A small rework for the Gaussian Derivative
Image Function

Release 1.0
Dan Mueller!

February 17, 2006

!Queensland University of Technology, Brisbane, Australia

Abstract

The itk::GaussianDerivativeImageFunction computes the derivative at the specified physical or
pixel location. Unfortunately it has a number of deficiencies, for which I suggest possible solutions.

Keywords: ITK, ImageFunctions, GaussianDerivativelmageFunction

1 The Problem

Gradient or derivative information is important for many image processing tasks. The Insight Toolkit (ITK)
has various means to compute the derivative; both of a whole image, and at specific locations. We concern
ourselves with itk::ImageFunctions which allow users to compute the derivative at specified physical
or pixel locations. The itk::CentralDifferenceImageFunction uses the central differences method to
compute gradient information; however, while useful for some applications, it can suffer from noise artefacts
due to small intensity variations. The itk::GaussianDerivativeImageFunction overcomes this problem
by applying a Gaussian smoothing operator before calculating the gradient information.

Recently a bug (# 2891) was reported which highlighted the problem that itk::GaussianDerivative-
ImageFunction did not correctly handle points in physical space. This bug was fixed and committed as
r1.14 (see ITK CVS). Unfortunately (as far as I can tell), while this solved the initial problem of evaluating
points in physical space, it introduced a new issue of no longer evaluating the derivative at true continu-
ous locations. In the fix (r1.14) all continuous points/indices are now cast to the nearest discrete index.
Previously (r1.13) the method RecomputeContinuousGaussianKernel (double* offset) was invoked
by Evaluate(..) with the difference between the continuous and discrete point passed in as the offset.
I assume this offset was used to interpolate at continuous points. The method RecomputeContinuous-
GaussianKernel (double* offset) no longer being invoked.

Furthermore, the itk::GaussianDerivativeImageFunction contains repetitive code blocks (which are
discouraged by extreme programming practices). Finally, it appears this class is only implemented for
images with 2 dimensions.

http://www.itk.org/Bug/bug.php?op=show&bugid=2891
http://www.itk.org/cgi-bin/viewcvs.cgi/Code/Common/itkGaussianDerivativeImageFunction.txx?root=Insight&r1=1.13&r2=1.14

A small rework for the Gaussian Derivative Image Function 2

2 The Proposed Solution

I propose a slight rework for this class which addresses the issues of code duplication, and evaluating the
derivative at true continuous locations:

1. Remove the duplicated RecomputeContinuousGaussianKernel () method and all associated calls
by the SetSigma(..) and SetExtent(..) methods. NOTE: keep the RecomputeContinuous-
GaussianKernel (double* offset) method.

2. Remove the m_OperatorArray field, and reference in PrintSelf (..).

3. Create a protected method EvaluateAt IndexWithOffset (IndexType index, double* offset).

4. Change the EvaluateAtIndex (..) method to create an offset of all zeros and then call Evaluate-
AtIndexWithOffset (..).

5. Change the new (r1.14) Evaluate (..) method, but compute the offset before calling EvaluateAt-
IndexWithOffset (..).

6. Change the new (r1.14) EvaluateAtContinuousIndex (..) method, but as above compute the offset

before calling EvaluateAtIndexWithOffset (..).

These proposed changes, to the best of my knowledge, would allow for the itk::GaussianDerivative-
ImageFunction to compute derivative information at true continuous points (ie. not casting to the nearest
Index). All evaluation would now be handled by the EvaluateAt IndexWithOffset (..) method, avoiding
code duplication. These changes would introduce some /imited overhead for evaluating the function at exact
(ie. discrete) indices.

3 Conclusions

The proposed changes address the discussed issues with the itk::GaussianDerivativeImageFunction.
These changes do not change the API and therefore should adhere to ITK’s backwards compatibility require-
ments. It should also be noted that this class is currently only implemented for images with 2 dimensions. I
have not addressed this dimensionality issue in this article (any takers?).

O 01N N BN~

N b DB B D DA DD B LW W W W WL L WWIERNDNDDDNINDNDNINDN = === = =
AN B WD = OOV ANNDD W= OV WNPE WD, OOV WUNPEWN=OWOVWOIONWN PR WND—=O

A small rework for the Gaussian Derivative Image Function

Appendix A Source code

/ *

Program: Insight Segmentation & Registration Toolkit

Module:

SRCSfile: itkGaussianDerivativelImageFunction.h,v $

Language: C++

Date:

Shate: 2006/02/17 S

Version: SRevision: 1.15 $

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY,; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.

#ifndef _
#define _

#include
#include
#include
#include

itkGaussianDerivativeImageFunction_h
itkGaussianDerivativeImageFunction_h

"itkNeighborhoodOperatorImageFunction.h"
"itkImageFunction.h"
"itkGaussianDerivativeSpatialFunction.h"
"itkGaussianSpatialFunction.h"

namespace itk

{

/%

+ \class GaussianDerivativeImageFunction
+ \brief Compute the gaussian derivatives of an the image at a specific

location in space, 1.e. point, index or continuous index.

* This class 1s templated over the input image type.
* \sa NeighborhoodOperator
* \sa ImageFunction

*/
template

<class TInputlImage,class TOutput=double>

class ITK_EXPORT GaussianDerivativeImageFunction

public ImageFunction< TInputImage,
Vector <TOutput ,::itk::GetImageDimension<TInputImage>::ImageDimension>,
TOutput >
{
public:

/*+xStandard "Self" typedef */
typedef GaussianDerivativeImageFunction Self;

/*+ Standard "Superclass" typedef+/

typedef ImageFunction<TInputImage,
Vector <TOutput,::itk::GetImageDimension<TInputImage>::ImageDimension>,
TOutput > Superclass;

/++ Smart pointer typedef support. */
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;

/*+ Method for creation through the object factory.x/

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

A small rework for the Gaussian Derivative Image Function

itkNewMacro (Self);

/#*% Run-time type information (and related methods). */
itkTypeMacro (GaussianDerivativeImageFunction, ImageFunction);

/#*% InputImageType typedef support.+/

typedef TInputlImage InputImageType;
typedef typename InputImageType ::PixelType InputPixelType;
typedef typename InputImageType ::IndexType IndexType;

/#*% Dimension of the underlying image. */
itkStaticConstMacro (ImageDimension2, unsigned int,
InputImageType ::ImageDimension);

typedef ContinuousIndex<TOutput, itkGetStaticConstMacro (ImageDimension2)>
ContinuousIndexType;

typedef Neighborhood<InputPixelType, itkGetStaticConstMacro (ImageDimension2)>
NeighborhoodType;

typedef Neighborhood<TOutput, itkGetStaticConstMacro (ImageDimension2)>
OperatorNeighborhoodType;

typedef Vector<TOutput, itkGetStaticConstMacro (ImageDimension2)> VectorType;
typedef typename Superclass::OutputType OutputType;
typedef FixedArray<OperatorNeighborhoodType,
2*itkGetStaticConstMacro (ImageDimension2)> OperatorArrayType;
typedef NeighborhoodOperatorImageFunction <InputImageType, TOutput >
OperatorImageFunctionType;
typedef typename OperatorImageFunctionType::Pointer OperatorImageFunctionPointer;

typedef GaussianDerivativeSpatialFunction <TOutput,h 1>
GaussianDerivativeFunctionType;

typedef typename GaussianDerivativeFunctionType::Pointer
GaussianDerivativeFunctionPointer;

typedef GaussianSpatialFunction <TOutput,l1> GaussianFunctionType;
typedef typename GaussianFunctionType ::Pointer GaussianFunctionPointer;

/+% Point typedef support. =/
typedef Point <TOutput,itkGetStaticConstMacro (ImageDimension2)> PointType;

/++ Evalutate the 1in the given dimension at specified point =/
virtual OutputType Evaluate (const PointTypeé& point) const;

/++ Evaluate the function at specified Index position#*/
virtual OutputType EvaluateAtIndex (const IndexType & index) const;

/*+ Evaluate the function at specified ContinousIndex position.x/
virtual OutputType EvaluateAtContinuousIndex (
const ContinuousIndexType & index) const;

/+% The variance for the discrete Gaussian kernel. Sets the variance
* independently for each dimension, but
* see also SetVariance (const double v). The default is 0.0 in each
* dimension. If UselImageSpacing is true, the units are the physical units
* of your image. If UselImageSpacing is false then the units are pixels.x/
void SetSigma (const double* sigma);
void SetSigma (const double sigma);

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

A small rework for the Gaussian Derivative Image Function

const double* GetSigma () const {return m_Sigma;}

/*+ Set the extent of the kernel x*/

void SetExtent (const double* extent);

void SetExtent (const double extent);

const double* GetExtent () const {return m_Extent;}

/+% Set the input image.
* \warning this method caches BufferedRegion information.
+ If the BufferedRegion has changed, user must call
* SetInputImage again to update cached values. */
virtual void SetInputImage (const InputImageType * ptr);

protected:

GaussianDerivativeImageFunction();
GaussianDerivativeImageFunction(const Selfé&) {};
“GaussianDerivativeImageFunction() {};

void operator=(const Self&){};

void PrintSelf (std::ostream& os, Indent indent) const;

/#*% The main worker function for evaluating the function at a given
* discrete index and offset (NOTE: the offset will be zeros 1f
* we are evaluating at an exact discrete index). x/
virtual OutputType EvaluateAtIndexWithOffset (const IndexType & index,
const double* offset) const;
void RecomputeContinuousGaussianKernel (const double* offset) const;

private:

}i

}

double m_Sigma[ImageDimension2];

/#*% Array of 1D operators. Contains a derivative kernel and a gaussian
* kernel for each dimension x/
mutable OperatorArrayType m_ContinuousOperatorArray;

/*% OperatorImageFunction */
OperatorImageFunctionPointer m_OperatorImageFunction;
double m_Extent [ImageDimension2];

/*+ Flag to indicate whether to use image spacing */
bool m_UselImageSpacing;

/#+ Neighborhood Image Function */

GaussianDerivativeFunctionPointer m_GaussianDerivativeFunction;
GaussianFunctionPointer m_GaussianFunction;

// namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGaussianDerivativeImageFunction.txx"
#endif

#endif

Listing 1: Proposed itkGaussianDerivativelmageFunction.h

0N N bW~

A

small rework for the Gaussian Derivative Image Function

Program: Insight Segmentation & Registration Toolkit

Module: SRCSfile: itkGaussianDerivativelImageFunction.txx,v $
Language: CarF

Date: SDate: 2006/02/17 $

Version: SRevision: 1.15 §

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.

#i
#d

#i

*/
fndef __itkGaussianDerivativelImageFunction_txx
efine __itkGaussianDerivativeImageFunction_txx
nclude "itkGaussianDerivativeImageFunction.h"

namespace itk

{

/ *
te
Ga

{

/ *
te
vo
Ga

{

* Set the Input Image x/

mplate <class TInputImage, class TOutput>
ussianDerivativeImageFunction <TInputImage, TOutput >
GaussianDerivativeImageFunction ()

typename GaussianFunctionType ::ArrayType mean;
mean [0]=0.0;
for (unsigned int i=0;i<itkGetStaticConstMacro (ImageDimension2); i++)

{

m_Sigmal[i] = 1.0;

m_Extent[i] = 1.0;

}
m_UselImageSpacing = true;
m_GaussianDerivativeFunction = GaussianDerivativeFunctionType::New ();
m_GaussianFunction = GaussianFunctionType ::New();
m_OperatorImageFunction = OperatorImageFunctionType ::New ();

m_GaussianFunction->SetMean (mean);
m_GaussianFunction->SetNormalized (false); // faster
m_GaussianDerivativeFunction ->SetNormalized (false); // faster

* Print self method #*/

mplate <class TInputImage, class TOutput>

id
ussianDerivativeImageFunction <TInputImage, TOutput >
PrintSelf (std::ostreamé& os, Indent indent) const

this->Superclass::PrintSelf (os, indent);

0s << indent << "UselImageSpacing: " << m_UselmageSpacing << std::endl;
0s << indent << "Sigma: " << m_Sigma << std::endl;
0s << 1indent << "Extent: " << m_Extent << std::endl;

0s << indent << "ContinuousOperatorArray: "

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

A small rework for the Gaussian Derivative Image Function

<< m_ContinuousOperatorArray << std::endl;
0s << indent << "OperatorImageFunction: "
<< m_OperatorImageFunction << std::endl;
0s << indent << "GaussianDerivativeFunction: "
<< m_GaussianDerivativeFunction << std::endl;
0s << indent << "GaussianFunction: "
<< m_GaussianFunction << std::endl;

/%% Set the input image x/
template <class TInputImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetInputImage (const InputImageType * ptr)
{
Superclass::SetInputImage (ptr);
m_OperatorImageFunction ->SetInputImage (ptr);

/++ Set the variance of the gaussian in each direction */
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetSigma (const double* sigma)
{
unsigned int 1i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i+t+)
{
if (sigmaf[i] != m_Sigmal[i])
{
break;
}
}
if (i < itkGetStaticConstMacro (ImageDimension2))
{
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); 1i++)
{
m_Sigma[i] = sigmal[i];

}

/++ Set the variance of the gaussian in each direction */
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetSigma (const double sigma)
{
unsigned int 1i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)
{
if (sigma !'= m_Sigmaf[i])
{
break;
}
}
if (i < itkGetStaticConstMacro (ImageDimension2))

{

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

A small rework for the Gaussian Derivative Image Function

for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)
{
m_Sigma[i] = sigma;

}

/*% Set the extent of the gaussian in each direction x/
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetExtent (const double* extent)
{
unsigned int i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i+t+)
{
if (extent[i] != m_Extent[i])
{
break;
}
}
if (i < itkGetStaticConstMacro (ImageDimension2))
{
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); 1i++)
{
m_Extent [i] = extent[i];

}

/*% Set the extent of the gaussian in each direction x/
template <class TInputImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetExtent (const double extent)
{
unsigned int i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)
{
if (extent != m_Extent[i])
{
break;
}
}
if (i < itkGetStaticConstMacro (ImageDimension2))
{
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); 1i++)
{
m_Extent [i] = extent;

}

/#++ Evaluate the function at the given index, with the given offset #*/
template <class TInputImage, class TOutput>
typename GaussianDerivativelImageFunction<TInputImage, TOutput >::0OutputType
GaussianDerivativeImageFunction <TInputImage, TOutput >
::EvaluateAtIndexWithOffset (const IndexType & index,

const double* offset) const

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

A small rework for the Gaussian Derivative Image Function

OutputType gradient;

//Recompute the kernel
this->RecomputeContinuousGaussianKernel (offset);

//Compute gradient value
for (unsigned int idim=0; idim<itkGetStaticConstMacro (ImageDimension2); idim++)
{
// Apply each gaussian kernel to a subset of the image
InputPixelType pixel = this->GetInputImage ()->GetPixel (index);
double value = pixel;

// Apply Gaussian blurring first
for (unsigned int jdim=0; jdim<itkGetStaticConstMacro (ImageDimension2); Jjdim++)
{
if(idim != jdim)
{
unsigned int id= 2*jdim+1l; // select only gaussian kernel;
unsigned int center =
(unsigned int) ((m_ContinuousOperatorArray [1d].GetSize () [jdim]-1)/2);
TOutput centerval = m_ContinuousOperatorArray [id][center];
m_ContinuousOperatorArray [id] [center] = 0;
m_OperatorImageFunction ->SetOperator (m_ContinuousOperatorArray [id]);
value = m_OperatorImageFunction ->EvaluateAtIndex (index)+centerval*value;

// Apply derivative in the direction
signed int center =

(unsigned int) ((m_ContinuousOperatorArray [2*idim].GetSize () [idim]-1)/2);
TOutput centerval = m_ContinuousOperatorArray [2*idim] [center];
m_ContinuousOperatorArray [2*idim] [center] = 0;
m_OperatorImageFunction ->SetOperator (m_ContinuousOperatorArray [2*idim]);
value = m_OperatorImageFunction ->EvaluateAtIndex (index)+centerval*value;
gradient [idim] = value;

}

return gradient;

/%% Recompute the gaussian kernel used to evaluate indexes
* The variance should be uniform #*/
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::RecomputeContinuousGaussianKernel (
const double* offset) const

{

unsigned int direction = 0;
for (unsigned int op = 0; op<itkGetStaticConstMacro (ImageDimension2)*2; op++t)
{
// Set the derivative of the gaussian first
OperatorNeighborhoodType dogNeighborhood;
typename GaussianDerivativeFunctionType::InputType pt;
typename OperatorNeighborhoodType::SizeType size;
size.Fill (0);

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

A small rework for the Gaussian Derivative Image Function

10

size[direction] = (unsigned long) (m_Sigma[direction]*m_Extent [direction]);
dogNeighborhood.SetRadius (size);

typename GaussianDerivativeFunctionType::ArrayType s;
s[0] = m_Sigma[direction];
m_GaussianDerivativeFunction ->SetSigma(s);

typename OperatorNeighborhoodType::Iterator it = dogNeighborhood.Begin ();

unsigned int i=0;
while (it != dogNeighborhood.End ())

{
pt [0]= dogNeighborhood.GetOffset (i) [direction]-offset[direction];

if((m_UseImageSpacing == true) && (this->GetInputlImage ()))

{

if (this->GetInputlImage () ->GetSpacing () [direction] == 0.0
{
itkExceptionMacro (<< "Pixel spacing cannot be zero");
}

else
{
pt [0] *= this->GetInputlImage () ->GetSpacing () [direction];
}

}

(*it)= m_GaussianDerivativeFunction ->Evaluate (pt);
i kg
it++;
}
m_ContinuousOperatorArray [op] = dogNeighborhood;

// Set the gaussian operator
m_GaussianFunction->SetSigma (s);

op++;

OperatorNeighborhoodType gaussianNeighborhood;
gaussianNeighborhood.SetRadius (size);

it = gaussianNeighborhood .Begin();
i=0;
double sum = 0;
while (it != gaussianNeighborhood.End ())
{
pt [0]= gaussianNeighborhood.GetOffset (i) [direction]-offset[direction];
if((m_UseImageSpacing == true) && (this->GetInputlImage ()))
{
if (this->GetInputlImage () ->GetSpacing () [direction] == 0.0

{

itkExceptionMacro (<< "Pixel spacing cannot be zero");

}
else

{
pt [0] *= this->GetInputImage () ->GetSpacing () [direction];
}

(*it)= m_GaussianFunction->Evaluate (pt);

A small rework for the Gaussian Derivative Image Function

295 sum += (*it);

296 i++;

297 it++;

298 }

299

300 // Make the filter DC-Constant

301 it = gaussianNeighborhood.Begin();

302 while (it != gaussianNeighborhood.End ())
303 {

304 (*it) /= sum;

305 it++;

306 }

307

308 m_ContinuousOperatorArray [op] = gaussianNeighborhood;
309 direction++;

310 }

311}

312

313 /x# Evaluate the function at the specifed index */

314 template <class TInputImage, class TOutput >

315 typename GaussianDerivativeImageFunction <TInputImage,TOutput >::OutputType
316 GaussianDerivativeImageFunction <TInputImage, TOutput >

317 ::EvaluateAtIndex (const IndexTypeé& index) const

318 |

319 //Compute offset

320 double offset[itkGetStaticConstMacro (ImageDimension2)];
321 for (unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)
322 {

323 offset[1i] = 0;

324 }

325

326 //Evaluate

327 return this->EvaluateAtIndexWithOffset (index, offset);
328 }

329

330 /x# Evaluate the function at the specifed point x/

331 template <class TInputImage, class TOutput >

332 typename GaussianDerivativeImageFunction <TInputImage,TOutput >::OutputType
333 GaussianDerivativeImageFunction <TInputImage, TOutput >

334 ::Evaluate (const PointType& point) const

335 |

336 //Convert point to Index

337 IndexType index;

338 this->ConvertPointToNearestIndex (point , index);

339

340 //Compute offset

341 double offset[itkGetStaticConstMacro (ImageDimension2)];
342 for (unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)
343 {

344 offset[i] = point[i] - index[i];

345 }

346

347 //Evaluate

348 return this->EvaluateAtIndexWithOffset (index, offset);
349 |}

350

351 /#** Evaluate the function at specified ContinousIndex position.x/
352 template <class TInputImage, class TOutput >
353 typename GaussianDerivativeImageFunction <TInputImage,TOutput >::OutputType

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

A small rework for the Gaussian Derivative Image Function 12

GaussianDerivativeImageFunction <TInputImage, TOutput >

::EvaluateAtContinuousIndex (const ContinuousIndexType & cindex) const
{

//Convert cindex to Index

IndexType index;

this->ConvertContinuousIndexToNearestIndex(cindex, index);

//Compute offset

double offset[itkGetStaticConstMacro (ImageDimension2)];

for (unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)
{
offset[i] = cindex[i] - index[i];

}

//Evaluate
return this->EvaluateAtIndexWithOffset (index, offset);

} // end namespace itk

#endif

Listing 2: Proposed itkGaussianDerivativelmageFunction.txx

A small rework for the Gaussian Derivative
Image Function

Release 2.0
Dan Mueller!

February 28, 2006

!Queensland University of Technology, Brisbane, Australia

Abstract

The itk::GaussianDerivativeImageFunction computes the derivative at the specified physical or
pixel location. Unfortunately it has a number of deficiencies, for which I suggest possible solutions.

Keywords: ITK, ImageFunctions, GaussianDerivativelmageFunction

1 The Problem

Gradient or derivative information is important for many image processing tasks. The Insight Toolkit (ITK)
has various means to compute the derivative; both of a whole image, and at specific locations. We concern
ourselves with itk::ImageFunctions which allow users to compute the derivative at specified physical
or pixel locations. The itk::CentralDifferenceImageFunction uses the central differences method to
compute gradient information; however, while useful for some applications, it can suffer from noise artefacts
due to small intensity variations. The itk::GaussianDerivativeImageFunction overcomes this problem
by applying a Gaussian smoothing operator before calculating the gradient information.

Recently a bug (# 2891) was reported which highlighted the problem that itk::GaussianDerivative-
ImageFunction did not correctly handle points in physical space. This bug was fixed and committed as
r1.14 (see ITK CVS). Unfortunately (as far as I can tell), while this solved the initial problem of evaluating
points in physical space, it introduced a new issue of no longer evaluating the derivative at true continu-
ous locations. In the fix (r1.14) all continuous points/indices are now cast to the nearest discrete index.
Previously (r1.13) the method RecomputeContinuousGaussianKernel (double* offset) was invoked
by Evaluate(..) with the difference between the continuous and discrete point passed in as the offset.
I assume this offset was used to interpolate at continuous points. The method RecomputeContinuous-
GaussianKernel (double* offset) no longer being invoked.

Furthermore, the itk::GaussianDerivativeImageFunction contains repetitive code blocks (which are
discouraged by extreme programming practices). Finally, it appears this class is only implemented for
images with 2 dimensions.

http://www.itk.org/Bug/bug.php?op=show&bugid=2891
http://www.itk.org/cgi-bin/viewcvs.cgi/Code/Common/itkGaussianDerivativeImageFunction.txx?root=Insight&r1=1.13&r2=1.14

A small rework for the Gaussian Derivative Image Function 2

2 The Proposed Solution

I propose a slight rework for this class which addresses the issues of code duplication, and evaluating the
derivative at true continuous locations:

1. Remove the duplicated RecomputeContinuousGaussianKernel () method and all associated calls
by the SetSigma(..) and SetExtent(..) methods. NOTE: keep the RecomputeContinuous-
GaussianKernel (double* offset) method.

2. Remove the m_OperatorArray field, and reference in PrintSelf (..).

3. Create a protected method EvaluateAt IndexWithOffset (IndexType index, double* offset).

4. Change the EvaluateAtIndex (..) method to create an offset of all zeros and then call Evaluate-
AtIndexWithOffset (..).

5. Change the new (r1.14) Evaluate (..) method, but compute the offset before calling EvaluateAt-
IndexWithOffset (..).

6. Change the new (r1.14) EvaluateAtContinuousIndex (..) method, but as above compute the offset

before calling EvaluateAtIndexWithOffset (..).

These proposed changes, to the best of my knowledge, would allow for the itk::GaussianDerivative-
ImageFunction to compute derivative information at true continuous points (ie. not casting to the nearest
Index). All evaluation would now be handled by the EvaluateAt IndexWithOffset (..) method, avoiding
code duplication. These changes would introduce some /imited overhead for evaluating the function at exact
(ie. discrete) indices.

3 Conclusions

The proposed changes address the discussed issues with the itk::GaussianDerivativeImageFunction.
These changes do not change the API and therefore should adhere to ITK’s backwards compatibility require-
ments. It should also be noted that this class is currently only implemented for images with 2 dimensions. I
have not addressed this dimensionality issue in this article (any takers?).

O 01N N BN~

N b DB B D DA DD B LW W W W WL L WWIERNDNDDDNINDNDNINDN = === = =
AN B WD = OOV ANNDD W= OV WNPE WD, OOV WUNPEWN=OWOVWOIONWN PR WND—=O

A small rework for the Gaussian Derivative Image Function

Appendix A Source code

/ *

Program: Insight Segmentation & Registration Toolkit

Module:

SRCSfile: itkGaussianDerivativelImageFunction.h,v $

Language: C++

Date:

Shate: 2006/02/17 S

Version: SRevision: 1.15 $

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY,; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.

#ifndef _
#define _

#include
#include
#include
#include

itkGaussianDerivativeImageFunction_h
itkGaussianDerivativeImageFunction_h

"itkNeighborhoodOperatorImageFunction.h"
"itkImageFunction.h"
"itkGaussianDerivativeSpatialFunction.h"
"itkGaussianSpatialFunction.h"

namespace itk

{

/%

+ \class GaussianDerivativeImageFunction
+ \brief Compute the gaussian derivatives of an the image at a specific

location in space, 1.e. point, index or continuous index.

* This class 1s templated over the input image type.
* \sa NeighborhoodOperator
* \sa ImageFunction

*/
template

<class TInputlImage,class TOutput=double>

class ITK_EXPORT GaussianDerivativeImageFunction

public ImageFunction< TInputImage,
Vector <TOutput ,::itk::GetImageDimension<TInputImage>::ImageDimension>,
TOutput >
{
public:

/*+xStandard "Self" typedef */
typedef GaussianDerivativeImageFunction Self;

/*+ Standard "Superclass" typedef+/

typedef ImageFunction<TInputImage,
Vector <TOutput,::itk::GetImageDimension<TInputImage>::ImageDimension>,
TOutput > Superclass;

/++ Smart pointer typedef support. */
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;

/*+ Method for creation through the object factory.x/

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

A small rework for the Gaussian Derivative Image Function

itkNewMacro (Self);

/#*% Run-time type information (and related methods). */
itkTypeMacro (GaussianDerivativeImageFunction, ImageFunction);

/#*% InputImageType typedef support.+/

typedef TInputlImage InputImageType;
typedef typename InputImageType ::PixelType InputPixelType;
typedef typename InputImageType ::IndexType IndexType;

/#*% Dimension of the underlying image. */
itkStaticConstMacro (ImageDimension2, unsigned int,
InputImageType ::ImageDimension);

typedef ContinuousIndex<TOutput, itkGetStaticConstMacro (ImageDimension2)>
ContinuousIndexType;

typedef Neighborhood<InputPixelType, itkGetStaticConstMacro (ImageDimension2)>
NeighborhoodType;

typedef Neighborhood<TOutput, itkGetStaticConstMacro (ImageDimension2)>
OperatorNeighborhoodType;

typedef Vector<TOutput, itkGetStaticConstMacro (ImageDimension2)> VectorType;
typedef typename Superclass::OutputType OutputType;
typedef FixedArray<OperatorNeighborhoodType,
2*itkGetStaticConstMacro (ImageDimension2)> OperatorArrayType;
typedef NeighborhoodOperatorImageFunction <InputImageType, TOutput >
OperatorImageFunctionType;
typedef typename OperatorImageFunctionType::Pointer OperatorImageFunctionPointer;

typedef GaussianDerivativeSpatialFunction <TOutput,h 1>
GaussianDerivativeFunctionType;

typedef typename GaussianDerivativeFunctionType::Pointer
GaussianDerivativeFunctionPointer;

typedef GaussianSpatialFunction <TOutput,l1> GaussianFunctionType;
typedef typename GaussianFunctionType ::Pointer GaussianFunctionPointer;

/+% Point typedef support. =/
typedef Point <TOutput,itkGetStaticConstMacro (ImageDimension2)> PointType;

/++ Evalutate the 1in the given dimension at specified point =/
virtual OutputType Evaluate (const PointTypeé& point) const;

/++ Evaluate the function at specified Index position#*/
virtual OutputType EvaluateAtIndex (const IndexType & index) const;

/*+ Evaluate the function at specified ContinousIndex position.x/
virtual OutputType EvaluateAtContinuousIndex (
const ContinuousIndexType & index) const;

/+% The variance for the discrete Gaussian kernel. Sets the variance
* independently for each dimension, but
* see also SetVariance (const double v). The default is 0.0 in each
* dimension. If UselImageSpacing is true, the units are the physical units
* of your image. If UselImageSpacing is false then the units are pixels.x/
void SetSigma (const double* sigma);
void SetSigma (const double sigma);

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

A small rework for the Gaussian Derivative Image Function

const double* GetSigma () const {return m_Sigma;}

/*+ Set the extent of the kernel x*/

void SetExtent (const double* extent);

void SetExtent (const double extent);

const double* GetExtent () const {return m_Extent;}

/+% Set the input image.
* \warning this method caches BufferedRegion information.
+ If the BufferedRegion has changed, user must call
* SetInputImage again to update cached values. */
virtual void SetInputImage (const InputImageType * ptr);

protected:

GaussianDerivativeImageFunction();
GaussianDerivativeImageFunction(const Selfé&) {};
“GaussianDerivativeImageFunction() {};

void operator=(const Self&){};

void PrintSelf (std::ostream& os, Indent indent) const;

/#*% The main worker function for evaluating the function at a given
* discrete index and offset (NOTE: the offset will be zeros 1f
* we are evaluating at an exact discrete index). x/
virtual OutputType EvaluateAtIndexWithOffset (const IndexType & index,
const double* offset) const;
void RecomputeContinuousGaussianKernel (const double* offset) const;

private:

}i

}

double m_Sigma[ImageDimension2];

/#*% Array of 1D operators. Contains a derivative kernel and a gaussian
* kernel for each dimension x/
mutable OperatorArrayType m_ContinuousOperatorArray;

/*% OperatorImageFunction */
OperatorImageFunctionPointer m_OperatorImageFunction;
double m_Extent [ImageDimension2];

/*+ Flag to indicate whether to use image spacing */
bool m_UselImageSpacing;

/#+ Neighborhood Image Function */

GaussianDerivativeFunctionPointer m_GaussianDerivativeFunction;
GaussianFunctionPointer m_GaussianFunction;

// namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGaussianDerivativeImageFunction.txx"
#endif

#endif

Listing 1: Proposed itkGaussianDerivativelmageFunction.h

0N N bW~

A

small rework for the Gaussian Derivative Image Function

Program: Insight Segmentation & Registration Toolkit

Module: SRCSfile: itkGaussianDerivativelImageFunction.txx,v $
Language: CarF

Date: SDate: 2006/02/17 $

Version: SRevision: 1.15 §

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.

#i
#d

#i

*/
fndef __itkGaussianDerivativelImageFunction_txx
efine __itkGaussianDerivativeImageFunction_txx
nclude "itkGaussianDerivativeImageFunction.h"

namespace itk

{

/ *
te
Ga

{

/ *
te
vo
Ga

{

* Set the Input Image x/

mplate <class TInputImage, class TOutput>
ussianDerivativeImageFunction <TInputImage, TOutput >
GaussianDerivativeImageFunction ()

typename GaussianFunctionType ::ArrayType mean;
mean [0]=0.0;
for (unsigned int i=0;i<itkGetStaticConstMacro (ImageDimension2); i++)

{

m_Sigmal[i] = 1.0;

m_Extent[i] = 1.0;

}
m_UselImageSpacing = true;
m_GaussianDerivativeFunction = GaussianDerivativeFunctionType::New ();
m_GaussianFunction = GaussianFunctionType ::New();
m_OperatorImageFunction = OperatorImageFunctionType ::New ();

m_GaussianFunction->SetMean (mean);
m_GaussianFunction->SetNormalized (false); // faster
m_GaussianDerivativeFunction ->SetNormalized (false); // faster

* Print self method #*/

mplate <class TInputImage, class TOutput>

id
ussianDerivativeImageFunction <TInputImage, TOutput >
PrintSelf (std::ostreamé& os, Indent indent) const

this->Superclass::PrintSelf (os, indent);

0s << indent << "UselImageSpacing: " << m_UselmageSpacing << std::endl;
0s << indent << "Sigma: " << m_Sigma << std::endl;
0s << 1indent << "Extent: " << m_Extent << std::endl;

0s << indent << "ContinuousOperatorArray: "

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

A small rework for the Gaussian Derivative Image Function

<< m_ContinuousOperatorArray << std::endl;
0s << indent << "OperatorImageFunction: "
<< m_OperatorImageFunction << std::endl;
0s << indent << "GaussianDerivativeFunction: "
<< m_GaussianDerivativeFunction << std::endl;
0s << indent << "GaussianFunction: "
<< m_GaussianFunction << std::endl;

/%% Set the input image x/
template <class TInputImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetInputImage (const InputImageType * ptr)
{
Superclass::SetInputImage (ptr);
m_OperatorImageFunction ->SetInputImage (ptr);

/++ Set the variance of the gaussian in each direction */
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetSigma (const double* sigma)
{
unsigned int 1i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i+t+)
{
if (sigmaf[i] != m_Sigmal[i])
{
break;
}
}
if (i < itkGetStaticConstMacro (ImageDimension2))
{
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); 1i++)
{
m_Sigma[i] = sigmal[i];

}

/++ Set the variance of the gaussian in each direction */
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetSigma (const double sigma)
{
unsigned int 1i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)
{
if (sigma !'= m_Sigmaf[i])
{
break;
}
}
if (i < itkGetStaticConstMacro (ImageDimension2))

{

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

A small rework for the Gaussian Derivative Image Function

for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)
{
m_Sigma[i] = sigma;

}

/*% Set the extent of the gaussian in each direction x/
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetExtent (const double* extent)
{
unsigned int i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i+t+)
{
if (extent[i] != m_Extent[i])
{
break;
}
}
if (i < itkGetStaticConstMacro (ImageDimension2))
{
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); 1i++)
{
m_Extent [i] = extent[i];

}

/*% Set the extent of the gaussian in each direction x/
template <class TInputImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetExtent (const double extent)
{
unsigned int i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)
{
if (extent != m_Extent[i])
{
break;
}
}
if (i < itkGetStaticConstMacro (ImageDimension2))
{
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); 1i++)
{
m_Extent [i] = extent;

}

/#++ Evaluate the function at the given index, with the given offset #*/
template <class TInputImage, class TOutput>
typename GaussianDerivativelImageFunction<TInputImage, TOutput >::0OutputType
GaussianDerivativeImageFunction <TInputImage, TOutput >
::EvaluateAtIndexWithOffset (const IndexType & index,

const double* offset) const

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

A small rework for the Gaussian Derivative Image Function

OutputType gradient;

//Recompute the kernel
this->RecomputeContinuousGaussianKernel (offset);

//Compute gradient value
for (unsigned int idim=0; idim<itkGetStaticConstMacro (ImageDimension2); idim++)
{
// Apply each gaussian kernel to a subset of the image
InputPixelType pixel = this->GetInputImage ()->GetPixel (index);
double value = pixel;

// Apply Gaussian blurring first
for (unsigned int jdim=0; jdim<itkGetStaticConstMacro (ImageDimension2); Jjdim++)
{
if(idim != jdim)
{
unsigned int id= 2*jdim+1l; // select only gaussian kernel;
unsigned int center =
(unsigned int) ((m_ContinuousOperatorArray [1d].GetSize () [jdim]-1)/2);
TOutput centerval = m_ContinuousOperatorArray [id][center];
m_ContinuousOperatorArray [id] [center] = 0;
m_OperatorImageFunction ->SetOperator (m_ContinuousOperatorArray [id]);
value = m_OperatorImageFunction ->EvaluateAtIndex (index)+centerval*value;

// Apply derivative in the direction
signed int center =

(unsigned int) ((m_ContinuousOperatorArray [2*idim].GetSize () [idim]-1)/2);
TOutput centerval = m_ContinuousOperatorArray [2*idim] [center];
m_ContinuousOperatorArray [2*idim] [center] = 0;
m_OperatorImageFunction ->SetOperator (m_ContinuousOperatorArray [2*idim]);
value = m_OperatorImageFunction ->EvaluateAtIndex (index)+centerval*value;
gradient [idim] = value;

}

return gradient;

/%% Recompute the gaussian kernel used to evaluate indexes
* The variance should be uniform #*/
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::RecomputeContinuousGaussianKernel (
const double* offset) const

{

unsigned int direction = 0;
for (unsigned int op = 0; op<itkGetStaticConstMacro (ImageDimension2)*2; op++t)
{
// Set the derivative of the gaussian first
OperatorNeighborhoodType dogNeighborhood;
typename GaussianDerivativeFunctionType::InputType pt;
typename OperatorNeighborhoodType::SizeType size;
size.Fill (0);

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

A small rework for the Gaussian Derivative Image Function

10

size[direction] = (unsigned long) (m_Sigma[direction]*m_Extent [direction]);
dogNeighborhood.SetRadius (size);

typename GaussianDerivativeFunctionType::ArrayType s;
s[0] = m_Sigma[direction];
m_GaussianDerivativeFunction ->SetSigma(s);

typename OperatorNeighborhoodType::Iterator it = dogNeighborhood.Begin ();

unsigned int i=0;
while (it != dogNeighborhood.End ())

{
pt [0]= dogNeighborhood.GetOffset (i) [direction]-offset[direction];

if((m_UseImageSpacing == true) && (this->GetInputlImage ()))

{

if (this->GetInputlImage () ->GetSpacing () [direction] == 0.0
{
itkExceptionMacro (<< "Pixel spacing cannot be zero");
}

else
{
pt [0] *= this->GetInputlImage () ->GetSpacing () [direction];
}

}

(*it)= m_GaussianDerivativeFunction ->Evaluate (pt);
i kg
it++;
}
m_ContinuousOperatorArray [op] = dogNeighborhood;

// Set the gaussian operator
m_GaussianFunction->SetSigma (s);

op++;

OperatorNeighborhoodType gaussianNeighborhood;
gaussianNeighborhood.SetRadius (size);

it = gaussianNeighborhood .Begin();
i=0;
double sum = 0;
while (it != gaussianNeighborhood.End ())
{
pt [0]= gaussianNeighborhood.GetOffset (i) [direction]-offset[direction];
if((m_UseImageSpacing == true) && (this->GetInputlImage ()))
{
if (this->GetInputlImage () ->GetSpacing () [direction] == 0.0

{

itkExceptionMacro (<< "Pixel spacing cannot be zero");

}
else

{
pt [0] *= this->GetInputImage () ->GetSpacing () [direction];
}

(*it)= m_GaussianFunction->Evaluate (pt);

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

A small rework for the Gaussian Derivative Image Function

11

sum += (*it);
i++;

A& 4 g

}

// Make the filter DC-Constant

it = gaussianNeighborhood.Begin();

while (it != gaussianNeighborhood.End ())
{
(*it) /= sum;
it++;

}

m_ContinuousOperatorArray [op] = gaussianNeighborhood;
direction++;

}

/%% Evaluate the function at the specifed index #*/

template <class TInputlImage, class TOutput>

typename GaussianDerivativelImageFunction<TInputImage, TOutput >::0OutputType
GaussianDerivativeImageFunction <TInputImage, TOutput >
::EvaluateAtIndex (const IndexTypeé& index) const

//Compute offset

double offset[itkGetStaticConstMacro (ImageDimension2)];

for (unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)
{
offset[i] = 0;
}

//Evaluate
return this->EvaluateAtIndexWithOffset (index, offset);

/++ Evaluate the function at the specifed point */
template <class TInputImage, class TOutput>
typename GaussianDerivativelImageFunction<TInputImage, TOutput >::0OutputType
GaussianDerivativeImageFunction <TInputImage, TOutput >
::Evaluate (const PointTypeé& point) const
{
//Convert Point to ContinuousIndex then Index
ContinuousIndexType cindex;
IndexType 1index;
this->ConvertPointToContinuousIndex(point, cindex)
this->ConvertContinousIndexToNearestIndex(cindex, index)

//Compute offset

double offset[itkGetStaticConstMacro (ImageDimension2)];

for (unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)
{
offset[i] = cindex[i] - index[i];

}

//Evaluate
return this->EvaluateAtIndexWithOffset (index, offset);

/++ Evaluate the function at specified ContinousIndex position.x/

A small rework for the Gaussian Derivative Image Function

354 template <class TInputImage, class TOutput >
355 typename GaussianDerivativelImageFunction <TInputImage, TOutput >::OutputType
356 GaussianDerivativelImageFunction <TInputImage, TOutput >

357 ::EvaluateAtContinuousIndex (const ContinuousIndexType & cindex) const
358 {

359 //Convert cindex to Index

360 IndexType index;

361 this->ConvertContinuousIndexToNearestIndex(cindex, index);

362

363 //Compute offset

364 double offset[itkGetStaticConstMacro (ImageDimension2)];

365 for (unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)
366 {

367 offset[i] = cindex[1i] - index[i];

368 }

369

370 //Evaluate

371 return this->EvaluateAtIndexWithOffset (index, offset);

372}

373

374 '} // end namespace itk

375

376 #endif

Listing 2: Proposed itkGaussianDerivativelmageFunction.txx

	1 The Problem
	2 The Proposed Solution
	3 Conclusions
	Appendix A Source code
	1 The Problem
	2 The Proposed Solution
	3 Conclusions
	Appendix A Source code

