ITK Image 10 Interface with Apple iOS

Release 1.00

Boris Shabash!, Ghassan Hamarneh!, Zhi Feng Huang!, and Luis Ibanez?

September 12, 2010

'School of Computing Science, Simon Fraser University, BC, Canada
2The Insight Group

Abstract

We have recently detailed the procedure for building ITK on the iOS[1]. In this work, we contribute
itkiOSImageIO , the necessary ITK class that provides the input/output (IO) interface with the repos-
itory of images stored on iOS Apple devices, such as the iPod touch, iPhone, or iPad. The proposed
classes provide the ITK programmer with the facility to read or write iOS images. Along with contribut-
ing the source code for these classes, we provide examples of reading and writing different types of gray
level and color iOS images, as well as filtering the images using ITK filters.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

Contents
1 Introduction 2
2 Method 3
2.1 ITK Image IO Methods and Interface 3
Implementing Reading Methods L 4
Implementing Writing Methods Lo 5
2.2 Examples: “HelloiOS Images™« . . o o e 6
Medical Grayscale Image L 6
Medical ColorImage 6
Color Image with an Alpha Transparency 8
2.3 Putting It All Together e 8

3 Conclusions and Future Work 15

http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

1 Introduction

Mobile computing devices are becoming increasingly important and prevalent[2, 3]. Apple’s mobile de-
vices, the iPod touch, iPhone, and iPad are becoming increasingly popular. These devices are now featuring
computing power and storage at par with what personal computers featured only some years ago. Further-
more, these mobile devices are providing more stunning displays (e.g. the new Retina display on Apple’s
iPhone 4 features 326 pixels per inch'), with intuitive multi-touch display interface.

Health applications are already benefiting from mobile computing to enable portable health care
applications[4]. It is also undeniable how health applications are increasingly relying on the processing,
analysis, visualization, and interaction with biomedical image, e.g. magnetic resonance imaging (MRI) or
computed tomography)[5].

The Insight ToolKit (ITK)? is the de facto library for medical image analysis[6]. ITK is becoming increas-
ingly popular given the large number of classes for basic and advanced image processing, segmentation, and
registration algorithms, combined with the continuous growth though user-contributed source code from
leading groups around the world. Numerous medical image analysis applications have been developed
based on ITK and different software packages now incorporate or interface with ITK functionality, e.g.
VolView?, Analyze*, MATITK[7], and many others.

We are interested in the marriage of these two parallel developments: ITK for medical image analysis and
iOS for mobile computing devices. We have recently detailed the procedure for building ITK on the iOS[1].
That work opened the way to process, analyses, segment, register images. However, what is missing now is
the ability to interface with the iOS for reading and writing images.

ITK supports a large number of medical image file formats®, e.g. DICOM, MetaImage, and NRRD, and the
list of supported formats continues to grow through open source user contributions, e.g.[8, 9, 10]. However,
the current image file support does not allow images to be read from the iOS because of the way iOS handles
images.

While in other operating systems the images are specified by a path to the image file itself, the iOS software
development kit (SDK) does not allow the image path to be retrieved. Instead, it uses the UI Tmage class®
which contains all the image pixel data and meta-data. In other words, all image information can only be re-
trieved and saved via the Ul Image object. The files themselves are abstracted even from the programmer and
only their data can be manipulated. Based on the UIImage class, in this work, we develop 1tki0OSImageIO,
the necessary ITK class that provides the interface with the repository of images stored on iOS devices; the
iPod touch, iPhone, and the iPad.

Along with this written report, this publication includes supplementary source code for the aforementioned
classes. The provided classes bestow on the programmer the ability to easily read or write i0OS images (im-
ages in the photo or image library of Apple’s mobile devices). We further provide examples of reading and
writing different types of images (graylevel and color images with and without alpha channels), which act as
test suite for our classes as well as template code that programmers can reuse in their software development.

In the remainder of this paper, we discuss the methods that were implemented for both reading and writing

"http://www.apple.com/iphone/features/retina-display.html

Znttp://wuw.itk.org/

3nttp://wuw.kitware.com/products/volview.html

*http://www.analyzedirect.com

Shttp://www.paraview.org/Wiki/ITK_File_Formats

nttp://developer.apple.com/library/ios/documentation/uikit/reference/UIImage_Class/UIImage_Class.
pdf

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

http://www.apple.com/iphone/features/retina-display.html
http://www.itk.org/
http://www.kitware.com/products/volview.html
http://www.analyzedirect.com
http://www.paraview.org/Wiki/ITK_File_Formats
http://developer.apple.com/library/ios/documentation/uikit/reference/UIImage_Class/UIImage_Class.pdf
http://developer.apple.com/library/ios/documentation/uikit/reference/UIImage_Class/UIImage_Class.pdf
http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

i0S images (Section 2.1). Code snippets for reading different image type is described in Section 2.2. In
Section 2.3, we describe the overall procedure for making use of the itki0SImageIO in an iOS device app.
Finally, we conclude and mention some ideas for future work in Section 3.

2 Method

2.1 ITK Image IO Methods and Interface

In order to acquire and handle images from the i10S, we develop a key class which handle iOS image pixel
data and related meta-data, 1tki0SImageIO. itki0SImageIO is basically a class designed to deal with input
and output of the UIImage class. It extracts the image data as well as properties from the Ul Image class and
makes them accessible to other ITK functions and classes.

The critical methods in 1tki0SImageIO which implemented are:

e virtual bool CanReadFile (const char*) - A method that determines if the IO class can read
the image in question specified by the path const* char.

e virtual void ReadImageInformation() - A method which reads the properties (dimensions,
colour scheme, tropicity’, etc.) of the current image in question. Note that this function does not
read the individual pixel data yet.

e virtual void Read(void* buffer) - A method which reads the current image data (the actual
value at each pixel).

e virtual bool CanWriteFile (const char*) - A method that determines if the IO class can write
the image in question to the path specified by const* char.

e virtual void WriteImageInformation() - A method that writes the image information to the
current image. Note this does not write the pixel data yet.

e virtual void Write (const void* buffer) - A method that writes the image data into the image
file. This writes the actual pixel data.

e virtual ImageIORegion GenerateStreamableReadRegionFromRequestedRegion(const
ImageIORegion &requested) const - A method that determines the largest streamable region
for the image in case several streaming operations are required to stream a large image.

As noted briefly in Section 1, the iOS does not allow the software to access image paths or names,
but instead returns an UIImage object as the only access to the image. As a result, the methods
CanReadFile and CanWriteFile which accept a const* char as their argument must be modified
accordingly. In addition, the method virtual void SetFileName (const* char) had to be rede-
fined as virtual void SetFileName (UIImage*). With the interface of the IO class set, we detail
the implementation of the different methods. The implementation of CanReadFile and CanWriteFile
methods is trivial and isn’t discussed in detail. @~ We simply return ‘true’ as long as the object
passed as an argument is an UIImage instance and ‘false’ otherwise. Similarly, the implemen-
tation of virtual ImageIORegion GenerateStreamableReadRegionFromRequestedRegion(const

TTropcity, according to Apple’s iOS SDK terminology, refers to the property of a pixel being isotropic (unity aspect ratio of
width to height) or anisotropic (non-unity aspect ratio).

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

2.1 ITK Image 10 Methods and Interface 4

ImageIORegion &requested) const is trivial since the images can all be streamed in one chunk. Basi-
cally the entire image is returned as the largest streamable region. The following sections present a detailed
overview of the core methods responsible for reading and writing.

Implementing Reading Methods

The first nontrivial method to implement is ReadImageInformation (). The necessary image properties
that need to be read via this method are the dimensions of the image (width and height), the number of bits
used to store each color component value, as well as the interpretation of these bits, e.g. 8 bits per pixel
for a 256-level grayscale image or 32 bits per pixel for Red, Green, Blue, and Alpha transparency (RGBA)
values of color images).

Fortunately, these necessary components are accessible via Objective-C queries to the CGImage object,
which can be obtained from the UIImage object via the method call (or ‘message’, as it is referred to in
Objective-C) [theUIImagePointer CGImage]. The dimensions of the image are available via the mes-
sages CGImageGetWidth ([UIImagePointer CGImage]) and CGImageGetHeight ([UIImagePointer
CGImage]), whereas the number of bits used to store each color component can be easily found by us-
ing the query size_t numBitsPerComponent = CGImageGetBitsPerComponent (theCGImageRef).

For proper interpretation of the bits assigned to pixel, we query the ColorSpace using CGColorSpaceRef
theColorSpace = CGImageGetColorSpace (theCGImageRef). This method returns an eumeration
whose value indicates the number of color space components in the image and whether an alpha value
is used. In particular, grayscale images have a single color space component, RGB images have three,
whereas RGBA images have four®.

The method virtual void Read (void* buffer) needs the data buffer void* buffer to be filled with
the pixel data. Unfortunately, the image data is not easily accessible to the programmer. There is no way
to directly extract the image data from the UIImage object or from the CGImage object. Instead, we used
a code snippet posted publicly online’. In essence, this code creates a new image context in Objective-C
(equivalent to setting up a canvas for an artist), then redraws the image in the new context with buffer as
a pointer to the context data (equivalent to redrawing the image, this time recording how the redrawing was
done with a video camera). The following steps expose the details:

1. Obtain the meta-data information required to create the context. This includes which are the number of
bits per component, the number of bits per row, the color space information, endianness, the existence
of an alpha (transparency) channel or not, and the width and height in pixels of the image.

2. Create the context with the command

CGContextRef theContext = CGBitmapContextCreate (buffer,
width,
height,
bitsPerComponent,
bytesPerRow,
colorSpace,
theBitmapInfo)

8Note that it is possible to have an RGB image (not RGBA) but with four color space components. In this case, the fourth
component must be ignored.
nttp://stackoverflow.com/questions/448125/how-to-get-pixel-data-from-a-uiimage-cocoa-touch-or-cgimage-core-gr
1262893#1262893

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

http://stackoverflow.com/questions/448125/how-to-get-pixel-data-from-a-uiimage-cocoa-touch-or-cgimage-core-graphics/1262893#1262893
http://stackoverflow.com/questions/448125/how-to-get-pixel-data-from-a-uiimage-cocoa-touch-or-cgimage-core-graphics/1262893#1262893
http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

2.1

ITK Image 10 Methods and Interface 5

3. Draw the image of interest into it using the command

CGContextDrawImage (theContext, CGRectMake (0, 0, width, height), theCGImageRef)

4. Release the context, since we are only interested in the pointed to the data, buffer.

Implementing Writing Methods

To create an image file in ITK, the meta-data is written as the first few blocks of memory using the
WriteImageInformation method, followed by writing the image pixel data using the Write method. How-
ever, on the i0S, the whole image writing (data and meta-data) should be implemented via the SDK interface.
In particular, the UI Image class should be used to write the image, which in turn requires access to, not only
the image pixel data, but also the meta data about the image. Therefore, ITK’s WriteImageInformation
does not implement any code; it is merely a place holder or an empty method, which returns as soon as it
is called. Instead, the Write (const void* buffer) method is responsible for organizing all the pertinent
image data (pixel data and meta-data) and saving it into the appropriate place on the iOS. The following
steps highlight the image writing procedure on the iOS:

1. All image meta-data is collected. This includes the width and height of the image, the number of

bits per component, the number of bits per pixel, the number of bytes per row, the color space of the
image, the tropicity, and the ordering of the bits in each pixel.

. The image is created using the command:

CGImageRef theImageRef = CGImageCreate (width,

height,

bitsPerComponent,

bitsPerPixel,

bytesPerRow,

colorSpace,

bitmapInfo,

theDataProvider,

nil,

shouldInterpolate,

thelntent)
This creates an image with all the required properties. The last three arguments in this command
are not critical but will be explained briefly. nil indicates that the image pixel values should not be
modified in anyway; they are supposed to be written as they are passed. The shouldInterpolate
indicates whether an image should be interpolated when displayed on devices with higher resolution
than the image data or not. theIntent indictates how colors that don’t fall into the proposed color
space should be handled. Further information can be found at Apple’s Developer website!”.

. A new UIImage is created using the CGImage from the previous step using the command UIImage*

outputImage = [UIImage imageWithCGImage: (theImageRef)].

. The image is saved into the iOS image library using the command

UIlmageWriteToSavedPhotosAlbum (outputlImage,
NULL,

Ohttp://developer.apple.com/library/mac/documentation/GraphicsImaging/Reference/CGImage/CGImage . pdf

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

http://developer.apple.com/library/mac/documentation/GraphicsImaging/Reference/CGImage/CGImage.pdf
http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

2.2 Examples: “Hello iOS Images” 6

NULL,
NULL)

Again, the last three arguments are not critical, but in essence they outline that no other action should
be taken after saving the photo. More information about this method can be found on the Apple
Developer website'!.

2.2 Examples: “Hello iOS Images”

Here, we show how we use the new itki0OSImageIO class to read an image, make use of existing ITK classes
to filter the image, followed by, again, using the itki0SImageIO class to write the resulting image to the i0S
image library. In order to test the functionality and effectiveness of the newly developed itki0OSImageIO
class, we have created two simple programs that tested different aspects of the IO class. The first set of
tests simply tested that the IO class can read and write images, which were downloaded into the iOS (or
could be captured by the iPhone built-in camera). The second set introduced a filter into the pipeline to test
that the itki0OSImageIO class stores and handles the information as required by the different ITK filters.
The exact filter used and how the processed image looks like is not of much importance and can be easily
substituted by another. What is important is that the pipeline executes without any errors. The filter chosen
for this series of tests is itk: :BinaryThresholdImageFilter which filters (thresholds) an image into a
binary image based on the intensity of each pixel. We demonstrate the our results on three types of images:
a scalar medical image (a grayscale MRI image), an RGB color image (color cryosection), and finally an
RGBA image exhibiting semi-transparent regions.

Medical Grayscale Image

The medical grayscale image used is a standard testing image for ITK. For the reading and writing tests, the
image was read using an instance of i1tki0SImageIO and then written to the saved photo library using the
same instance, i.e. a read—write pipeline. The results are shown in Figure 1.

When performing executing the thresholding filter, i.e. a read—filter—write pipeline, the following param-
eters were set for the thresholding filter:

binaryFilter->SetLowerThreshold (0.3*255);
binaryFilter->SetUpperThreshold (0.7*255);
binaryFilter->SetOutsideValue (0);
binaryFilter->SetInsideValue (255);

When performing the filtering on the image, there was a need to create a second itki0OSImageIO instance
which will deal with the writing of the processed image since its properties will be changed. The original
image and the expected results are shown in Figure 2.

Medical Color Image

In order to demonstrate the effectiveness of the 1tk10SImageIO class when dealing with color image as well,
we have chosen the color image in Figure 3(a) from the public domain Visible Human Project provided by

Uhttp://developer.apple.com/library/ios/documentation/uikit/reference/UIKitFunctionReference/
UIKitFunctionReference.pdf

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

http://developer.apple.com/library/ios/documentation/uikit/reference/UIKitFunctionReference/UIKitFunctionReference.pdf
http://developer.apple.com/library/ios/documentation/uikit/reference/UIKitFunctionReference/UIKitFunctionReference.pdf
http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

2.2 Examples: “Hello iOS Images”

Figure 1: Reading and writing a grayscale image using itki0SImageIO . (a) The original MRIimage and (b) its written

-

copy.

Figure

il Carrier = 5:12 PM

Perform Binary Thresholding

Grab Image

(a) The original image

il Carrier 5

Perform Binary Thresholding

Grab Image

(b) The image copy

il Carrier = 5:12 PM =

Perform Binary Thresholding

Grab Image

(a) The original image

filtering, and writing

-ail Carrier = 5:13 PM [~

Perform Binary Thresholding

Grab Image

(b) The filtered image

grayscale image using

BinaryThresholdImageFilter. (a) The grayscale image and (b) its filtered version.

the US National Library of Medicine!>. When reading and writing the image, the code again ran error-free

and the results can be seen in Figure 3(b).

2http://www.nlm.nih.gov/research/visible/image/head. jpg

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

itkiOSImageIO

http://www.nlm.nih.gov/research/visible/image/head.jpg
http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

2.3 Putting It All Together 8

When performing the binary filtering, another modification had to be made. Since the input image is a color
image, whereas the input for the filter is a grayscale, we need to convert the color image into a grayscale im-
age. Luckily, ITK implements itk::RGBToLuminanceImageFilter, which does the job. So, the pipeline
in place was composed of an image reader, an RGB to grayscale image filter, a binary thresholding filter,
and finally the writer, i.e. read—filter; —filter,—write. The reader and writer classes both had their own
instances of the 1tki0SImageIO class attributed to them. The result of the filtering pipeline can be seen in
Figure 4.

il Carrier 5

Perform Binary Thresholding Perform Binary Thresholding

Grab Image Grab Image

(a) The original image (b) The image copy

Figure 3: Reading and writing a color image using 1tki0SImageIO . (a) The original image and (b) its written copy.

Color Image with an Alpha Transparency

The final test set for the 1tki0SImageIO class was using an RGBA public domain image with an alpha
transparency channel'? and can be seen in Figure 5(a). The read—write pipeline again ran successfully
without any problems and the results can be seen in Figure 5(b). For the filtering test, we again needed to
import the itk: :RGBToLuminanceImageFilter class into the pipeline to transform the RGBA image into
a grayscale input image. The results of the filtering pipeline, i.e. read—filter; —filter,—write, can be seen
in Figure 6.

2.3 Putting It All Together

In order to reproduce an application which can perform similar filtering actions as described in the previous
sections, the following steps are followed.

1. Download ITK, CMake and Xcode: Download ITK, CMake and Xcode according to the instructions
outlined in[1]. Make sure to build all the ITK libraries for the device you are interested in.

13http: //en.wikipedia.org/wiki/File:Hue_alpha.png

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

http://en.wikipedia.org/wiki/File:Hue_alpha.png
http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

2.3 Putting It All Together

il Carrier =

il Carrier =

Perform Binary Thresholding

Grab Image

Perform Binary Thresholding

Grab Image

Perform Binary Thresholding

Grab Image

(c) The filtered image

(a) The original image (b) The image converted into

grayscale

Figure 4: Reading, filtering and writing a color image using 1tki0SImageIO . (a) The original image, (b) its converted
image and (c) its filtered image.

_ail Carrier =

5:13 PM

_aill Carrier =

5:13 PM

Fy

Perform Binary Thresholding

Grab Image

(a) The original image

Fy

Perform Binary Thresholding

Grab Image

(b) The image copy

Figure 5: Reading and writing an RGBA image with an alpha component using 1tki0SImageIO . (a) The original
image and (b) its written copy.

2. Create a new iOS app project in Xcode: Open Xcode and select File—New
Project—10S— Application. Select the application which suits your needs and click ’Choose...’
Figure 7.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

2.3 Putting It All Together

10

il Carrier

= 5:13 PM

;

(a) The original image

Perform Binary Thresholding

Grab Image

il Carrier = 5:13 PM

il Carrier = 5:13 PM

Perform Binary Thresholding

Grab Image

(b) The image converted into

grayscale

Perform Binary Thresholding

Grab Image

(c) The filtered image

Figure 6: Reading, filtering and writing an RGBA image with an alpha component using itki0OSImageI0

O

New Project

Choose a template for your new project:

I! iPhone O3

Library

.{, Mac 05 X

Application

Audio Units
Automator Action
Bundle

Command Line Utility
Cynamic Library
Framework

Java

Kernel Extension
Standard Apple Plug-ins
Static Library

2

(3

Navigation-paseda UPpEnLL ES Apprication
Application

Utility Application

a0 Bar Application

oy
Window-based
Application "

View-based Application
Description This template provides a starting point for an application that uses a
single view. It provides a view controller to manage the view, and a nib

file that contains the view.

"_ Cancel \ (Choose...\

Figure 7: New project screen in Xcode used for selecting the template for the desired application.

3. Create your app: Fill the app content in whatever way fits your needs. You will need at least one
UITImageView to display the images'*. The next step will demonstrate how to integrate the image
reading, processing and writing so make sure to take those components into consideration when de-

signing

your app.

147 good tutorial on how to build an iOS app can be found at http://developer.apple.com/library/ios/
#documentation/iPhone/Conceptual/iPhonel01/Articles/00_Introduction.html

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhone101/Articles/00_Introduction.html
http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhone101/Articles/00_Introduction.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

2.3 Putting It All Together 11

4. Add the proper configurations for the Xcode project: The Xcode project should be compiled under
the ‘iPhone Device’ or ‘iPhone Simulator’ environment depending on your preference. Also, make
sure to include the right header search paths to find the .h files required for the app. For brevity
purposes we strongly recommend reading our previous publication[1] in order to get a good overview
on setting the right configuration in the Xcode project.

5. Use the following code to create a simple app for reading and writing images: This code can be
used to read and write an image. Its purpose is mainly to verify functionality of the i1tki0SImageIO
class.

#include "itkiOSImageIO.h"

//Make sure to set the right header search path for these files
#include "ItkImage.h"

#include "itkImportImageFilter.h"

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkRGBPixel.h"

#include "itkRGBAPixel.h"

#include "itkRescaleIntensityImageFilter.h"
#include "itkBinaryThresholdImageFilter.h"
#include "itkRGBToLuminanceImageFilter.h"

//Define all types required for the process.

//Modify this code to suit your types

typedef itk::RGBAPixel <unsigned int> RGBAPixelType;

typedef unsigned char GrayscalePixelType;

typedef itk::Image <RGBAPixelType,2> RGBAImageType;

typedef itk::Image <GrayscalePixelType,2> GrayscalelmageType;

typedef itk::ImageFileReader <RGBAImageType> RGBAReaderType;

typedef itk::ImageFileWriter <RGBAImageType> RGBAWriterType;

typedef itk::ImageFileReader <GrayscalelImageType> GrayscaleReaderType;
typedef itk::ImageFilelWriter <GrayscalelImageType> GrayscaleWriterType;

//Instantiate the different objects

RGBAReaderType: :Pointer RGBAReader = RGBAReaderType: :New();
RGBAWriterType::Pointer RGBAReader = RGBAWriterType::New();
GrayscaleReaderType: :Pointer grayReader = GrayscaleReaderType: :New();
GrayscaleWriterType::Pointer grayWriter = GrayscalelriterType: :New();

//Create two image IO classes
itk::itki0SImagelIO::Pointer imageIOl itk::1tki0SImageIO: :New () ;
itk::1tki0SImagelIO::Pointer imageIO2 = itk::itkiOSImagelO: :New();

UITmage* inputImage; //Make this image into whatever image you wish
CGImageRef thelmageRef= [inputImageImage CGImage];

//Need to obtain the image color space to know how to read it

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

2.3 Putting It All Together 12

CGColorSpaceRef theColourSpace = CGImageGetColorSpace (theImageRef);
size_t numColourSpaceComponents = CGColorSpaceGetNumberOfComponents (theColourSpace);

if (numColourSpaceComponents == 1)//Grayscale image
{
//Manually set the correct imageIO class
grayReader->SetImageIO (imageIOl);
imageIOl->SetFileName (inputImage) ;

//This function call is important since the method SetFileName in the
//reader class must be called for it to run
grayReader—->SetFileName ("UIImage");

grayReader->Update () ;

grayWriter->SetInput (grayReader->GetOutput ());
grayWriter->SetImageIO (imageI02);

UIlmage* outputImage;

imageI02->SetFileName (outputImage);
grayWriter->SetFileName ("UIImage");

grayWriter->Update () ;
}//end if (numColourSpaceComponents == 1)
else if (numColourSpaceComponents == 3)
// If image has 3 components, it may or may not have an alpha channel
{
RGBAReader->SetImagelIO (imageIOl);
imageIOl->SetFileName (image.image);
RGBAReader->SetFileName ("UIImage");
RGBAReader->Update () ;

RGBAWriter->SetInput (RGBAReader->GetOutput ());
RGBAWriter->SetImagelIO (imageIO2);

UIlmage* outputImage;

imageI02->SetFileName (outputImage);
RGBAWriter->SetFileName ("UIImage");

RGBAWriter->Update();
}//end else if (numColourSpaceComponents == 3)
6. Use the following code to create a more advanced app for reading, filtering and writing: The

following code creates more advanced apps which perform the binary filtering discussed before. You

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

2.3 Putting It All Together 13

can use as many filters as you like, but make sure that the input and output types between them are
compatible.

#include "itkiOSImageIO.h"

//Make sure to set the right header search path for these files
#include "ItkImage.h"

#include "itkImportImageFilter.h"

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkRGBPixel.h"

#include "itkRGBAPixel.h"

#include "itkRescaleIntensityImageFilter.h"
#include "itkBinaryThresholdImageFilter.h"
#include "itkRGBToLuminanceImageFilter.h"

//Define all the types required for the process.

//Modify this code to suit your types

typedef itk::RGBAPixel <unsigned int> RGBAPixelType;

typedef unsigned char GrayscalePixelType;

typedef itk::Image <RGBAPixelType, 2> RGBAImageType;

typedef itk::Image <GrayscalePixelType, 2 > GrayscaleImageType;
typedef itk::ImageFileReader <RGBAImageType> RGBAReaderType;

typedef itk::ImageFileReader <GrayscalelImageType> GrayscaleReaderType;
typedef itk::ImageFilelWriter <GrayscalelImageType> GrayscaleWriterType;
typedef itk::RGBToLuminanceImageFilter<RGBAImageType,GrayscaleImageType>
RGBAtoGrayscaleFilterType;

typedef itk::BinaryThresholdImageFilter <GrayscalelImageType,
GrayscalelmageType> BinaryThresholdFilterType;

//Instantiate the different objects

RGBAReaderType: :Pointer RGBAReader = RGBAReaderType::New();

RGBAWriterType::Pointer RGBAReader = RGBAWriterType: :New();

GrayscaleReaderType: :Pointer grayReader = GrayscaleReaderType: :New();
GrayscaleWriterType::Pointer grayWriter = GrayscalelWriterType: :New();
RGBAtoGrayscaleFilterType: :Pointer RGBA2GrayFilter = RGBAtoGrayscaleFilterType::New();
BinaryThresholdFilterType: :Pointer binaryFilter = BinaryThresholdFilterType: :New();

//Create two image IO classes
itk::1tkiOSImagelIO::Pointer imageIOl = itk::itkiOSImagelIO: :New();
itk::1tki0SImagelIO::Pointer imageIO2 = itk::itkiOSImagelIO: :New();

UIImage* inputlImage; //Make this image into whatever image you wish
CGImageRef thelmageRef= [inputImageImage CGImage];

//Need to obtain the image color space to know how to read it
CGColorSpaceRef theColourSpace = CGImageGetColorSpace (theImageRef);
size_t numColourSpaceComponents = CGColorSpaceGetNumberOfComponents (theColourSpace);

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

2.3 Putting It All Together 14

if (numColourSpaceComponents == 1)//Grayscale image
{
//Manually set the correct imagelIO class
grayReader->SetImageIO (imageIOl);
imageIOl->SetFileName (inputImage);

//This function call is important since the method SetFileName in the
//reader class must be called for it to run
grayReader->SetFileName ("UIImage");

grayReader->Update () ;

binaryFilter->SetInput (grayReader->GetOutput ());
binaryFilter->SetOutsideValue (0);
binaryFilter->SetInsideValue (255);
binaryFilter->SetLowerThreshold (0.3*255);
binaryFilter->SetUpperThreshold (0.7*255);

binaryFilter->Update();

grayWriter->SetInput (grayReader->GetOutput ());
grayWriter->SetImageIO (imageI02);

UIImage* outputImage;

imageIO2->SetFileName (outputImage);
grayWriter->SetFileName ("UIImage");

grayWriter->Update();
}//end if (numColourSpaceComponents == 1)
else if (numColourSpaceComponents == 3)
// 1f image has 3 components, it may or may not have an alpha channel
{
RGBAReader->SetImagelIO (imageIOl);
imageIOl->SetFileName (image.image) ;
RGBAReader->SetFileName ("UIImage");
RGBAReader->Update () ;

RGBA2GrayFilter->SetInput (RGBAReader->GetOutput ());
RGBA2GrayFilter->Update();

binaryFilter->SetInput (RGBA2GrayFilter->GetOutput ());

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

15

binaryFilter->SetOutsideValue (0);
binaryFilter->SetInsideValue (255);

binaryFilter->SetLowerThreshold (0.3*255);
binaryFilter->SetUpperThreshold (0.7*255);

binaryFilter->Update();

grayWriter->SetInput (binaryFilter->GetOutput ());
grayWriter->SetImageIO (imageI02);

UIlmage* outputlmage;

imageIO2->SetFileName (outputImage);
grayWriter->SetFileName ("UIImage");

grayWriter->Update();
}//end else if (numColourSpaceComponents == 3)

3 Conclusions and Future Work

We have developed itkiOSImageIO , the necessary ITK class to interface with images on iOS devices.
This work has been motivated by the importance of medical image analysis for health applications, which is
increasingly being performed using the ITK library, and the ubiquitous mobile devices, in particular Apple’s
10S devices (iPod touch, iPhone, and iPad) with faster processing, larger storage, and exquisite multi-touch
displays. The sample code and the itki0OSImageIO class provided here should facilitate the development
of more sophisticated medical image analysis applications on iOS devices, as well as other applications that
may rely on non-medical image data

We foresee the following future extensions of our work. The first is facilitating reading, writing, and pro-
cessing of 3D or higher dimensional (not only 2D) medical images using ITK on iOS devices. However, the
iOS UIImage object does not natively support 3D images; it only supports the following 2D formats: TIFF,
JPEG, GIF, PNG, DIB, .ico, .cur and .xbm!>. Nevertheless, there exists several iOS apps that work with and
visualize 3D medical images, e.g. ImageVis3D Mobile!® and OsiriX for the iPhone!”. These 3D images are
handled by the app itself and not via the iOS photo library. It remains to be seen what is the most suitable
approach for working with high dimensional images using ITK on the iOS. One option is to read a series of
2D images to compose a 3D image in memory by using the itk: :ImageSeriesReader, just the same way
that it is commonly done for composing a 3D dataset from a set of DICOM slices.

The second foreseeable development is supporting C++ libraries other than ITK, mainly the Visualization
ToolKit (VTK), ITK’s visualization homologue. In the application presented here, we simply used the
UIImageView object to display the images before and after processing. VTK, however, offers much greater

Bhttp://developer.apple.com/iPhone/library/documentation/UIKit /Reference/UIImageClass/Reference/
Reference.html

1http://en.wikipedia.org/wiki/ImageVis3D_Mobile

http://www.osirix-viewer.com/iphone/

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

http://developer.apple.com/iPhone/library/documentation/ UIKit/Reference/UIImage Class/Reference/Reference.html
http://developer.apple.com/iPhone/library/documentation/ UIKit/Reference/UIImage Class/Reference/Reference.html
http://en.wikipedia.org/wiki/ImageVis3D_Mobile
http://www.osirix-viewer.com/iphone/
http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

References 16

image visualization capabilities, and works especially well with images and spatial objects produced by
ITK.

Another direction for further development is related to ITK’s pluggable object factories. ITK handles read-
ing and writing of images using pluggable object factories'®. This factory mechanism allows the ITK
ImageFileReader and ImageFileWriter functions to determine at run-time the file format (typically
based on the file extensions) and invoke the proper image IO code accordingly. Implementing this mecha-
nism for the iOS is left for future work.

Finally, for medical images in particular, the physical dimensions of each pixel are quite important (e.g.
the pixel resolution measured in mm/pixel along the horizontal direction and similarly along the verti-
cal direction). Unfortunately, when reading an image, iOS assumes only isotropic pixels without any
physical dimensions assigned to it. Nevertheless, the programmer may set the pixel size of the im-
age using itkiOSImageIOInstance->SetSpacing (0, xSpacing) for the horizontal pixel spacing and
itkiOSImageIOInstance->SetSpacing (1, ySpacing) for the vertical spacing. Further exploration of
working with physical units of pixel resolutions, image offsets, direction cosines, etc., on the iOS, remains
an important future goal.

References

[1] B. Shabash, G. Hamarneh, Z. F. Huang, and L. Ibanez, “ITK on the i0S,” Insight Journal, vol. July-
December, pp. 1-9, 2010. (document), 1, 1, 4

[2] G.D. Abowd and E. D. Mynatt, “Charting past, present, and future research in ubiquitous computing,”
ACM Trans. Comput.-Hum. Interact., vol. 7, no. 1, pp. 29-58, 2000. 1

[3] D. Taniar, Mobile Computing: Concepts, Methodologies, Tools, and Applications. Information Sci-
ence Reference, 2008. 1

[4] R.Istepanian, S. Laxminarayan, and C. S. Pattichis, Eds., M-Health: Emerging Mobile Health Systems
(Topics in Biomedical Engineering. International Book Series). Springer, 2005. 1

[5] J. M. Fitzpatrick and M. Sonka, Eds., Handbook of Medical Imaging, Volume 2. Medical Image Pro-
cessing and Analysis. SPIE Publications, 2009. 1

[6] T. Too, Ed., Insight into Images: Principles and Practice for Segmentation, Registration, and Image
Analysis. AK Peters, 2004. 1

[7] V. Chu and G. Hamarneh, “MATITK: Extending MATLAB with ITK,” Insight Journal, vol. Aug-Dec,
pp. 1-8, 2005. 1

[8] M. Malaterre, “Zeiss (LSM) file format support,” Insight Journal, vol. August-December, 2005. 1

[9] K. Mosaliganti, L. Ibanez, and S. Megason, “Support for Streaming the JPEG2000 File Format,” In-
sight Journal, vol. July-December, pp. 1-3, 2010. 1

[10] L. Baghdadi, “MINC2.0 10 Support for ITK,” Insight Journal, vol. August-December, pp. 1-2, 2005.
1

18Refer to Chapter 7: Reading and Writing Images, in the ITK Software guide, available from http://www.itk.org/
ItkSoftwareGuide.pdf)

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3216]
Distributed under Creative Commons Attribution License

http://www.itk.org/ItkSoftwareGuide.pdf
http://www.itk.org/ItkSoftwareGuide.pdf
http://www.insight-journal.org
http://hdl.handle.net/10380/3216
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Method
	ITK Image IO Methods and Interface
	Implementing Reading Methods
	Implementing Writing Methods

	Examples: ``Hello iOS Images''
	Medical Grayscale Image
	Medical Color Image
	Color Image with an Alpha Transparency

	Putting It All Together

	Conclusions and Future Work

