [8, 9]. These studies focus on finding associations between pairs of in vivo and
histological parameters, but do not attempt to obtain a tumor profile based on multiple
data modalities. Other studies try to assess the utility of global features extracted from
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in vivo MRI and MRS in determining the grade of a tumor [2, 5, 7, 10], therefore making
an indirect link between the in vivo and histological parameters.

In this project, we explore the link between the histological parameters of biopsy
samples and the in vivo MR and MRS parameters at the biopsy locations. The goal is
to obtain an in vivo definition of tumor cellularity, which is a histological measure of
the density of cancer cells in a biopsy specimen, and which represents the gold standard
measurement of how much cancer is present. We use a functional tree model to obtain
an approximation of tumor cellularity based on other histological parameters, as well
as in vivo parameters. This model can then be used to obtain a tumor cellularity score
based on the in vivo parameters alone, by first estimating the remaining histological
parameters using the EM algorithm for multiple imputations, and then using the whole
parameter vector for classification. The model thus provides a quantitative definition
of tumor based on the in vivo parameters alone. This in vivo definition of tumor can
be analyzed in all image regions showing abnormalities, thus providing better spatial
resolution than biopsy samples. This non-invasive tumor definition could decrease the
need for invasive biopsies, or be used to better select the biopsy locations.

2 Data Acquisition, Preprocessing, and Feature Extraction

The patients in this study received full MR examinations on a 3T scanner. The examina-
tion included three-dimensional gadolinium-enhanced T1-weighted (T1C), fluid atten-
uated inversion recovery (FLAIR), diffusion weighted and dynamic perfusion weighted
images (see Figure 1 for illustrations). Apparent diffusion coefficient (ADC) and frac-
tional anisotropy (FA) maps were calculated from the diffusion data. The perfusion
weighted imaging (PWI) was modeled parametrically, using a modified gamma-variate
function [4] yielding cerebral blood volume (CBV), peak height (PH), recirculation
factor (RF), and percent recovery to baseline (RECOV), and non-parametrically, yield-
ing peak height (PH) and percent recovery to baseline (RECOV). Lactate-edited MRS
data were also acquired as part of the exam. The spectral amplitudes and line-widths of
choline (CHO), creatine (CRE), N-Acetyl-Aspartate (NAA), lactate (LAC), and lipid
(LIP) were estimated from the spectra. All images in the MR exam were rigidly regis-
tered to the T1C image.

Fig. 1: From left to right: T1C, FLAIR, FA, NONPAR RECOV, and one voxel of MRS data.

Tissue sample locations were selected based on surgically accessible areas with low
ADC, elevated CHO to NAA ratio (CNI), or elevated PWI peak height and low recovery.
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For histological analysis, the tissue samples were analyzed by a pathologist, who scored
the samples for tumor cellularity, MIB proliferation index, and axonal integrity (SMI-
31), and noted the presence of simple, complex, and delicate vasculature, hyperplasia,
and CA9 gene expression.

The data set consists of seventy-eight tissue samples obtained from thirty-five GBM
patients. Each tissue sample has ten associated immunohistochemistry (IHC) parame-
ters. The tumor cellularity can be grouped into two categories - low (17 samples) and
high (61 samples); or three categories - low (15 samples), medium (30 samples), and
high (33 samples). The imaging parameters at the biopsy locations were obtained by
creating a 5mm biopsy mask centered at the recorded biopsy location of each tissue
sample. The median intensity values inside this mask in each of the MR and MRS im-
ages were used as the in vivo parameters. A total of seventeen in vivo parameters were
used. Ten of the samples have missing perfusion data and twenty-one have missing
spectral data.

3 Models

The problem of classifying data samples into low and high tumor cellularity samples
is formulated as a supervised learning problem. The in vivo and immunohistochemistry
parameters of each tissue sample are used to form a feature vector. The associated tumor
cellularity class is the desired output. The task of the supervised learner is to determine
the tumor cellularity class for any valid input vector, after having seen a number of
training examples, by generalizing from the presented data to unseen situations in a
reasonable way. The missing values in the training data are first estimated using the
EM algorithm. An FT classifier is then used to learn a model of tumor cellularity based
on the in vivo parameters, as well as the remaining histological parameters. The model
is then used to predict the tumor cellularity of unseen examples, either using the full
input vector, or only the in vivo parameters. In the latter case, the EM algorithm for
multiple imputations is used to estimate the histological parameters, and the resulting
input vector is used for classification.

3.1 EM Imputation of Missing Values

Missing values often hinder the analyses of multivariate data. In this study, even though
the rate of missing values for each parameter is not very high, there are very few pa-
tients with complete data. Therefore, we use the EM algorithm to fill in missing data
with plausible values, as well as to estimate the histological parameters when desiring
to predict tumor cellularity based on the in vivo parameters alone. The EM algorithm
provides an iterative approach to the problem of maximum likelihood parameter esti-
mation in statistical models with latent variables. In the expectation (E) step, the values
of the missing variables are estimated by calculating the probability of the latent vari-
ables given the observed variables and the current values of the model parameters. In the
maximization (M) step, the parameters are adjusted based on the current estimates of
the missing values. These steps are repeated until the sequence of parameters converges
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to the maximum likelihood estimates that average over the distribution of missing val-
ues. The EM algorithm for multiple imputations is presented in detail by Schafer [6].
Below is a short description of the algorithm.

The dataset Y is assumed to be a matrix of n rows and p columns, with the rows
corresponding to observations and the columns corresponding to variables. The com-
plete dataset contains observed and missing portions: Y = (Yobs, Ymis). Let yi,j , with
i ∈ 1 . . . n and j ∈ 1 . . . p, denote an individual element of Y and let yi denote a row of
the data matrix. The main model assumption is that y1 . . . yn are independent realiza-
tions of a multivariate normal distribution with mean vector µ and covariance matrixΣ.
When both µ and Σ are unknown, the conjugate prior distribution for the multivariate
normal data model is the normal inverted-Whishart distribution [6]. Suppose that Σ is
inverted-Wishart and that µ givenΣ is assumed to be conditionally multivariate normal.
Then the complete-data likelihood function is [6]:

L(θ|Y ) ∝ |Σ|−
n
2 exp
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2
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¯
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The complete-data posterior is normal inverted-Wishart. The prior distribution of µ is
assumed to be uniform over the p-dimensional real space, resulting in the following
complete-data posterior [6]:

µ|Σ, Y ∝ N(ȳ, n−1Σ);Σ|Y ∝W−1(n− 1, (nS)−1). (2)
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The E-step calculates the conditional expectations of the missing variables conditioned
on the observed variables and fixed model parameters. This amounts to calculating the
expected complete log likelihood, and thus to finding the complete-data sufficient statis-
tics over P (Ymis|Yobs, θ) for assumed value of θ. The sufficient statistics are of the form∑

i yi,j and
∑

i yi,jyi,k [6]. We thus need to find the expectations of yi,j and yi,jyi,k

over P (Ymis|Yobs, θ). The distribution P (yi(mis)|yi(obs), θ) is a multivariate normal
linear regression of yi(mis) and yi(obs) [6]. The parameters of this regression can be
calculated by sweeping the θ-matrix on the positions corresponding to the variables in
yi(obs), as described by Schafer [6]. The E-step consists of calculating and summing the
expected values of yij and yijyik for each j and k. Carrying out the M-step involves
maximizing the expected complete log likelihood with respect to the parameters.

3.2 Functional Trees for Classification

Tree induction methods and regression models are popular techniques for supervised
learning tasks, both for the prediction of nominal classes and numerical values. Regres-
sion methods fit a simple linear or logistic model to the data, resulting in low variance
but potentially high bias estimates. Decision trees classify data into categories based on
a series of questions or rules about attributes of the class. Decision tree classifiers are
able to capture nonlinear patterns in the data, but are less stable and more prone to over-
fitting. These two schemes can be combined into functional trees, which are able to use
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decision nodes with multivariate tests and leaf nodes that make predictions using linear
or logistic functions. FTs were selected as the model of choice in this study because they
are efficient to construct and easy to interpret, they can be used for either classification
or numerical prediction, and they are formed through a constructive induction process
that selects relevant attributes automatically, without changing the representation of the
data. This property of FT models is important in the medical imaging field, where it is
necessary to be able to interpret the role of different attributes in the prediction process,
in order to gain new insights into the disease mechanism and treatment options.

Functional and logistic trees were introduced by Gama [1] and Landwehr et al. [3].
Next, we provide a short description of the algorithm used in this paper. A functional
tree is built by starting at the root. The existing set of attributes is extended using a
constructor function that fits regression functions using the LogitBoost algorithm [3].
This algorithm starts out with a simple linear regression model based on the most pre-
dictive attribute. In every iteration, it computes response variables that encode the error
of the currently fit model on the training examples, and then tries to improve the model
by adding another simple linear regression function fit by least-squared error. Because
every multiple linear regression function can be expressed as a sum of simple linear
regression functions, the general model does not change whether we use multiple or
simple linear regression functions. LogitBoost is guaranteed to converge to the maxi-
mum likelihood estimate. However, if the method is stopped before convergence, this
will result in the automatic selection of the most relevant attributes. Therefore, Log-
itBoost is stopped based on a cross-validation method: more iterations are performed
(and therefore more attributes are included) only if this improves prediction accuracy
over unseen instances. Once the set of attributes is extended, the attribute that maxi-
mizes the information gain ratio is selected as a splitting criterion. The child nodes are
split recursively, by incrementally refining the regression models already fit at higher
levels in the tree, thus taking into account the attributes that are only predictive locally.
Tree growing stops if a node contains less than fifteen examples or if a particular split
results in two subsets, one of which contains less than two examples. A linear model
is only built at a node if that node contains at least five examples. Otherwise, a leaf
with the majority class of the node is returned. Once a tree has been grown, it is pruned
back using a bottom-up procedure. At each non-leaf node three possibilities are con-
sidered: performing no pruning, replacing the node with a leaf that predicts a constant,
or replacing it with a leaf that predicts the value of the constructor function that was
learned at the node during tree construction. The option that leads to the smallest error
on a pruning data set is selected. Predicting a test instance using a functional tree is
accomplished by traversing the tree in a bottom-down fashion. At each decision node
the local constructor function is used to extend the set of attributes and the decision test
determines the path that the instance will follow. Once a leaf is reached, the instance is
classified using either the constant or the constructor function at that leaf.

4 Results

The data described in Section 2 was first preprocessed and the missing values were
estimated using the EM algorithm. The log likelihood threshold for convergence was set
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to 10−4. The FT classifier was used to learn a model for classifying low and high tumor
cellularity based on the remaining histological parameters and the in vivo parameters.

The model was first tested using complete input vectors. Table 1 shows that the
full in vivo and histology model is able to distinguish between low and high tumor
cellularity with 96 % accuracy. This model outperforms the model based on in vivo
parameters alone. The binary tumor cellularity model is based on one regression node
as indicative of high tumor cellularity:
2.21 -0.28FLAIR -0.65FA -0.6NONPAR_RECOV +0.41CHO +0.23CRE -0.39LIP
-0.31DV_PRES +0.38CA9 +0.88SMI31 +1.9MIB > 0.

The histology parameters are, in general, the most important in predicting tumor cellu-
larity. This can be expected, because the imaging parameters come from an area around
the estimated biopsy location, and might not exactly correspond to the tissue samples
themselves. Among the in vivo parameters, the choline, lipid, recovery, and FA are
important predictors of high cellularity. The best model uses only ten parameters, sug-
gesting that some of the data is redundant. There is an imbalance between the number
of low and high tumor cellularity examples in the data set, so a better model could be
learned if more low cellularity data samples were used for training.

Table 1: Training and leave-one-out cross-validation accuracy results for binary and three-
category tumor cellularity models using different sets of parameters

Features Binary Cellularity Three-Categ Cellularity
Training Accuracy Cross-Validation Training Accuracy Cross-Validation

in vivo + hist 100% 96% 90% 77%
hist 92 % 87 % 81 % 69 %

MRS + hist 97 % 88 % 86 % 65 %
Perf + hist 95 % 89 % 86 % 68 %
Diffu + hist 95 % 90 % 83 % 70 %
Anat + hist 95 % 88 % 83 % 68 %

in vivo 87% 73% 68% 24 %

The in vivo only binary tumor cellularity model first divides the data into high and
low choline. Among the low choline biopsies, the ones with low nonparametric recovery
get classified as high in cellularity, and the ones with high recovery get classified as
having low cellularity. The high choline biopsies are classified using a regression model.
In this model, high T1C, nonlinear RF, choline and creatine, and low FA, CBV, PH,
NAA and lipid, are indicative of high tumor cellularity.

Table 2 shows that the information obtained from the histology parameters can be
used to improve tumor cellularity classification even when histological data is not avail-
able. Using the full model to predict tumor cellularity based on in vivo parameters and
EM estimates of the “missing” histological parameters yields a significantly higher pre-
diction accuracy compared to the in vivo model. Learning the structure of the model
from histology and using the in vivo parameters to estimate the histological data gives
better performance than trying to estimate tumor cellularity using the in vivo parameters
directly.
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Table 2: Accuracy of binary cellularity
model with EM estimated histology.
Training Data Test Data Acc
in vivo + hist in vivo + hist 96%
in vivo + hist in vivo + hist EM estimates 82 %

in vivo in vivo 73 %

Table 3: Confusion matrix for full data
three-category cellularity model.

Class. 1 Class. 2 Class. 3 Actual
14 1 0 1
0 26 4 2
0 4 29 3

The three-category tumor cellularity model builds a regression function for each
class. Below are the models for each class:

LOW: -3.03 +0.8FA +0.76NONPAR_RECOV -0.41CHO +0.41LIP
-1.57SMI31 -0.46SMPL -0.51CMPLX -3.16MIB>0

MEDIUM: 0.5 -0.17FLAIR +0.39NONLIN_NRF -0.19NONLIN_NPH -0.09NONPAR_RECOV +0.13CHO
+0.09LIP -0.13CNI-0.17CCRI-0.2SMPL+0.32CMPLX-0.29MIB>0

HIGH: -0.75 -0.69FA -0.64LIP +0.32CNI -0.4DV_PRES +1.69SMI31 +0.89SIMPL +0.7MIB>0

The accuracy of the three-category model is summarized in Table 1. The full model
is able to predict tumor cellularity with 77% accuracy, given a three-category response.
The confusion matrix for the full model is shown in Table 3. Most of the instances
are classified correctly, and the classification errors that occur are always between two
adjacent classes.

In addition to testing the accuracy of the FT model on examples with known classes,
we also used the model to predict the cellularity of every voxel inside the manually de-
fined abnormal FLAIR region of an MR exam. The results are illustrated in Figure 2.
The model classifies a large part of the voxels in the center of the abnormal region as be-
ing high cellularity. After performing morphological operations on the resulting mask,
we notice a center of high cellularity, with lower cellularity outwards. The amount of
data available for estimating the joint distribution of in vivo and histological parameters
was relatively small given the number of histological parameters that need to be esti-
mated. Also, the data were not randomly selected and comes from a relatively limited
distribution of parameters. This explains some of the noise in the original high cellu-
larity mask. Obtaining more data from random locations in the abnormality region is
necessary in order to be able to more accurately extrapolate tumor cellularity values
beyond the biopsy locations.

5 Conclusions

In this project, we provided a framework for learning a quantitative in vivo definition of
tumor cellularity. The model we proposed was able to accurately classify data instances
into tumor cellularity categories using a set of in vivo and histological parameters, as
well as the in vivo parameters and estimates of histological parameters. We were able
to find in vivo parameters that were instrumental in predicting high tumor cellularity in
all models, such as high choline and low recovery. The framework we described can be
used to create predicted maps of tumor cellularity at the spatial resolution of anatomical
images provided that training data covering the entire distribution of parameters in the
region of interest is available. Building such a model could lead to a better biopsy
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selection process or to the early prediction of tumor cellularity and grade before biopsies
are acquired and processed.

Acknowledgments. This research was supported by grants NIH PO1 CA118816 and
NIH RO1 CA127612. We would like to thank Susan Chang, Soonmee Cha, and Joanna
Phillips for their invaluable help.

Fig. 2: Tumor cellularity predictions on a T1C image. Middle: the high cellularity mask in red.
Right: tumor cellularity masks (red = high, yellow = low), corrected using morphological closing.
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