
Entropy Image Filter
Release 0.01

Robert Tamburo1

December 13, 2010
1robert.tamburo@gmail.com

Abstract

This paper describes an intensity image filter http://www.itk.org/Doxygen318/html/group_
_IntensityImageFilters.html for computing the entropy of pixel values contained within a neigh-
borhood centered at each input pixel. The output image contains the calculated entropy for each input
pixel location. This paper is accompanied with source code for the filter and test, test images and param-
eters, and expected output images.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/XXXXXX]
Distributed under Creative Commons Attribution License

Contents

1 Implementation of Algorithm 1

2 Example 2

3 Testing 2

4 Software Used 3

1 Implementation of Algorithm

The entropy image filter uses the same entropy computation as found in
Examples/Statistics/ImageEntropy1.cxx.

http://www.itk.org/Doxygen318/html/group__IntensityImageFilters.html
http://www.itk.org/Doxygen318/html/group__IntensityImageFilters.html
http://www.insight-journal.org
http://hdl.handle.net/10380/XXXXXX
http://creativecommons.org/licenses/by/3.0/us/

2

Figure 1: The input image sf4.png for this example.

2 Example

This filter requires setting an input image SetInput() and the radius of the neighborhood with
SetRadius(). The radius defaults to 1. The marginal scale and number of bins for the histogram can
also be set. Example usage is shown below.

typedef itk::EntropyImageFilter<ImageType, ImageType> EntropyFilterType;
EntropyFilterType::Pointer entropyFilter = EntropyFilterType::New();
entropyFilter->SetInput(inputImage); // set the input image
ImageType::SizeType radius;
radius.Fill(10);
entropyFilter->SetRadius(radius); // set the desired neighborhood radius
entropyFilter->SetNumberOfBins(64); // set the number of histogram bins
entropyFilter->SetMarginalScale(100); // set the marginal scale
entropyFilter->Update();

For this example, sf4.png (Fig. 1) from the Data directory is used as the input image. Shown in Figure 2
is the output with a radius of 10, 64 histogram bins, and a marginal scale of 100.

3 Testing

The test code included with this article will generate images in Figures 2 with the folloiwing arguments.

EntropyImageFilter.exe images/sf4 .png 10 64 100

Latest version available at the Insight Journal [http://hdl.handle.net/10380/XXXXXX]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/XXXXXX
http://creativecommons.org/licenses/by/3.0/us/

3

Figure 2: Output image with radius = 10.

4 Software Used

This filter was developed on a Windows 7 64-bit computer. It has been successfully tested with ITK version
3.18.0, MinGW version 5.1.6, and CMake version 2.8.2 (Windows binary), and gcc version 4.3.4 20090804
release 1 under cygwin.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/XXXXXX]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/XXXXXX
http://creativecommons.org/licenses/by/3.0/us/

	Implementation of Algorithm
	Example
	Testing
	Software Used

