
A Mean Shift Clustering Implementation for
VTK

Release 0.00

David Doria

September 23, 2010

Rensselaer Polytechnic Institute, Troy NY

Abstract

Mean shift clustering is an excellent technique for clustering points when the number of clusters is not
known. We present a implementation (vtkMeanShiftClustering) of the simplest version of the algorithm
written in a VTK context.

The code is currently hosted at http://github.com/daviddoria/vtkMeanShiftClustering .

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3219]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 1

2 Algorithm 2

3 Details 2
3.1 Kernel . 2
3.2 Parameters . 3
3.3 Extras . 3

4 Code Snippet 3
4.1 Demo Data . 3
4.2 Clustering . 4

2

1 Introduction

Mean shift clustering is an excellent technique for clustering points when the number of clusters is not
known. It is not the intention of this document to explain any theoretical aspects of the algorithm. Rather,
we intuitively explain a simple version of the algorithm and introduce an implementation to be used to
cluster points stored in vtkDataSet objects.

The code is currently hosted at http://github.com/daviddoria/vtkMeanShiftClustering .

2 Algorithm

The goal is to label a set of points in such a way that points that naturally form a cluster are assigned the
same label. Graphically, from a set of unlabeled points we want to obtain the result in Figure 1.

Figure 1: Labeled points after clustering

1. For each point in the data set:

• Center a kernel function at the point and computed the weighted average of all points in the data
set. Call this weighted average CurrentCenter.

• Shift the kernel to the weighted average and repeat these two steps until the distance between
the kernel position of successive iterations is less than ConvergenceT hreshold

• If a cluster whose center is less than MinDistanceBetweenClusters from CurrentCenter does
not exist, create a new cluster and set its center to CurrentCenter.

2. Make a single pass through the points assigning them to the closest cluster.

3 Details

3.1 Kernel

We provide two kernels:

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3219]
Distributed under Creative Commons Attribution License

3.2 Parameters 3

1. Uniform kernel - all points within the WindowRadius of the current point are used with equal
weights to compute the center. This kernel can be selected by calling meanShi f tFilter− >
SetKernelToUni f orm();

2. Finite width Gaussian kernel - points farther from the query point contribute less to the center com-
putation. This kernel can be selected by calling meanShi f tFilter−> SetKernelToGaussian();

3.2 Parameters

There are a few parameters of the algorithm that can be specified:

• double WindowRadius - Only points within this radius of the current point will be used in the weight-
ing function to determine the new kernel center

• double ConvergenceThreshold - In the inner loop of the algorithm (shifting the kernel), this is the
distance that successive kernel positions must be less than for

• unsigned int MaxIterations - If we haven’t converged before this number of iterations, quit when
we reach this number.

• double MinDistanceBetweenClusters - A new cluster will not be created if it is less than this
distance from an existing cluster.

3.3 Extras

We color the output points so that points from the same cluster are the same (random) color.

4 Code Snippet

4.1 Demo Data

For testing data, we create three groups of points and append them together without tracking any membership
information. That is, we now have simply one group of points that we know contains three distinct clusters.

vtkSmartPointer<vtkPointSource> pointSource1 =
vtkSmartPointer<vtkPointSource>::New();

pointSource1->SetCenter(0,0,0);
pointSource1->SetRadius(1);
pointSource1->SetNumberOfPoints(40);
pointSource1->Update();

vtkSmartPointer<vtkPointSource> pointSource2 =
vtkSmartPointer<vtkPointSource>::New();

pointSource2->SetCenter(5,5,5);
pointSource2->SetRadius(1);
pointSource2->SetNumberOfPoints(40);
pointSource2->Update();

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3219]
Distributed under Creative Commons Attribution License

4.2 Clustering 4

vtkSmartPointer<vtkPointSource> pointSource3 =
vtkSmartPointer<vtkPointSource>::New();

pointSource3->SetCenter(-5,5,0);
pointSource3->SetRadius(1);
pointSource3->SetNumberOfPoints(40);
pointSource3->Update();

vtkSmartPointer<vtkAppendPolyData> appendFilter =
vtkSmartPointer<vtkAppendPolyData>::New();

appendFilter->AddInputConnection(pointSource1->GetOutputPort());
appendFilter->AddInputConnection(pointSource2->GetOutputPort());
appendFilter->AddInputConnection(pointSource3->GetOutputPort());
appendFilter->Update();

4.2 Clustering

To perform the clustering, the user simply must instantiate a vtkMeanShiftClustering object, set its input to
the data set they wish to cluster, and specify the expected size of the clusters.

vtkSmartPointer<vtkMeanShiftClustering> meanShiftFilter =
vtkSmartPointer<vtkMeanShiftClustering>::New();

meanShiftFilter->SetInputConnection(appendFilter->GetOutputPort());
meanShiftFilter->SetWindowRadius(1.5); //radius should be bigger than expected clusters
meanShiftFilter->SetKernelToGaussian();
meanShiftFilter->SetGaussianVariance(1.0);
meanShiftFilter->Update();

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3219]
Distributed under Creative Commons Attribution License

