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Abstract

The itk::GaussianDerivativeImageFunction computes the derivative at the specified physical or
pixel location. Unfortunately it has a number of deficiencies, for which I suggest possible solutions.
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1 The Problem

Gradient or derivative information is important for many image processing tasks. The Insight Toolkit (ITK)
has various means to compute the derivative; both of a whole image, and at specific locations. We concern
ourselves with itk::ImageFunctions which allow users to compute the derivative at specified physical
or pixel locations. The itk::CentralDifferenceImageFunction uses the central differences method to
compute gradient information; however, while useful for some applications, it can suffer from noise artefacts
due to small intensity variations. The itk::GaussianDerivativeImageFunction overcomes this problem
by applying a Gaussian smoothing operator before calculating the gradient information.

Recently a bug (# 2891) was reported which highlighted the problem that itk::GaussianDerivative-
ImageFunction did not correctly handle points in physical space. This bug was fixed and committed as
r1.14 (see ITK CVS). Unfortunately (as far as I can tell), while this solved the initial problem of evaluating
points in physical space, it introduced a new issue of no longer evaluating the derivative at true continu-
ous locations. In the fix (r1.14) all continuous points/indices are now cast to the nearest discrete index.
Previously (r1.13) the method RecomputeContinuousGaussianKernel (double* offset) was invoked
by Evaluate(..) with the difference between the continuous and discrete point passed in as the offset.
I assume this offset was used to interpolate at continuous points. The method RecomputeContinuous-
GaussianKernel (double* offset) no longer being invoked.

Furthermore, the itk::GaussianDerivativeImageFunction contains repetitive code blocks (which are
discouraged by extreme programming practices). Finally, it appears this class is only implemented for
images with 2 dimensions.


http://www.itk.org/Bug/bug.php?op=show&bugid=2891
http://www.itk.org/cgi-bin/viewcvs.cgi/Code/Common/itkGaussianDerivativeImageFunction.txx?root=Insight&r1=1.13&r2=1.14

A small rework for the Gaussian Derivative Image Function 2

2 The Proposed Solution

I propose a slight rework for this class which addresses the issues of code duplication, and evaluating the
derivative at true continuous locations:

1. Remove the duplicated RecomputeContinuousGaussianKernel () method and all associated calls
by the SetSigma(..) and SetExtent(..) methods. NOTE: keep the RecomputeContinuous-
GaussianKernel (double* offset) method.

2. Remove the m_OperatorArray field, and reference in PrintSelf (..).

3. Create a protected method EvaluateAt IndexWithOffset (IndexType index, double* offset).

4. Change the EvaluateAtIndex (..) method to create an offset of all zeros and then call Evaluate-
AtIndexWithOffset (..).

5. Change the new (r1.14) Evaluate (..) method, but compute the offset before calling EvaluateAt-
IndexWithOffset (..).

6. Change the new (r1.14) EvaluateAtContinuousIndex (..) method, but as above compute the offset

before calling EvaluateAtIndexWithOffset (..).

These proposed changes, to the best of my knowledge, would allow for the itk::GaussianDerivative-
ImageFunction to compute derivative information at true continuous points (ie. not casting to the nearest
Index). All evaluation would now be handled by the EvaluateAt IndexWithOffset (..) method, avoiding
code duplication. These changes would introduce some /imited overhead for evaluating the function at exact
(ie. discrete) indices.

3 Conclusions

The proposed changes address the discussed issues with the itk::GaussianDerivativeImageFunction.
These changes do not change the API and therefore should adhere to ITK’s backwards compatibility require-
ments. It should also be noted that this class is currently only implemented for images with 2 dimensions. I
have not addressed this dimensionality issue in this article (any takers?).
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Appendix A Source code

/ *

Program: Insight Segmentation & Registration Toolkit

Module:

SRCSfile: itkGaussianDerivativelImageFunction.h,v $

Language: C++

Date:

Shate: 2006/02/17 S

Version: SRevision: 1.15 $

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY,; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.

#ifndef _
#define _

#include
#include
#include
#include

itkGaussianDerivativeImageFunction_h
itkGaussianDerivativeImageFunction_h

"itkNeighborhoodOperatorImageFunction.h"
"itkImageFunction.h"
"itkGaussianDerivativeSpatialFunction.h"
"itkGaussianSpatialFunction.h"

namespace itk

{

/%

+ \class GaussianDerivativeImageFunction
+ \brief Compute the gaussian derivatives of an the image at a specific

location in space, 1.e. point, index or continuous index.

* This class 1s templated over the input image type.
* \sa NeighborhoodOperator
* \sa ImageFunction

*/
template

<class TInputlImage,class TOutput=double>

class ITK_EXPORT GaussianDerivativeImageFunction

public ImageFunction< TInputImage,
Vector <TOutput ,::itk::GetImageDimension<TInputImage>::ImageDimension>,
TOutput >
{
public:

/*+xStandard "Self" typedef */
typedef GaussianDerivativeImageFunction Self;

/*+ Standard "Superclass" typedef+/

typedef ImageFunction<TInputImage,
Vector <TOutput,::itk::GetImageDimension<TInputImage>::ImageDimension>,
TOutput > Superclass;

/++ Smart pointer typedef support. */
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;

/*+ Method for creation through the object factory.x/
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itkNewMacro (Self);

/#*% Run-time type information (and related methods). */
itkTypeMacro ( GaussianDerivativeImageFunction, ImageFunction );

/#*% InputImageType typedef support.+/

typedef TInputlImage InputImageType;
typedef typename InputImageType ::PixelType InputPixelType;
typedef typename InputImageType ::IndexType IndexType;

/#*% Dimension of the underlying image. */
itkStaticConstMacro (ImageDimension2, unsigned int,
InputImageType ::ImageDimension);

typedef ContinuousIndex<TOutput, itkGetStaticConstMacro (ImageDimension2)>
ContinuousIndexType;

typedef Neighborhood<InputPixelType, itkGetStaticConstMacro (ImageDimension2)>
NeighborhoodType;

typedef Neighborhood<TOutput, itkGetStaticConstMacro (ImageDimension2)>
OperatorNeighborhoodType;

typedef Vector<TOutput, itkGetStaticConstMacro (ImageDimension2)> VectorType;
typedef typename Superclass::OutputType OutputType;
typedef FixedArray<OperatorNeighborhoodType,
2*itkGetStaticConstMacro (ImageDimension2)> OperatorArrayType;
typedef NeighborhoodOperatorImageFunction <InputImageType, TOutput >
OperatorImageFunctionType;
typedef typename OperatorImageFunctionType::Pointer OperatorImageFunctionPointer;

typedef GaussianDerivativeSpatialFunction <TOutput,h 1>
GaussianDerivativeFunctionType;

typedef typename GaussianDerivativeFunctionType::Pointer
GaussianDerivativeFunctionPointer;

typedef GaussianSpatialFunction <TOutput,l1> GaussianFunctionType;
typedef typename GaussianFunctionType ::Pointer GaussianFunctionPointer;

/+% Point typedef support. =/
typedef Point <TOutput,itkGetStaticConstMacro (ImageDimension2)> PointType;

/++ Evalutate the 1in the given dimension at specified point =/
virtual OutputType Evaluate (const PointTypeé& point) const;

/++ Evaluate the function at specified Index position#*/
virtual OutputType EvaluateAtIndex ( const IndexType & index ) const;

/*+ Evaluate the function at specified ContinousIndex position.x/
virtual OutputType EvaluateAtContinuousIndex (
const ContinuousIndexType & index ) const;

/+% The variance for the discrete Gaussian kernel. Sets the variance
* independently for each dimension, but
* see also SetVariance (const double v). The default is 0.0 in each
* dimension. If UselImageSpacing is true, the units are the physical units
* of your image. If UselImageSpacing is false then the units are pixels.x/
void SetSigma ( const double* sigma);
void SetSigma ( const double sigma);
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const double* GetSigma () const {return m_Sigma;}

/*+ Set the extent of the kernel x*/

void SetExtent ( const double* extent);

void SetExtent ( const double extent);

const double* GetExtent () const {return m_Extent;}

/+% Set the input image.
* \warning this method caches BufferedRegion information.
+ If the BufferedRegion has changed, user must call
* SetInputImage again to update cached values. */
virtual void SetInputImage ( const InputImageType * ptr );

protected:

GaussianDerivativeImageFunction();
GaussianDerivativeImageFunction( const Selfé& ) {};
“GaussianDerivativeImageFunction() {};

void operator=( const Self& ){};

void PrintSelf (std::ostream& os, Indent indent) const;

/#*% The main worker function for evaluating the function at a given
* discrete index and offset (NOTE: the offset will be zeros 1f
* we are evaluating at an exact discrete index). x/
virtual OutputType EvaluateAtIndexWithOffset ( const IndexType & index,
const double* offset ) const;
void RecomputeContinuousGaussianKernel (const double* offset) const;

private:

}i

}

double m_Sigma[ImageDimension2];

/#*% Array of 1D operators. Contains a derivative kernel and a gaussian
* kernel for each dimension x/
mutable OperatorArrayType m_ContinuousOperatorArray;

/*% OperatorImageFunction */
OperatorImageFunctionPointer m_OperatorImageFunction;
double m_Extent [ImageDimension2];

/*+ Flag to indicate whether to use image spacing */
bool m_UselImageSpacing;

/#+ Neighborhood Image Function */

GaussianDerivativeFunctionPointer m_GaussianDerivativeFunction;
GaussianFunctionPointer m_GaussianFunction;

// namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGaussianDerivativeImageFunction.txx"
#endif

#endif

Listing 1: Proposed itkGaussianDerivativelmageFunction.h
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Program: Insight Segmentation & Registration Toolkit

Module: SRCSfile: itkGaussianDerivativelImageFunction.txx,v $
Language: CarF

Date: SDate: 2006/02/17 $

Version: SRevision: 1.15 §

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.

#i
#d

#i

*/
fndef __itkGaussianDerivativelImageFunction_txx
efine __itkGaussianDerivativeImageFunction_txx
nclude "itkGaussianDerivativeImageFunction.h"

namespace itk

{

/ *
te
Ga

{

/ *
te
vo
Ga

{

* Set the Input Image x/

mplate <class TInputImage, class TOutput>
ussianDerivativeImageFunction <TInputImage, TOutput >
GaussianDerivativeImageFunction ()

typename GaussianFunctionType ::ArrayType mean;
mean [0]=0.0;
for (unsigned int i=0;i<itkGetStaticConstMacro (ImageDimension2); i++)

{

m_Sigmal[i] = 1.0;

m_Extent[i] = 1.0;

}
m_UselImageSpacing = true;
m_GaussianDerivativeFunction = GaussianDerivativeFunctionType::New ();
m_GaussianFunction = GaussianFunctionType ::New();
m_OperatorImageFunction = OperatorImageFunctionType ::New ();

m_GaussianFunction->SetMean (mean);
m_GaussianFunction->SetNormalized (false); // faster
m_GaussianDerivativeFunction ->SetNormalized (false); // faster

* Print self method #*/

mplate <class TInputImage, class TOutput>

id
ussianDerivativeImageFunction <TInputImage, TOutput >
PrintSelf (std::ostreamé& os, Indent indent) const

this->Superclass::PrintSelf (os, indent);

0s << indent << "UselImageSpacing: " << m_UselmageSpacing << std::endl;
0s << indent << "Sigma: " << m_Sigma << std::endl;
0s << 1indent << "Extent: " << m_Extent << std::endl;

0s << indent << "ContinuousOperatorArray: "
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<< m_ContinuousOperatorArray << std::endl;
0s << indent << "OperatorImageFunction: "
<< m_OperatorImageFunction << std::endl;
0s << indent << "GaussianDerivativeFunction: "
<< m_GaussianDerivativeFunction << std::endl;
0s << indent << "GaussianFunction: "
<< m_GaussianFunction << std::endl;

/%% Set the input image x/
template <class TInputImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetInputImage ( const InputImageType * ptr )
{
Superclass::SetInputImage (ptr);
m_OperatorImageFunction ->SetInputImage (ptr);

/++ Set the variance of the gaussian in each direction */
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetSigma ( const double* sigma)
{
unsigned int 1i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i+t+)
{
if ( sigmaf[i] != m_Sigmal[i] )
{
break;
}
}
if ( i < itkGetStaticConstMacro (ImageDimension2) )
{
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); 1i++)
{
m_Sigma[i] = sigmal[i];

}

/++ Set the variance of the gaussian in each direction */
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetSigma (const double sigma)
{
unsigned int 1i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)
{
if ( sigma !'= m_Sigmaf[i] )
{
break;
}
}
if ( i < itkGetStaticConstMacro (ImageDimension2) )

{
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for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)
{
m_Sigma[i] = sigma;

}

/*% Set the extent of the gaussian in each direction x/
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetExtent ( const double* extent)
{
unsigned int i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i+t+)
{
if ( extent[i] != m_Extent[i] )
{
break;
}
}
if ( i < itkGetStaticConstMacro (ImageDimension2) )
{
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); 1i++)
{
m_Extent [i] = extent[i];

}

/*% Set the extent of the gaussian in each direction x/
template <class TInputImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetExtent ( const double extent)
{
unsigned int i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)
{
if ( extent != m_Extent[i] )
{
break;
}
}
if (i < itkGetStaticConstMacro (ImageDimension2) )
{
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); 1i++)
{
m_Extent [i] = extent;

}

/#++ Evaluate the function at the given index, with the given offset #*/
template <class TInputImage, class TOutput>
typename GaussianDerivativelImageFunction<TInputImage, TOutput >::0OutputType
GaussianDerivativeImageFunction <TInputImage, TOutput >
::EvaluateAtIndexWithOffset (const IndexType & index,

const double* offset ) const
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OutputType gradient;

//Recompute the kernel
this->RecomputeContinuousGaussianKernel (offset);

//Compute gradient value
for (unsigned int idim=0; idim<itkGetStaticConstMacro (ImageDimension2); idim++)
{
// Apply each gaussian kernel to a subset of the image
InputPixelType pixel = this->GetInputImage ()->GetPixel (index);
double value = pixel;

// Apply Gaussian blurring first
for (unsigned int jdim=0; jdim<itkGetStaticConstMacro (ImageDimension2); Jjdim++)
{
if(idim != jdim)
{
unsigned int id= 2*jdim+1l; // select only gaussian kernel;
unsigned int center =
(unsigned int) ((m_ContinuousOperatorArray [1d].GetSize () [jdim]-1)/2);
TOutput centerval = m_ContinuousOperatorArray [id][center];
m_ContinuousOperatorArray [id] [center] = 0;
m_OperatorImageFunction ->SetOperator (m_ContinuousOperatorArray [id]);
value = m_OperatorImageFunction ->EvaluateAtIndex (index)+centerval*value;

// Apply derivative in the direction
signed int center =

(unsigned int) ((m_ContinuousOperatorArray [2*idim].GetSize () [idim]-1)/2);
TOutput centerval = m_ContinuousOperatorArray [2*idim] [center];
m_ContinuousOperatorArray [2*idim] [center] = 0;
m_OperatorImageFunction ->SetOperator (m_ContinuousOperatorArray [2*idim]);
value = m_OperatorImageFunction ->EvaluateAtIndex (index)+centerval*value;
gradient [idim] = value;

}

return gradient;

/%% Recompute the gaussian kernel used to evaluate indexes
* The variance should be uniform #*/
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::RecomputeContinuousGaussianKernel (
const double* offset) const

{

unsigned int direction = 0;
for (unsigned int op = 0; op<itkGetStaticConstMacro (ImageDimension2)*2; op++t)
{
// Set the derivative of the gaussian first
OperatorNeighborhoodType dogNeighborhood;
typename GaussianDerivativeFunctionType::InputType pt;
typename OperatorNeighborhoodType::SizeType size;
size.Fill (0);
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size[direction] = (unsigned long) (m_Sigma[direction]*m_Extent [direction]);
dogNeighborhood.SetRadius (size);

typename GaussianDerivativeFunctionType::ArrayType s;
s[0] = m_Sigma[direction];
m_GaussianDerivativeFunction ->SetSigma(s);

typename OperatorNeighborhoodType::Iterator it = dogNeighborhood.Begin ();

unsigned int i=0;
while (it != dogNeighborhood.End () )

{
pt [0]= dogNeighborhood.GetOffset (i) [direction]-offset[direction];

if( (m_UseImageSpacing == true) && (this->GetInputlImage ()) )

{

if (this->GetInputlImage () ->GetSpacing () [direction] == 0.0
{
itkExceptionMacro (<< "Pixel spacing cannot be zero");
}

else
{
pt [0] *= this->GetInputlImage () ->GetSpacing () [direction];
}

}

(*it)= m_GaussianDerivativeFunction ->Evaluate (pt);
i kg
it++;
}
m_ContinuousOperatorArray [op] = dogNeighborhood;

// Set the gaussian operator
m_GaussianFunction->SetSigma (s);

op++;

OperatorNeighborhoodType gaussianNeighborhood;
gaussianNeighborhood.SetRadius (size);

it = gaussianNeighborhood .Begin();
i=0;
double sum = 0;
while (it != gaussianNeighborhood.End () )
{
pt [0]= gaussianNeighborhood.GetOffset (i) [direction]-offset[direction];
if( (m_UseImageSpacing == true) && (this->GetInputlImage ()) )
{
if (this->GetInputlImage () ->GetSpacing () [direction] == 0.0

{

itkExceptionMacro (<< "Pixel spacing cannot be zero");

}
else

{
pt [0] *= this->GetInputImage () ->GetSpacing () [direction];
}

(*it)= m_GaussianFunction->Evaluate (pt);
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295 sum += (*it);

296 i++;

297 it++;

298 }

299

300 // Make the filter DC-Constant

301 it = gaussianNeighborhood.Begin();

302 while (it != gaussianNeighborhood.End () )
303 {

304 (*it) /= sum;

305 it++;

306 }

307

308 m_ContinuousOperatorArray [op] = gaussianNeighborhood;
309 direction++;

310 }

311}

312

313 /x# Evaluate the function at the specifed index */

314 template <class TInputImage, class TOutput >

315 typename GaussianDerivativeImageFunction <TInputImage,TOutput >::OutputType
316 GaussianDerivativeImageFunction <TInputImage, TOutput >

317 ::EvaluateAtIndex (const IndexTypeé& index) const

318 |

319 //Compute offset

320 double offset[itkGetStaticConstMacro (ImageDimension2)];
321 for (unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)
322 {

323 offset[1i] = 0;

324 }

325

326 //Evaluate

327 return this->EvaluateAtIndexWithOffset (index, offset);
328 }

329

330 /x# Evaluate the function at the specifed point x/

331 template <class TInputImage, class TOutput >

332 typename GaussianDerivativeImageFunction <TInputImage,TOutput >::OutputType
333 GaussianDerivativeImageFunction <TInputImage, TOutput >

334 ::Evaluate (const PointType& point) const

335 |

336 //Convert point to Index

337 IndexType index;

338 this->ConvertPointToNearestIndex ( point , index );

339

340 //Compute offset

341 double offset[itkGetStaticConstMacro (ImageDimension2)];
342 for (unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)
343 {

344 offset[i] = point[i] - index[i];

345 }

346

347 //Evaluate

348 return this->EvaluateAtIndexWithOffset ( index, offset );
349 |}

350

351 /#** Evaluate the function at specified ContinousIndex position.x/
352 template <class TInputImage, class TOutput >
353 typename GaussianDerivativeImageFunction <TInputImage,TOutput >::OutputType
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GaussianDerivativeImageFunction <TInputImage, TOutput >

::EvaluateAtContinuousIndex (const ContinuousIndexType & cindex ) const
{

//Convert cindex to Index

IndexType index;

this->ConvertContinuousIndexToNearestIndex( cindex, index );

//Compute offset

double offset[itkGetStaticConstMacro (ImageDimension2)];

for (unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)
{
offset[i] = cindex[i] - index[i];

}

//Evaluate
return this->EvaluateAtIndexWithOffset ( index, offset );

} // end namespace itk

#endif

Listing 2: Proposed itkGaussianDerivativelmageFunction.txx
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The itk::GaussianDerivativeImageFunction computes the derivative at the specified physical or
pixel location. Unfortunately it has a number of deficiencies, for which I suggest possible solutions.
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1 The Problem

Gradient or derivative information is important for many image processing tasks. The Insight Toolkit (ITK)
has various means to compute the derivative; both of a whole image, and at specific locations. We concern
ourselves with itk::ImageFunctions which allow users to compute the derivative at specified physical
or pixel locations. The itk::CentralDifferenceImageFunction uses the central differences method to
compute gradient information; however, while useful for some applications, it can suffer from noise artefacts
due to small intensity variations. The itk::GaussianDerivativeImageFunction overcomes this problem
by applying a Gaussian smoothing operator before calculating the gradient information.

Recently a bug (# 2891) was reported which highlighted the problem that itk::GaussianDerivative-
ImageFunction did not correctly handle points in physical space. This bug was fixed and committed as
r1.14 (see ITK CVS). Unfortunately (as far as I can tell), while this solved the initial problem of evaluating
points in physical space, it introduced a new issue of no longer evaluating the derivative at true continu-
ous locations. In the fix (r1.14) all continuous points/indices are now cast to the nearest discrete index.
Previously (r1.13) the method RecomputeContinuousGaussianKernel (double* offset) was invoked
by Evaluate(..) with the difference between the continuous and discrete point passed in as the offset.
I assume this offset was used to interpolate at continuous points. The method RecomputeContinuous-
GaussianKernel (double* offset) no longer being invoked.

Furthermore, the itk::GaussianDerivativeImageFunction contains repetitive code blocks (which are
discouraged by extreme programming practices). Finally, it appears this class is only implemented for
images with 2 dimensions.


http://www.itk.org/Bug/bug.php?op=show&bugid=2891
http://www.itk.org/cgi-bin/viewcvs.cgi/Code/Common/itkGaussianDerivativeImageFunction.txx?root=Insight&r1=1.13&r2=1.14
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2 The Proposed Solution

I propose a slight rework for this class which addresses the issues of code duplication, and evaluating the
derivative at true continuous locations:

1. Remove the duplicated RecomputeContinuousGaussianKernel () method and all associated calls
by the SetSigma(..) and SetExtent(..) methods. NOTE: keep the RecomputeContinuous-
GaussianKernel (double* offset) method.

2. Remove the m_OperatorArray field, and reference in PrintSelf (..).

3. Create a protected method EvaluateAt IndexWithOffset (IndexType index, double* offset).

4. Change the EvaluateAtIndex (..) method to create an offset of all zeros and then call Evaluate-
AtIndexWithOffset (..).

5. Change the new (r1.14) Evaluate (..) method, but compute the offset before calling EvaluateAt-
IndexWithOffset (..).

6. Change the new (r1.14) EvaluateAtContinuousIndex (..) method, but as above compute the offset

before calling EvaluateAtIndexWithOffset (..).

These proposed changes, to the best of my knowledge, would allow for the itk::GaussianDerivative-
ImageFunction to compute derivative information at true continuous points (ie. not casting to the nearest
Index). All evaluation would now be handled by the EvaluateAt IndexWithOffset (..) method, avoiding
code duplication. These changes would introduce some /imited overhead for evaluating the function at exact
(ie. discrete) indices.

3 Conclusions

The proposed changes address the discussed issues with the itk::GaussianDerivativeImageFunction.
These changes do not change the API and therefore should adhere to ITK’s backwards compatibility require-
ments. It should also be noted that this class is currently only implemented for images with 2 dimensions. I
have not addressed this dimensionality issue in this article (any takers?).
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A small rework for the Gaussian Derivative Image Function

Appendix A Source code

/ *

Program: Insight Segmentation & Registration Toolkit

Module:

SRCSfile: itkGaussianDerivativelImageFunction.h,v $

Language: C++

Date:

Shate: 2006/02/17 S

Version: SRevision: 1.15 $

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY,; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.

#ifndef _
#define _

#include
#include
#include
#include

itkGaussianDerivativeImageFunction_h
itkGaussianDerivativeImageFunction_h

"itkNeighborhoodOperatorImageFunction.h"
"itkImageFunction.h"
"itkGaussianDerivativeSpatialFunction.h"
"itkGaussianSpatialFunction.h"

namespace itk

{

/%

+ \class GaussianDerivativeImageFunction
+ \brief Compute the gaussian derivatives of an the image at a specific

location in space, 1.e. point, index or continuous index.

* This class 1s templated over the input image type.
* \sa NeighborhoodOperator
* \sa ImageFunction

*/
template

<class TInputlImage,class TOutput=double>

class ITK_EXPORT GaussianDerivativeImageFunction

public ImageFunction< TInputImage,
Vector <TOutput ,::itk::GetImageDimension<TInputImage>::ImageDimension>,
TOutput >
{
public:

/*+xStandard "Self" typedef */
typedef GaussianDerivativeImageFunction Self;

/*+ Standard "Superclass" typedef+/

typedef ImageFunction<TInputImage,
Vector <TOutput,::itk::GetImageDimension<TInputImage>::ImageDimension>,
TOutput > Superclass;

/++ Smart pointer typedef support. */
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;

/*+ Method for creation through the object factory.x/
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itkNewMacro (Self);

/#*% Run-time type information (and related methods). */
itkTypeMacro ( GaussianDerivativeImageFunction, ImageFunction );

/#*% InputImageType typedef support.+/

typedef TInputlImage InputImageType;
typedef typename InputImageType ::PixelType InputPixelType;
typedef typename InputImageType ::IndexType IndexType;

/#*% Dimension of the underlying image. */
itkStaticConstMacro (ImageDimension2, unsigned int,
InputImageType ::ImageDimension);

typedef ContinuousIndex<TOutput, itkGetStaticConstMacro (ImageDimension2)>
ContinuousIndexType;

typedef Neighborhood<InputPixelType, itkGetStaticConstMacro (ImageDimension2)>
NeighborhoodType;

typedef Neighborhood<TOutput, itkGetStaticConstMacro (ImageDimension2)>
OperatorNeighborhoodType;

typedef Vector<TOutput, itkGetStaticConstMacro (ImageDimension2)> VectorType;
typedef typename Superclass::OutputType OutputType;
typedef FixedArray<OperatorNeighborhoodType,
2*itkGetStaticConstMacro (ImageDimension2)> OperatorArrayType;
typedef NeighborhoodOperatorImageFunction <InputImageType, TOutput >
OperatorImageFunctionType;
typedef typename OperatorImageFunctionType::Pointer OperatorImageFunctionPointer;

typedef GaussianDerivativeSpatialFunction <TOutput,h 1>
GaussianDerivativeFunctionType;

typedef typename GaussianDerivativeFunctionType::Pointer
GaussianDerivativeFunctionPointer;

typedef GaussianSpatialFunction <TOutput,l1> GaussianFunctionType;
typedef typename GaussianFunctionType ::Pointer GaussianFunctionPointer;

/+% Point typedef support. =/
typedef Point <TOutput,itkGetStaticConstMacro (ImageDimension2)> PointType;

/++ Evalutate the 1in the given dimension at specified point =/
virtual OutputType Evaluate (const PointTypeé& point) const;

/++ Evaluate the function at specified Index position#*/
virtual OutputType EvaluateAtIndex ( const IndexType & index ) const;

/*+ Evaluate the function at specified ContinousIndex position.x/
virtual OutputType EvaluateAtContinuousIndex (
const ContinuousIndexType & index ) const;

/+% The variance for the discrete Gaussian kernel. Sets the variance
* independently for each dimension, but
* see also SetVariance (const double v). The default is 0.0 in each
* dimension. If UselImageSpacing is true, the units are the physical units
* of your image. If UselImageSpacing is false then the units are pixels.x/
void SetSigma ( const double* sigma);
void SetSigma ( const double sigma);
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const double* GetSigma () const {return m_Sigma;}

/*+ Set the extent of the kernel x*/

void SetExtent ( const double* extent);

void SetExtent ( const double extent);

const double* GetExtent () const {return m_Extent;}

/+% Set the input image.
* \warning this method caches BufferedRegion information.
+ If the BufferedRegion has changed, user must call
* SetInputImage again to update cached values. */
virtual void SetInputImage ( const InputImageType * ptr );

protected:

GaussianDerivativeImageFunction();
GaussianDerivativeImageFunction( const Selfé& ) {};
“GaussianDerivativeImageFunction() {};

void operator=( const Self& ){};

void PrintSelf (std::ostream& os, Indent indent) const;

/#*% The main worker function for evaluating the function at a given
* discrete index and offset (NOTE: the offset will be zeros 1f
* we are evaluating at an exact discrete index). x/
virtual OutputType EvaluateAtIndexWithOffset ( const IndexType & index,
const double* offset ) const;
void RecomputeContinuousGaussianKernel (const double* offset) const;

private:

}i

}

double m_Sigma[ImageDimension2];

/#*% Array of 1D operators. Contains a derivative kernel and a gaussian
* kernel for each dimension x/
mutable OperatorArrayType m_ContinuousOperatorArray;

/*% OperatorImageFunction */
OperatorImageFunctionPointer m_OperatorImageFunction;
double m_Extent [ImageDimension2];

/*+ Flag to indicate whether to use image spacing */
bool m_UselImageSpacing;

/#+ Neighborhood Image Function */

GaussianDerivativeFunctionPointer m_GaussianDerivativeFunction;
GaussianFunctionPointer m_GaussianFunction;

// namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGaussianDerivativeImageFunction.txx"
#endif

#endif

Listing 1: Proposed itkGaussianDerivativelmageFunction.h
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Program: Insight Segmentation & Registration Toolkit

Module: SRCSfile: itkGaussianDerivativelImageFunction.txx,v $
Language: CarF

Date: SDate: 2006/02/17 $

Version: SRevision: 1.15 §

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.

#i
#d

#i

*/
fndef __itkGaussianDerivativelImageFunction_txx
efine __itkGaussianDerivativeImageFunction_txx
nclude "itkGaussianDerivativeImageFunction.h"

namespace itk

{

/ *
te
Ga

{

/ *
te
vo
Ga

{

* Set the Input Image x/

mplate <class TInputImage, class TOutput>
ussianDerivativeImageFunction <TInputImage, TOutput >
GaussianDerivativeImageFunction ()

typename GaussianFunctionType ::ArrayType mean;
mean [0]=0.0;
for (unsigned int i=0;i<itkGetStaticConstMacro (ImageDimension2); i++)

{

m_Sigmal[i] = 1.0;

m_Extent[i] = 1.0;

}
m_UselImageSpacing = true;
m_GaussianDerivativeFunction = GaussianDerivativeFunctionType::New ();
m_GaussianFunction = GaussianFunctionType ::New();
m_OperatorImageFunction = OperatorImageFunctionType ::New ();

m_GaussianFunction->SetMean (mean);
m_GaussianFunction->SetNormalized (false); // faster
m_GaussianDerivativeFunction ->SetNormalized (false); // faster

* Print self method #*/

mplate <class TInputImage, class TOutput>

id
ussianDerivativeImageFunction <TInputImage, TOutput >
PrintSelf (std::ostreamé& os, Indent indent) const

this->Superclass::PrintSelf (os, indent);

0s << indent << "UselImageSpacing: " << m_UselmageSpacing << std::endl;
0s << indent << "Sigma: " << m_Sigma << std::endl;
0s << 1indent << "Extent: " << m_Extent << std::endl;

0s << indent << "ContinuousOperatorArray: "
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<< m_ContinuousOperatorArray << std::endl;
0s << indent << "OperatorImageFunction: "
<< m_OperatorImageFunction << std::endl;
0s << indent << "GaussianDerivativeFunction: "
<< m_GaussianDerivativeFunction << std::endl;
0s << indent << "GaussianFunction: "
<< m_GaussianFunction << std::endl;

/%% Set the input image x/
template <class TInputImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetInputImage ( const InputImageType * ptr )
{
Superclass::SetInputImage (ptr);
m_OperatorImageFunction ->SetInputImage (ptr);

/++ Set the variance of the gaussian in each direction */
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetSigma ( const double* sigma)
{
unsigned int 1i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i+t+)
{
if ( sigmaf[i] != m_Sigmal[i] )
{
break;
}
}
if ( i < itkGetStaticConstMacro (ImageDimension2) )
{
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); 1i++)
{
m_Sigma[i] = sigmal[i];

}

/++ Set the variance of the gaussian in each direction */
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetSigma (const double sigma)
{
unsigned int 1i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)
{
if ( sigma !'= m_Sigmaf[i] )
{
break;
}
}
if ( i < itkGetStaticConstMacro (ImageDimension2) )

{
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for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)
{
m_Sigma[i] = sigma;

}

/*% Set the extent of the gaussian in each direction x/
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetExtent ( const double* extent)
{
unsigned int i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i+t+)
{
if ( extent[i] != m_Extent[i] )
{
break;
}
}
if ( i < itkGetStaticConstMacro (ImageDimension2) )
{
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); 1i++)
{
m_Extent [i] = extent[i];

}

/*% Set the extent of the gaussian in each direction x/
template <class TInputImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::SetExtent ( const double extent)
{
unsigned int i;
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); i++)
{
if ( extent != m_Extent[i] )
{
break;
}
}
if (i < itkGetStaticConstMacro (ImageDimension2) )
{
for (i=0; i<itkGetStaticConstMacro (ImageDimension2); 1i++)
{
m_Extent [i] = extent;

}

/#++ Evaluate the function at the given index, with the given offset #*/
template <class TInputImage, class TOutput>
typename GaussianDerivativelImageFunction<TInputImage, TOutput >::0OutputType
GaussianDerivativeImageFunction <TInputImage, TOutput >
::EvaluateAtIndexWithOffset (const IndexType & index,

const double* offset ) const
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OutputType gradient;

//Recompute the kernel
this->RecomputeContinuousGaussianKernel (offset);

//Compute gradient value
for (unsigned int idim=0; idim<itkGetStaticConstMacro (ImageDimension2); idim++)
{
// Apply each gaussian kernel to a subset of the image
InputPixelType pixel = this->GetInputImage ()->GetPixel (index);
double value = pixel;

// Apply Gaussian blurring first
for (unsigned int jdim=0; jdim<itkGetStaticConstMacro (ImageDimension2); Jjdim++)
{
if(idim != jdim)
{
unsigned int id= 2*jdim+1l; // select only gaussian kernel;
unsigned int center =
(unsigned int) ((m_ContinuousOperatorArray [1d].GetSize () [jdim]-1)/2);
TOutput centerval = m_ContinuousOperatorArray [id][center];
m_ContinuousOperatorArray [id] [center] = 0;
m_OperatorImageFunction ->SetOperator (m_ContinuousOperatorArray [id]);
value = m_OperatorImageFunction ->EvaluateAtIndex (index)+centerval*value;

// Apply derivative in the direction
signed int center =

(unsigned int) ((m_ContinuousOperatorArray [2*idim].GetSize () [idim]-1)/2);
TOutput centerval = m_ContinuousOperatorArray [2*idim] [center];
m_ContinuousOperatorArray [2*idim] [center] = 0;
m_OperatorImageFunction ->SetOperator (m_ContinuousOperatorArray [2*idim]);
value = m_OperatorImageFunction ->EvaluateAtIndex (index)+centerval*value;
gradient [idim] = value;

}

return gradient;

/%% Recompute the gaussian kernel used to evaluate indexes
* The variance should be uniform #*/
template <class TInputlImage, class TOutput>
void
GaussianDerivativeImageFunction <TInputImage, TOutput >
::RecomputeContinuousGaussianKernel (
const double* offset) const

{

unsigned int direction = 0;
for (unsigned int op = 0; op<itkGetStaticConstMacro (ImageDimension2)*2; op++t)
{
// Set the derivative of the gaussian first
OperatorNeighborhoodType dogNeighborhood;
typename GaussianDerivativeFunctionType::InputType pt;
typename OperatorNeighborhoodType::SizeType size;
size.Fill (0);
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size[direction] = (unsigned long) (m_Sigma[direction]*m_Extent [direction]);
dogNeighborhood.SetRadius (size);

typename GaussianDerivativeFunctionType::ArrayType s;
s[0] = m_Sigma[direction];
m_GaussianDerivativeFunction ->SetSigma(s);

typename OperatorNeighborhoodType::Iterator it = dogNeighborhood.Begin ();

unsigned int i=0;
while (it != dogNeighborhood.End () )

{
pt [0]= dogNeighborhood.GetOffset (i) [direction]-offset[direction];

if( (m_UseImageSpacing == true) && (this->GetInputlImage ()) )

{

if (this->GetInputlImage () ->GetSpacing () [direction] == 0.0
{
itkExceptionMacro (<< "Pixel spacing cannot be zero");
}

else
{
pt [0] *= this->GetInputlImage () ->GetSpacing () [direction];
}

}

(*it)= m_GaussianDerivativeFunction ->Evaluate (pt);
i kg
it++;
}
m_ContinuousOperatorArray [op] = dogNeighborhood;

// Set the gaussian operator
m_GaussianFunction->SetSigma (s);

op++;

OperatorNeighborhoodType gaussianNeighborhood;
gaussianNeighborhood.SetRadius (size);

it = gaussianNeighborhood .Begin();
i=0;
double sum = 0;
while (it != gaussianNeighborhood.End () )
{
pt [0]= gaussianNeighborhood.GetOffset (i) [direction]-offset[direction];
if( (m_UseImageSpacing == true) && (this->GetInputlImage ()) )
{
if (this->GetInputlImage () ->GetSpacing () [direction] == 0.0

{

itkExceptionMacro (<< "Pixel spacing cannot be zero");

}
else

{
pt [0] *= this->GetInputImage () ->GetSpacing () [direction];
}

(*it)= m_GaussianFunction->Evaluate (pt);
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sum += (*it);
i++;

A& 4 g

}

// Make the filter DC-Constant

it = gaussianNeighborhood.Begin();

while (it != gaussianNeighborhood.End () )
{
(*it) /= sum;
it++;

}

m_ContinuousOperatorArray [op] = gaussianNeighborhood;
direction++;

}

/%% Evaluate the function at the specifed index #*/

template <class TInputlImage, class TOutput>

typename GaussianDerivativelImageFunction<TInputImage, TOutput >::0OutputType
GaussianDerivativeImageFunction <TInputImage, TOutput >
::EvaluateAtIndex (const IndexTypeé& index) const

//Compute offset

double offset[itkGetStaticConstMacro (ImageDimension2)];

for (unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)
{
offset[i] = 0;
}

//Evaluate
return this->EvaluateAtIndexWithOffset ( index, offset );

/++ Evaluate the function at the specifed point */
template <class TInputImage, class TOutput>
typename GaussianDerivativelImageFunction<TInputImage, TOutput >::0OutputType
GaussianDerivativeImageFunction <TInputImage, TOutput >
::Evaluate (const PointTypeé& point) const
{
//Convert Point to ContinuousIndex then Index
ContinuousIndexType cindex;
IndexType 1index;
this->ConvertPointToContinuousIndex( point, cindex )
this->ConvertContinousIndexToNearestIndex( cindex, index )

//Compute offset

double offset[itkGetStaticConstMacro (ImageDimension2)];

for (unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)
{
offset[i] = cindex[i] - index[i];

}

//Evaluate
return this->EvaluateAtIndexWithOffset ( index, offset );

/++ Evaluate the function at specified ContinousIndex position.x/
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354 template <class TInputImage, class TOutput >
355 typename GaussianDerivativelImageFunction <TInputImage, TOutput >::OutputType
356 GaussianDerivativelImageFunction <TInputImage, TOutput >

357 ::EvaluateAtContinuousIndex (const ContinuousIndexType & cindex ) const
358 {

359 //Convert cindex to Index

360 IndexType index;

361 this->ConvertContinuousIndexToNearestIndex( cindex, index );

362

363 //Compute offset

364 double offset[itkGetStaticConstMacro (ImageDimension2)];

365 for (unsigned int i=0; i<itkGetStaticConstMacro (ImageDimension2);i++)
366 {

367 offset[i] = cindex[1i] - index[i];

368 }

369

370 //Evaluate

371 return this->EvaluateAtIndexWithOffset ( index, offset );

372}

373

374 '} // end namespace itk

375

376 #endif

Listing 2: Proposed itkGaussianDerivativelmageFunction.txx
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