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Abstract

Recently, Birkfellner et al. proposed a novel image-to-image merit function (stochastic rank correlation,
SRC) for robust intensity-based 2D/3D image registration. In this work, we summarize the basic idea
of SRC, and present a generic ITK-based implementation of this image-to-image metric including tests
for software verification. Moreover, we provide two simple examples that demonstrate the usage of this
metric: a) within the native ITK 2D/3D image registration method, and b) within a recently published
extended ITK-based 2D/3D registration framework. It is, however, important to note, that this paper
neither covers a comprehensive evaluation of SRC, nor a comparison with other metrics. It rather shows
that SRC appears to succeed on a femoral and a porcine data set in the course of ITK-based 2D/3D image
registration.
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1 Introduction

Intensity based registration (2D/3D, 3D/3D) is a common task in medical image processing, and requires
similarity measures (metrics) to find the “optimal” transformation between two data sets. For example, an
intra-interventional and a pre-interventional data set of the same subject are registered. In general, metrics
must cope with dissimilarities between the investigated images. Such discrepancies may be due to differing
or suboptimally modeled imaging modalities, acquisition times and occlusions emerging from body parts or
additional objects (e.g. patient positioning aids).

Consequently, most of the used metrics consider the statistical distribution of the intensity values to some
extent. The stochastic rank correlation (SRC) metric, which was proposed by Birkfellner et al. [1] in the
context of 2D/3D registration, likewise aims at robustly measuring the similarity of two images by reducing
the influence of encountered intensity differences.

2 Stochastic Rank Correlation in a Nutshell

2.1 2D/3D Image Registration

For example, in projection-based 2D/3D image registration [5], N 2D reference images XR,i(xR,i), i = 1 . . .N
are registered with projections Pi(XT

M (xM)) (DRRs) of a transformed 3D volume XT
M (xM). At this, the 3D

image coordinates of the volume are denoted by xM defined over domain ΩM ∈ R3, and the 2D reference
image coordinates are denoted by xR,i, i = 1 . . .N defined over domains ΩR,i ∈ R2. Moreover, the considered
data sets are assumed being spatially defined in a common reference coordinate system, thereby, requiring an
adequate calibration procedure [8]. The projection-based approach aims at finding a spatial transformation
T that aligns the projections Pi(XT

M (xM)) best with the reference data XR,i(xR,i):

Topt := argmin
T

∑
i

Fi(Pi(XT
M (xM)),XR,i(xR,i)) (1)
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2.2 Nature of Stochastic Rank Correlation 3

where XT
M (xM) denotes the transformed volume data set, and Pi define projection transformations that map

the 3D coordinates xM ∈ ΩM onto points xM,i of the N 2D domains ΩR,i. The implied optimization problem
minimizes a set of cost functions Fi (or metrics) which measure the similarity between the reference images
and the respective DRRs.

2.2 Nature of Stochastic Rank Correlation

In practice, even if Topt was correctly inferred, significant intensity differences between XR,i(xR,i) (X-rays)
and Pi(XT

M (xM)) (DRRs of a CT) can be observed. These discrepancies mainly emerge from insufficient ra-
diometric calibration, finite voxel size and simplified DRR algorithms that do not model details of physical
interactions in object (e.g. generation of scatter irradiation) or detector (e.g. energy conversion in build-up
or photosensitive layer, energy-dependent quantum efficiency). In addition, the observed intensity differ-
ences can in general not be described by linear models. Therefore, metrics that strictly rely on a linear
relationship between the compared images (e.g. cross correlation - Pearson’s product-moment coefficient)
usually fail on 2D/3D registration [1]. In this respect, stochastic rank correlation behaves differently. It is
the implementation of Spearman’s rank correlation coefficient which solely assumes a monotonic relation-
ship between the compared image intensities. Moreover, it is by definition less sensitive to outliers than
Pearson’s product-moment coefficient.

In order to compute the SRC coefficient, the image intensities must be mapped onto an ordinal scale. Having
image intensities X(x) on a metric scale, the according histogram h j(X(x)) = hX , j, j = 1 . . .NB with a speci-
fied number of bins NB can be extracted. Furthermore, the respective cumulative histogram HX , j = ∑ j

k=1 hX ,k
can be utilized for generating average ranks RX , j which define an ordinal scale. The average ranks RX , j cal-
culate as

RX , j :=


HX , j−1 + HX , j

2 , if ( j > 1)∧ (hX , j > 0)
HX , j

2 , j = 1
0, else

. (2)

Subsequently, the original image intensities X(x) can be mapped onto the ordinal scale by using the gener-
ated average rank map RX as a lookup table; the resultant image is called average rank image and denoted
by X́(x). Instead of considering all pixels NX of the investigated image X(x), a simple subset NX < NX of
randomly sampled pixels may be sufficient for histogram estimation. Besides an enhanced performance in
histogram extraction and coefficient calculation (Eq. 3), the sampling may also prevent “overfitting”, and
possibly introduce some local non-monotonic intensity relationship “tolerance”. Birkfellner et al. [1] re-
ported a pixel sample coverage of 5 % being sufficient for 2D/3D registration in practice. Finally, the SRC
coefficient calculates as

FSRC(XA,XB) :=
6∑N

k=1 δ2
k

N (N 2 −1)
(3)

where XA and XB are the compared images, N is the number of samples, and δk denotes the difference
between the interpolated rank intensities X́A(xk) and X́B(xk) at coordinate xk ∈ ΩA ∩ΩB. The N sampled
coordinates should stay constant during continuous optimization in order to guarantee coefficient calculation
on a static pixel set.

Eq. 3 gives a minimum of 0 if the sampled intensities of X́A and X́B correspond to a perfect increasing
monotonic relationship (0 square differences), and gives higher values otherwise. Thus, the SRC metric for
image similarity measurement implies a minimization problem.

It is worth being mentioned, that if one wants to compute the full rank correlation (RC) coefficient FRC as
proposed in [2], simply all available pixel samples must be considered; i.e. N = N.
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Figure 1: The developed main classes ora::StochasticRankCorrelationImageToImageMetric (similarity mea-
sure) and ora::AverageRanksImageToImageFilter (convenience filter), and the corresponding class hierarchy.

2.3 “Tied Ranks” Correction

In order to correct for the “tied ranks” (samples with equal rank) that are generated during histogram “bin-
ning”, Horn-correction [4] may be applied. The corrected SRC coefficient F ∗

SRC calculates as

F ∗
SRC(XA,XB) := 1−

2 N (N 2−1)
12 −ΘA −ΘB −∑N

k=1 δ2
k

2
√

(N (N 2−1)
12 −ΘA)(N (N 2−1)

12 −ΘB)
(4)

where Θ• = ∑N•
k=1

θ•,k(θ2
•,k−1)

12 with N• being the number of distinct ranks (bins) of image X́•, and θ•,k being
the number of samples having the same rank R•,k.

However, first experiments made us believe that the application of this correction method in practice will
not have a noticeable influence on registration results.

3 Implemented Classes, Architecture and Tests

NOTE: The presented classes in this section are defined in the namespace ora which encapsulates code that
is part of the radART institution’s open source initiative - open-radART.

As shown in Fig. 1, the SRC metric is implemented in the generic template
class ora::StochasticRankCorrelationImageToImageMetric as typical subclass of
itk::ImageToImageMetric. In addition to its own code, this class invokes a new convenience image filter
ora::AverageRanksImageToImageFilter which extracts the average rank image representation of an
image of arbitrary dimension.

In the following sections the most important characteristics of these classes are highlighted, and explanatory
code snippets are provided. More detailed information on the methods and functionality can be found
directly in the classes in the form of extensive comments or in a generated doxygen-documentation.
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3.1 ora::AverageRanksImageToImageFilter 5

Figure 2: Average ranking example (from left to right and from top to down): an exemplary input image X(x), the
overlay of the input and the corresponding mask image XM(x) (the non-red region represents the pixels that really
contribute to histogram estimation), the histogram hX after step a), the linearly transformed histogram after step b), the
rank map RX after step c), and the generated output average rank image representation X́(x)

.

3.1 ora::AverageRanksImageToImageFilter

This convenience filter involves the following steps in order to produce the average rank image X́(x) of an
input image X(x) (see also 2.2):

a) Extract the histogram hX , j, j = 1 . . .NB of the image X(x) considering pre-configured minimum and
maximum image intensities Imin and Imax. If a mask image XM(x) is set, only the pixels that are
unmasked (XM(xk) > 0) will contribute to hX .

b) This optional step linearly transforms the histogram hX to its “original” frequency range. This is only
relevant if a mask XM(x) is specified, and the number of unmasked pixels NX is smaller than the
number of total image pixels NX . Each frequency hX , j is simply multiplied by the factor NX/NX .

c) First generate the cumulative histogram HX from hX , and then calculate the rank map RX (see Eq. 2).

d) Generate the output image X́(x): iterate through all pixels of X(xk) and map their intensities to new
levels X́(xk) using RX as the central lookup table.

Fig. 2 outlines the input and output of each filter step in the course of an exemplary setup with an overview
X-ray of the pelvis.

It is worth being mentioned that this filter is capable of multi-threading, actively using the
BeforeThreadedGenerateData(), ThreadedGenerateData() and AfterThreadedGenerateData()
method interfaces of its superclass. Multi-threading primarily concerns and accelerates step a) where each

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3229]
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thread extracts a partial histogram, and step d) where each thread maps the intensities of a specific pixel
subset in the usual ITK fashion ( itk::ImageToImageFilter).

The average ranks image filter is templated over the input image type (TInputImage), the output image type
(TOutputImage) and the mask pixel type (TMaskPixel). It is important that the range of the output image’s
pixel type is able to cover the average rank range which equals the number of input image pixels NX or NX

(mask) in a worst case scenario.

Moreover, the filter fires the following specific events:

• ora::AfterHistogramExtraction: Fires after completed histogram extraction. The histogram can
be extracted using the GetAveragedRankHistogram() method in the event handler.

• ora::AfterHistogramTransformation: Fires after completed histogram transformation. The
transformed histogram can be extracted using the GetAveragedRankHistogram() method in the
event handler.

• ora::AfterHistogramRankGeneration: Fires after completed average rank map generation. The
rank map can be extracted using the GetAveragedRankHistogram() method in the event handler.

The following code snippet shows how to use ora::AverageRanksImageToImageFilter:

typedef itk::Image<unsigned short, 2> ImageType;
typedef itk::Image<float, 2> RankImageType;
typedef unsigned char MaskPixelType;
typedef itk::Image<MaskPixelType, 2> MaskImageType;
typedef ora::AverageRanksImageToImageFilter<ImageType, RankImageType,

MaskPixelType> FilterType;
typedef itk::CStyleCommand CommandType;

// read input image and mask
ImageType::Pointer image = ReadImage<ImageType>("image.mhd");
MaskImageType::Pointer mask = ReadImage<MaskImageType>("mask.mhd");

// set-up the filter
FilterType::Pointer filter = FilterType::New();
// - set input image and mask
filter->SetInput(image);
filter->SetMaskImage(mask);
// - histogram options (min/max intensities, no. bins, clipping)
filter->SetHistogramClipAtEnds(true);
filter->SetHistogramMinIntensity(0);
filter->SetHistogramMaxIntensity(6000);
filter->SetNumberOfHistogramBins(200);
// - further output options
filter->SetDoNotGenerateOutput(false); // we want the output image
filter->SetGenerateOutputForMaskedPixelsOnly(false); // all pixels
filter->SetUseHistogramTransformation(true); // imitate orig. frequ.
// - attach an event handler
CommandType::Pointer cmd = CommandType::New();
cmd->SetCallback(MyCallback);
cmd->SetClientData(filter);
filter->AddObserver(ora::AfterHistogramExtraction(), cmd);
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filter->AddObserver(ora::AfterHistogramTransformation(), cmd);
filter->AddObserver(ora::AfterHistogramRankGeneration(), cmd);

// generate and write rank image
try
{
filter->Update();
WriteImage<RankImageType>("image_rank_rep.mhd", filter->GetOutput());

}
catch (itk::ExceptionObject &e)
{
std::cerr << "ERROR: " << e << std::endl;

}

3.2 ora::StochasticRankCorrelationImageToImageMetric

The principle of operation of ora::StochasticRankCorrelationImageToImageMetric can be decom-
posed into three typical functional components:

• Initialize(): Makes sure all components and subcomponents are present, initialized and plugged to-
gether correctly.

• GetValue(): Computes the value of the SRC cost function corresponding to the specified transforma-
tion parameters.

• GetDerivative(): Estimates the derivative of the SRC cost function corresponding to the specified
transformation parameters.

Initialize() involves the following steps:

a) Call the Initialize() method of the superclass itk::ImageToImageMetric in order to ensure that the
standard components (transformation, interpolator ...) are present and correctly plugged together.

b) Generate an internal mask image XM(x) which considers the pre-configured fixed image region, fixed
image mask and number of spatial pixel samples NX to be extracted. It is important to note that
NX can be directly set by invoking SetSampleCoverage(), or implicitly by specifying an external
image mask using SetStochasticUserMask() that marks the pixels which should contribute to SRC
computation.

c) Set-up an internal instance of ora::AverageRanksImageToImageFilter according to the metric
pre-configuration, and generate the rank image representation X́F of the fixed image.

d) Prepare an ITK histogram ( itk::Statistics::Histogram) instance according to the metric pre-
configuration for the moving image later.

GetValue() involves the following steps:

a) Apply the specified transformation parameters to the connected transform component.

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3229]
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Figure 3: 2D/3D registration example (from top to down): The first column shows a 2D overview X-ray (fixed image)
and the applied fixed image mask (the non-red region contributes to SRC computation). The second column shows the
red-green-yellow-overlay of the X-ray and the initial DRR (moving image) at the beginning of the process. Furthermore,
the fixed image ranks are plotted against the moving image ranks, additionally including a linear regression line (black)
and a LOWESS (locally weighted scatterplot smoothing) line (gray). The last column shows the overlay of the fixed
image and the final moving image at the end of the registration process. In addition, the according scatterplot is
visualized.

b) Extract the rank map RX ,M from the moving image. This is achieved by mapping the physical coor-
dinates of all pixels X́F(xk) > 0 to the physical space of the moving image, and subsequently interpo-
lating the according moving pixel intensities. If a moving image mask is set, only the pixels within
the mask will contribute to RX ,M . At this, the process of rank map extraction is comparable to the
ora::AverageRanksImageToImageFilter implementation (3.1), but without multi-threading.

c) Subsequently, the square differences δ2
k (see Eq. 3) between the considered moving and fixed image

intensities are summed up.

d) Finally, based on ∑δ2
k , the cost function value is computed according to Eq. 3 or Eq. 4 if Horn-

correction is requested. If there is no overlap between the fixed and moving image with respect to the
set image masks, GetValue() either returns a constant metric value or throws an exception depending
on the configured “NoOverlapReactionMode”.

GetDerivative() aims at producing an estimate of the cost function derivative at a specified position in trans-
formation space. The SRC metric implementation uses finite differences for computing this estimation.
Using the SetDerivativeScales() method one can specify the amount of transformation parameter vari-
ation along each dimension.

Fig. 3 shows a 2D/3D registration example where a CT of the right femur is registered with an overview X-
ray of the pelvis. Beside of overlay images, scatterplots that visualize the fixed image ranks versus moving
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image ranks (image rank plots) of the sampled pixels are shown. The sample distributions shown in the plots
are the basic input for SRC coefficient FSRC computation.

The SRC metric class is templated over the fixed image type (TFixedImage), the moving image type
(TMovingImage) and the rank image type (TRankImage). Similarly to the average ranks filter, the pixel
type of the rank image must be able to cover the rank range of the fixed as well as the moving image.

Moreover, ora::StochasticRankCorrelationImageToImageMetric fires the specific
ora::AfterMaskCreation event. It is invoked directly after internal mask generation (step b) in
Initialize(), see above). Using the GetStochasticMask() method within the event handler, the
generated mask can be retrieved.

Furthermore, the SRC metric implementation provides a “debugging”-mode
(SetExtractSampleDistribution()) which can be used for retrieving the internal sample distribu-
tions (GetSampleDistribution()) as shown in Fig. 3.

It is worth being noted that, although this metric is histogram-based, it is derived from
itk::ImageToImageMetric and not from itk::HistogramImageToImageMetric. This is due to mi-
nor performance advantages. Internally, this metric utilizes the multi-threaded average rank filter once in
order to extract the fixed image histogram - there is no need for re-computing the fixed image histogram dur-
ing each call to GetValue() as basically implemented in itk::HistogramImageToImageMetric (second
histogram sample dimension).

The following code snippet shows how to use ora::StochasticRankCorrelationImageToImageMetric:

typedef itk::Image<unsigned short, 2> ImageType;
typedef itk::Image<float, 2> RankImageType;
typedef ora::StochasticRankCorrelationImageToImageMetric<ImageType,

ImageType, RankImageType> MetricType;
typedef itk::LinearInterpolateImageFunction<ImageType, double>

InterpolatorType;
typedef itk::Rigid2DTransform<double> TransformType;
typedef TransformType::ParametersType ParametersType;
typedef itk::CStyleCommand CommandType;
typedef itk::ImageMaskSpatialObject<2> MaskSpatialObjectType;
typedef itk::Array<double> DScalesType;

// read input images and masks
ImageType::Pointer fimage = ReadImage<ImageType>("fixed_image.mhd");
ImageType::Pointer mimage = ReadImage<ImageType>("moving_image.mhd");
MaskSpatialObjectType::Pointer fmask = ReadSpatialObject<

MaskSpatialObjectType>("fixed_mask.mhd");
MaskSpatialObjectType::Pointer mmask = ReadSpatialObject<

MaskSpatialObjectType>("moving_mask.mhd");

// set-up the metric and components
MetricType::Pointer metric = MetricType::New();
// - images and masks
metric->SetFixedImage(fimage);
metric->SetFixedImageRegion(fimage->GetLargestPossibleRegion());
metric->SetMovingImage(mimage);
metric->SetMovingImageMask(mmask);
metric->SetFixedImageMask(fmask);
// - configure metric
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Distributed under Creative Commons Attribution License



3.2 ora::StochasticRankCorrelationImageToImageMetric 10

TransformType::Pointer transform = TransformType::New();
metric->SetTransform(transform);
InterpolatorType::Pointer interpolator = InterpolatorType::New();
metric->SetInterpolator(interpolator);
metric->SetFixedHistogramMinIntensity(0); // fixed image histogram info
metric->SetFixedHistogramMaxIntensity(4096);
metric->SetFixedHistogramClipAtEnds(true);
metric->SetFixedNumberOfHistogramBins(200);
metric->SetMovingHistogramMinIntensity(0); // moving image histogram info
metric->SetMovingHistogramMaxIntensity(4096);
metric->SetMovingHistogramClipAtEnds(true);
metric->SetMovingNumberOfHistogramBins(200);
metric->SetExtractSampleDistribution(false); // no debugging
metric->SetMovingZeroRanksContributeToMeasure(false);
metric->SetStochasticUserMask(NULL); // use sample coverage instead
metric->SetSampleCoverage(10.0); // 10 % of the pixels
metric->SetUseHornTiedRanksCorrection(true); // use Horn-correction
metric->SetNoOverlapReactionMode(0); // throw exception
DScalesType dscales(transform->GetNumberOfParameters());
dscales.Fill(1.0); dscales[0] = 0.017; // 1 degree, 1 mm
metric->SetDerivativeScales(dscales);
CommandType::Pointer cmd = CommandType::New();
cmd->SetCallback(MyCallback);
cmd->SetClientData(metric);
metric->AddObserver(ora::AfterMaskCreation(), cmd);

try
{
metric->Initialize(); // intialize the metric
// compute a few sample cost function values / derivatives
ParametersType tpars(transform->GetNumberOfParameters());
tpars.Fill(0);
srand(time(NULL));
for (int i = 0; i < 10; i++)
{
std::cerr << tpars << std::endl;
MetricType::MeasureType value = metric->GetValue(tpars);
std::cout << "value" << tpars << ": " << value << std::endl;
MetricType::DerivativeType derivative;
metric->GetDerivative(tpars, derivative);
std::cout << "derivative" << tpars << ": " << derivative << std::endl;
tpars[0] = 0.1 - (double)(rand() % 100001) / 500000;
tpars[1] = 10 - (double)(rand() % 100001) / 5000;
tpars[2] = 10 - (double)(rand() % 100001) / 5000;

}
}
catch (itk::ExceptionObject &e)
{
std::cerr << "ERROR: " << e << std::endl;

}
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3.3 Software Tests

In order to support automatic software and regression testing, two tests were
added: TestAverageRanksFilter for ora::AverageRanksImageToImageFilter, and
TestStochasticRankCorrelationMetric for ora::StochasticRankCorrelationImageToImageMetric.
These tests are fully integrated with the CMake and CTest environment.

Essentially, these tests internally generate random sample images and masks, and test the most important
functionality of the provided classes. Both tests offer the following command line options which may be
useful for debugging and/or gaining more detailed information:

• -h or --help ... get command line help information

• -v or --verbose ... message output to std::cout

• -co or --csv-output ... CSV-sheet output of some sample data

• -io or --image-output ... sample image output to current directory

• -xo or --extended-output ... extended output to std::cout

CTest is configured to invoke the -v option by default. Running ctest --verbose in the project’s root
folder should produce a similar output on command line:

Test project /radART-dev/src-ij-bin
Constructing a list of tests
Done constructing a list of tests
Checking test dependency graph...
test 1

Start 1: TestAverageRanksFilter

1: Test command: /radART-dev/src-ij-bin/metric/testing/TestAverageRanksFilter -v
1: Test timeout computed to be: 1500
1:
1: Testing average ranks image to image filter.
1: * Unmasked histogram extraction test ... OK
1: * Unmasked rank image test ... OK
1: * Masked histogram extraction test ... OK
1: * Masked rank image test ... OK
1: * Masked, transformed histogram extraction test ... OK
1: * Masked, transformed rank image test ... OK
1: * Final reference count check ... OK
1: Test result: OK
1:
1/2 Test #1: TestAverageRanksFilter ................ Passed 3.08 sec
test 2

Start 2: TestStochasticRankCorrelationMetric

2: Test command: /radART-dev/src-ij-bin/metric/testing/TestStochasticRankCorrelationMetric -v
2: Test timeout computed to be: 1500
2:
2: Testing stochastic rank correlation image to image metric.
2: * Various sample coverages with simple value / derivative computation ... OK

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3229]
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Figure 4: The “native” ITK 2D/3D registration method which is essentially based on
itk::RayCastInterpolateImageFunction.

2: * Test deterministic/non-deterministic behavior ... OK
2: * Check no-overlap behavior ... OK
2: * Test fixed image region and fixed image mask ... OK
2: * Fixed + moving image mask, fixed image region test ... OK
2: * Stress test: sampling around optimum ... OK
2: * Stress test (with Horn-correction): sampling around optimum ... OK
2: * 3D stress test: (translational) sampling around optimum ... OK
2: * 3D stress test: (translational, with Horn-correction) sampling around optimum ... OK
2: * Final reference count check ... OK
2: Test result: OK
2:
2/2 Test #2: TestStochasticRankCorrelationMetric ... Passed 37.03 sec

100% tests passed, 0 tests failed out of 2

Total Test time (real) = 40.13 sec

4 2D/3D Registration Examples

In order to demonstrate the functionality of the developed classes, a few 2D/3D registration examples are
provided based on freely available source code and data sets which are included in this work.

The IntensityBased2D3DRegistration2 example application is based on the
IntensityBased2D3DRegistration program from InsightApplications. It represents
the “native ITK-way” of establishing a 2D/3D registration environment, mainly based on
itk::RayCastInterpolateImageFunction. Fig. 4 outlines the hierarchy and links between the
involved components.

The second example, 2D3DRegistration2, is based on a previously published extended ITK-based 2D/3D
registration framework [7] which implements multi-threaded filters for DRR computation, and a flexible
framework for component configuration. Since the original extended framework did not support SRC or
regular step gradient descent optimization, it was upgraded with a set of sub-classes as outlined in Fig. 5.
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Table 1: Initial transformation before, and final transformation after registration of the femur examples. The
real transformation (ground truth) is unfortunately unknown, but qualitatively the registrations appeared to
succeed.

Transformation Parameter rx [◦] ry [◦] rz [◦] tx [mm] ty [mm] tz [mm]
initial transformation -90.00 15.00 0.00 84.34 77.95 0.00
result EVOL -91.46 13.82 -5.07 76.21 70.63 0.00
result RSGD -90.97 17.10 -4.89 76.26 71.07 0.08

For a more detailed overview, the reader should investigate all classes in the example folder which end with
*WithSRC.

4.1 Configuration of the Extended Framework

Basically, the extended registration framework is set-up with configuration files (*.cfg) that contain
key=value pairs and option=key value value . . . constructs. A detailed commented configuration file
is available in sampleconfigs/femur/RegistrationExample-Femur-EVOL.cfg, while all other config-
uration examples have a shorter documentation.

The framework enables a multi-resolution approach where many components and settings can be configured
individually for each level with key[level]=value, where level indicates the registration level, starting
with 0. The metric, optimizer and the interpolator can be re-configured to adapt to the levels’ individual
needs. For DRR generation an empirical intensity transfer function can be applied. The registration pro-
cess is logged and documented in a specified sub-folder of the current directory. Moreover, the current
registration parameters are logged to console.

The geometric setup of the registration is defined by the position of the DRR/X-ray (which is restricted
to lie within the x/y-plane), the volume origin, the initial transformation and the interpolator (projector)
configuration (see Fig. 6).

4.2 Femur Examples

The following configurations show an exemplary registration of a 3D CT image of the right proximal
femur (0.9 mm isotropic) and a 2D overview X-ray of the pelvis (0.9 mm isotropic). Both images are
stored in MetaImage format (CT.mhd, X-ray.mhd). The image data are located in the data-directory
sampleconfigs/femur/data along with a readme.txt file that contains information on the image files
and the data set license. The registration involves rigid transformation (Euler 3D), stochastic rank correla-
tion metric (128 bins, 5% coverage) and ray-casting DRR generation. Here, only a single resolution level is
used for registration, and the fixed image is circular-masked with a radius of 40 mm (see Fig. 3).

The first example RegistrationExample-Femur-EVOL.cfg uses an evolutionary optimization strategy
(EVOL), and the second RegistrationExample-Femur-RSGD.cfg a regular step gradient descent opti-
mization (RSGD). The initial setup is visualized in Fig. 7, the results are displayed in Fig. 8 and the
transformation parameters are summarized in Tab. 1. The EVOL optimization took 200 iterations (max)
and the RSGD 30 iterations. Plots of the rank correlations (scatterplot of the fixed and moving image ranks)
can be seen in Fig. 9 and 10.
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Figure 5: The extended ITK-based 2D/3D registration framework which provides multi-threaded DRR filters, additional
support for SRC, and a convenient infrastructure for configuring the registration components.
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Figure 6: Geometry setup of the extended registration framework.

Figure 7: From left to right: X-ray image (fixed image), DRR with initial transformation, overlay of both
images.

Figure 8: Overlay images of the X-ray with the resulting DRRs of the femur EVOL registration (left) and
RSGD registration (right).
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Figure 9: EVOL image rank plots of the fixed and moving image for iterations 1, 10, 20, 30, 40 (top), 50,
100, 130, 160, 200 (bottom).

Figure 10: RSGD image rank plots of the fixed and moving image for iterations 1, 5, 10, 20, 30.

Femur example using ’IntensityBased2D3DRegistration2’

This example performs 2D/3D-registration with a modified version of
IntensityBased2D3DRegistration from InsightApplications (see execute-
NativeRegistrationExample-Femur.bat). First a fixed image (DRR) for registration is generated
from the sample CT data set with a threshold of 130. Subsequently, registration is performed with moving
images (DRRs) that have a different threshold of 160 (in order to demonstrate the SRC metric’s robustness
against intensity differences). Furthermore, a centered fixed image mask with a radius of 100 mm is applied.
The initial transformation (fixed image) is translated by 8.509 mm in each dimension and rotated by about
9.2 ◦ around each axis. SRC is configured with 128 bins and 10 % sample coverage. The initial setup is
displayed in Fig. 11, the registration result in Fig. 12, and the transformation parameters are summarized in
Tab. 2.

Table 2: Initial transformation before, and final transformation after registration of the synthetic femur
example based on IntensityBased2D3DRegistration2.

Transformation Parameter rx [◦] ry [◦] rz [◦] tx [mm] ty [mm] tz [mm]
real transformation 90.00 0.00 0.00 -60.00 -50.00 -70.00
initial transformation 99.12 9.17 9.17 -68.509 -58.509 -78.509
result 89.76 0.24 -0.11 -60.05 -49.99 -70.12
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Figure 11: From left to right: DRR of simulated fixed image, DRR that simulates a moving image with the
initial transformation, overlay of both images.

Figure 12: From left to right: Moving image with the resulting transformation of the native registration,
moving image masked with the used circular fixed image mask, overlay of the moving image with the final
fixed image.
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Table 3: Initial transformation before, and final transformation after registration of the pork examples. The
real transformation is the gold-standard from [6].

Transformation Parameter rx [◦] ry [◦] rz [◦] tx [mm] ty [mm] tz [mm]
anterior-posterior (AP)
gold-standard transformation 91.45 1.35 1.21 1.00 -2.89 1.04
initial transformation 98.00 5.00 -5.00 6.00 -7.00 1.04
result 91.53 1.30 1.66 1.78 -4.12 1.04

lateral (LAT)
gold-standard transformation 229.94 88.19 138.28 1.59 -2.93 2.50
initial transformation 233.00 85.00 141.00 7.00 -8.00 2.50
result 231.58 88.05 139.39 1.40 -3.38 2.50

Figure 13: From left to right: AP X-ray (fixed image), DRR (moving image) with the initial transformation,
overlay of both images. Note that the images were normalized and equalized for a better contrast.

4.3 Pork Data Set Examples

The following configurations show an exemplary registration of a big field of view 3D cone beam CT
(CBCT) image and an anterior-posterior (AP, 0 ◦ gantry, RegistrationExample-Pork-EVOL-AP.cfg),
and a lateral (LAT, 90 ◦ gantry, RegistrationExample-Pork-EVOL-LAT.cfg) 2D X-ray im-
age, respectively. The images were taken from [6], resampled, and converted into MetaIm-
age format (CBCT BigFOV 1000mu plus1024 2x2.mhd, kV AP 1x1mm 410x410px.mhd,
kV LAT 1x1mm 410x410px.mhd). The image data are located in the data-directory
sampleconfigs/pork/data along with a readme.txt file that contains information on the image
files and the according license. The geometric setup is equal to the one described in [6]. The center of the
CBCT data set is shifted to the isocenter, the film-to-focus-distance is 1536 mm, and the film-to-isocenter-
distance is 536 mm. The normal-beam is positioned in the middle of the DRR/X-ray. The registration
involves rigid transformation (Euler 3D), stochastic rank correlation metric (256 bins, 100% coverage),
evolutionary optimization strategy and ray-casting DRR generation. Here, only a single resolution level is
used for registration, and the fixed image is circular-masked with a radius of 100 mm (see Fig. 14 and 16).
NOTE: The extrinsic markers in the data sets are not masked!

The initial setup for AP is visualized in Fig. 13 and the results in Fig. 14, and for LAT in Fig. 15 and 16.
The resulting transformations are summarized in Tab. 3. The AP optimization took 200 iterations (max) and
the LAT 197 iterations. The image rank plots can be seen in Fig. 17 and 18.
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Figure 14: From left to right: AP moving image with the resulting transformation after registration, masked
moving image with the applied circular fixed image mask, overlay of the moving image with the final fixed
image.

Figure 15: From left to right: LAT X-ray (fixed image), DRR (moving image) with the initial transformation,
overlay of both images. Note that the images were normalized and equalized for a better contrast.

Figure 16: From left to right: LAT moving image with the resulting transformation after registration, masked
moving image with the applied circular fixed image mask, overlay of the moving image with the final fixed
image.
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Figure 17: AP image rank plots of the fixed and moving image for iterations 1, 10, 20, 30, 40 (top), 50, 100,
130, 160, 200 (bottom).

Figure 18: LAT image rank plots of the fixed and moving image for iterations 1, 10, 20, 30, 40 (top), 50,
100, 130, 160, 197 (bottom).
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5 Discussion

We presented an implementation of stochastic rank correlation which is well-integrated with the ITK-
framework. Furthermore, we provided a set of 2D/3D registration example applications and sample data
for testing SRC. The applications showed that the metric was able to successfully assess the similarity of
the investigated X-rays and DRRs from a CT of the same subject without specific radiometric calibration or
image pre-processing. It is, however, important to note that this paper does not cover a comprehensive SRC
validation study. The reader may refer to [1, 2, 3] for comparative SRC studies based on cadaver data sets.

In this paper we concentrated on the usage of SRC with 2D/3D image registration. It would be, however,
interesting to investigate the performance of SRC in other image registration scenarios such as deformable
constrained B-spline 3D/3D CBCT-to-CT registration.

Finally, we hope that we could encourage researchers to actively investigate SRC, by providing an imple-
mentation that is fully compatible with the generic ITK registration framework.

6 Licensing

The software provided was developed by Philipp Steininger and Markus Neuner under contract at the
Paracelsus Medical University (PMU), Austria at the Institute for Research and Development on Ad-
vanced Radiation Technologies (radART). The software is distributed under the new and simplified BSD
license approved by the Open Source Initiative (OSI, www.opensource.org/licenses/bsd-license.php) (see
license.txt). The software is partially derived from the Insight Segmentation and Registration Toolkit
(ITK), and the extended ITK-based 2D/3D registration framework [7] which are both distributed under the
new and simplified BSD license. ITK is required for source code compilation.

NOTE: The data set licenses are located in the corresponding directories.
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