
Variance Image Filter
Release 0.01

Robert Tamburo1

December 9, 2010
1robert.tamburo@gmail.com

Abstract

This paper describes an intensity image filter http://www.itk.org/Doxygen318/html/group_
_IntensityImageFilters.html for computing the variance of pixel values contained within a neigh-
borhood centered at each input pixel. The output image contains the calculated variance at each input
pixel location. This paper is accompanied with source code for the filter and test, test images and param-
eters, and expected output images.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3236]
Distributed under Creative Commons Attribution License

Contents

1 Implementation of Algorithm 1

2 Example 2

3 Testing 2

4 Software Used 4

1 Implementation of Algorithm

The variance image filter is implemented in exactly the same way as itk::NoiseImageFilter.

http://www.itk.org/Doxygen318/html/group__IntensityImageFilters.html
http://www.itk.org/Doxygen318/html/group__IntensityImageFilters.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3236
http://creativecommons.org/licenses/by/3.0/us/
http://www.itk.org/Doxygen/html/classitk_1_1NoiseImageFilter.html

2

Figure 1: The input image sf4.png for this example.

2 Example

This filter requires setting an input image SetInput() and the radius of the neighborhood with
SetRadius(). The neighborhood of the radius defaults to 1. Example usage is shown below.

typedef itk::Image<unsigned char, 2> ImageType;
ImageType::Pointer image = ImageType::New();
typedef itk::Image<unsigned char, 2> ImageType;
typedef itk::VarianceImageFilter<ImageType, ImageType> VarianceFilterType;
VarianceFilterType::Pointer varianceFilter = VarianceFilterType::New();
varianceFilter->SetInput(inputImage); // set the input image
ImageType::SizeType radius;
radius.Fill(10); // set the desired neighborhood radius
radius->SetRadius(radius);
varianceFilter->Update();

For this example, sf4.png (Fig. 1) from the Data directory is used as the input image. Shown in Figure 2
is the output with default radius and shown in Figure 3 is the output with a radius of 5.

3 Testing

The test code included with this article will generate images in Figures 2 and 3 with the folloiwing argu-
ments.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3236]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3236
http://creativecommons.org/licenses/by/3.0/us/

3

Figure 2: The output image with default radius.

Figure 3: The output image with a radius of 5.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3236]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3236
http://creativecommons.org/licenses/by/3.0/us/

4

VarianceImageFilter.exe sf4.png sf4_out1.png 1
VarianceImageFilter.exe sf4.png sf4_out5.png 5

4 Software Used

This filter was developed on a Windows 7 64-bit computer. It has been successfully tested with ITK version
3.18.0, MinGW version 5.1.6, and CMake version 2.8.2 (Windows binary), and gcc version 4.3.4 20090804
release 1 under cygwin.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3236]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3236
http://creativecommons.org/licenses/by/3.0/us/

	Implementation of Algorithm
	Example
	Testing
	Software Used

