
Improving performance of morphological
reconstruction

Release 0.00

Richard Beare

February 15, 2006

Department of Medicine, Monash University, Australia

Abstract

Morphological reconstruction may be implemented in a number of different ways. ITK has an iterative
method and a non iterative method. This article compares the performance of another non iterative
method and finds a significant improvement.

Contents

1 Introduction 1

2 Hybrid algorithm 2

3 Implementation details 3
3.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Performance tests 3

5 Memory requirements 4

6 Sample code 4

7 Conclusion 5

1 Introduction

Morphological reconstruction by erosion or dilation, also referred to as geodesic erosion or dilation, operate
on a marker image and a mask image. In the case of dilation the marker image is dilated by an elementary
structuring element and the pixelwise minimum of the result and the mask is computed. This procedure can
be run for a fixed number of iterations or until convergence.



2

The original implementation of morhpological reconstruction in ITK found in itkGrayscaleGeodesicDi-
lateImageFilter and itkGrayscaleGeodesicErodeImageFilter provides a direct implementation of the ap-
proach outlined above. Unfortunately this approach is very time consuming when the aim is to run until
convergence.

A faster, non iterative implementation, has been provided in itkReconstructionByDilationImageFilter and
itkReconstructionByErosionImageFilter. These filters implement the algorithm described in [1]. Actually
the algorithm is slightly modified to support non integer pixel types by using a map instead of an array and
a set to store indexes, so a “pure” implementation of the Robinson algorithm may perform better than the
modified version. Copies of these filters, with Robinson appended to the filename, are included in the
archive associated with this article.

This report investigates the performance of another algorithm described in [2] and demonstrates another
significant improvement in performance.

The files in the archive associated with this article can be used to replace files of the same name in the itk
hierarchy.

2 Hybrid algorithm

The hybrid algorithm for morphological reconstruction described in [2] is:

• I : mask image

• J : marker image, defined on domain DI

• scane DI in raster order:

– Let p be the current pixel;
– J(p) = (max{J(q),q ∈ N+

G (p)∪{p}})∧ I(p)

• scane DI in anti-raster order:

– Let p be the current pixel;
– J(p) = (max{J(q),q ∈ N−

G (p)∪{p}})∧ I(p)

– If there exist q ∈ N−
G (p) such that J(q) < J(p) and J(q) < I(q) then fifo add(q)

• Propagation step: While (!fifo empty)

– p = fifo first()
– For every pixel q ∈ NG(p):

∗ If J(q) < J(p) and I(q) 6= J(q) then
J(q) = min{J(p), I(q)}
fifo add(q)

where NG(p) denotes the neighborhood of p on a grid G, with N+ and N− denoting the set of neighbors
reached before and after p during a raster scan. ∧ is the pointwise minimum operator.



3

3 Implementation details

The implementation of this algorithm is provided by itkReconstructionImageFilter, which takes functor
template arguments to provide either erosion or dilation reconstruction filters. The reconstruction by erosion
filter is MorphologicalReconstructionByErosionImageFilter and the reconstruction by dilation filter is
MorphologicalReconstructionByDilationImageFilter. These filters are verified by comparison with the
existing implementation using a series of tests in which regional extrema are supressed. The tests use
itkHMinimaImageFilter and itkHMaximaImageFilter which are versions of itkHMinimaImageFilter
and itkHMaximaImageFilter that have been modified to use the new reconstruction filter. The old versions
are available in the archive as itkHMinimaImageFilterRobinson etc.

A typical requirement is that the mask must always be greater than or equal to the marker image. In the new
filter this restriction is enforced implicitly.

3.1 Optimization

Profiling of the initial implementation suggested that the boundary checks were contributing a significant
overhead, as would be expected. An attempt was made to use the face calculator to improve performance
without increasing the size of the image (these modifications are present in the code and may be activated
by defining the symbole “FACE” in the header file). Unfortunately the algorithm is strongly dependent on
visit order and operating on face and body regions changes the visit ordering and produces incorrect results.
This strategy may be feasible with much more careful analysis of the region borders.

A much simpler optimization is to pad the image. This option can be activated by defining the “COPY”
macro in the header file and provides a considerable improvement in execution speed at the cost of greater
memory use. Someone should probably check my use of the pad and crop filters to make sure that the
mini-pipeline conforms to standards.

4 Performance tests

The first column indicates the connectivity - 0 is face connected, 1 is fully connected.

2D image without optimization:

> ./perf2D images/cthead1.png
#F Robinson Vincent
0 0.1324 0.0218
1 0.1427 0.0325

3D image without optimization:

> ./perf3D images/ESCells.hdr
#F Robinson Vincent
0 19.931 3.867
1 27.534 9.444

2D images with edge padding:



4

> ./perf2D images/cthead1.pn g
#F Robinson Vincent
0 0.1355 0.0184
1 0.1474 0.0223

3D image with edge padding:

> ./perf3D images/ESCells.hdr
#F Robinson Vincent
0 20.135 2.736
1 27.765 5.071

5 Memory requirements

The Vincent algorithm is fairly efficient with respect to memory requirements. Most of the work is done
directly on the output image, with additional memory resources being consumed by the FIFO. The size of
the FIFO is data dependent, but should never have more elements than the original image.

The optimization approach employing padding makes padded copies of both of the input images, which
effectively doubles the memory requirements:

Unoptimized : mask, marker, output, FIFO.

optimized : mask, marker, padded mask, padded marker, output, FIFO.

6 Sample code

The following code is from test2Dmax.cxx and compares the operation of the two implementations:

#include "itkImageFileReader .h"
#include "itkImageFileWriter .h"

#include "itkHMaximaImageFil ter Rob ins on. h"
#include "itkHMaximaImageFil ter .h"
#include "itkSimpleFilterWat che r.h "

int main(int, char * argv[])
{

const int dim = 2;
typedef unsigned char PType;
typedef itk::Image< PType, dim > IType;

// read the input image
typedef itk::ImageFileRead er< IType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
reader->Update();



5

int height = atoi(argv[4]);
int F = atoi(argv[5]);
typedef itk::HMaximaImageF ilt er< IType, IType > ReconType;
ReconType::Pointer recon = ReconType::New();
itk::SimpleFilterWat che r watcher(recon, "recon");
recon->SetInput( reader->GetOutput() );
recon->SetHeight(hei ght );

typedef itk::HMaximaImageF ilt erR obi nso n< IType, IType > OrigReconType;
OrigReconType::Point er origrecon = OrigReconType::New();
origrecon->SetInput( reader->GetOutput() );
origrecon->SetHeight (he igh t);
itk::SimpleFilterWat che r watcher2(origrecon, "origrecon");

origrecon->SetFullyC onn ect ed( F);
recon->SetFullyConne cte d(F );

origrecon->Update();

recon->Update();

typedef itk::ImageFileWrit er< IType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );

writer->SetInput(rec on- >Ge tOu tpu t() );
writer->Update();

writer->SetFileName( arg v[3 ]);
writer->SetInput(ori gre con ->G etO utp ut( ));
writer->Update();

return 0;
}

7 Conclusion

The new implemenation of the Vincent algorithm is between 5 and 8 times faster than the Robinson algo-
rithm, depending on the choice of connectivity and image padding optimization. Optimization by padding
the boundary produced a significant saving for the 3D dataset used in testing. The saving was not as signifi-
cant for 2D data.

References

[1] K. Robinson and P. Whelan. Efficient morphological * reconstruction: A downhill filter. Pattern Recog-
nition Letters, 25(15):1759–1767, 2004. 1



References 6

[2] L. Vincent. Morphological grayscale reconstruction in image analysis: Applications and efficient algo-
rithms. IEEE Transactions on Image Processing, 2(2):176–201, 1993. 1, 2


	Introduction
	Hybrid algorithm
	Implementation details
	Optimization

	Performance tests
	Memory requirements
	Sample code
	Conclusion

