
Explicit Deformable Model in VTK
Release 0.00

Jérôme Velut

February 8, 2011

jerome.velut@gmail.com

Abstract

This document describes a set of classes1 that design a generic explicit deformable model in VTK. The
iterative mechanism is first introduced through an inheritance of the vtkPolyDataAlgorithm class. This
vtkIterativePolyDataAlgorithm is then a based for an implementation of the deformation. Two examples
of deformation is presented through an inheritage of this base class. The provided source code may be
used to build a ParaView plugin that harnesses the animation feature.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3251]
Distributed under Creative Commons Attribution License

Contents

1 Making PolyData algorithms iterative 2
1.1 basics . 2
1.2 Caching the input . 2
1.3 Iterating . 3

2 Explicit deformable model 4
2.1 Dynamic point warping . 4
2.2 Deformable mesh . 4

3 Paraview plugin 5
3.1 Basic pipeline . 5
3.2 Rendering of successive iterations . 5

4 Software Requirements 5

5 Conclusion 5

1It is a subset of the vtkKinship library http://github.com/jeromevelut/vtkKinship

2

The deformable models are part of a wide family of computer graphics methods. They were initially pro-
posed in the context of real physics simulation, in particular for solid and soft body deformations [3, 4].
One of the applications concerns the segmentation task in image processing: The snakes [1] are often cited
as the seminal work that induced the huge amount of existing paper today [2]. The main idea was to min-
imize an energy computed under a curve evolving in an image domain. A proposed implementation was a
discretization of the steepest descent algorithm, which led to an iterative displacement of each point related
to a trade-off between internal and external forces. The explicit deformable models refer to this iterative
deformation of the geometry, as opposed to implicit deformable models [].

In this paper, we focus on the iterative design of an explicit deformable model. First, we present the
vtkIterativePolyDataAlgorithm class, that inherits from vtkPolyDataAlgorithm. It allows a VTK
filter to iteratively process the input until a number of iteration is reached. A step-by-step mechanism is also
implemented, bringing useful interactive capabilities -especially inside ParaView-. Second, two specialisa-
tions are presented: a brownian movement and a deformable model, designed through two classes derived
from vtkIterativePolyDataAlgorithm. Finally, a ParaView plugin is provided and a short example is
given in which the animation feature is used in order to interact with the deformable model.

1 Making PolyData algorithms iterative

1.1 basics

The design of the VTK library is based on a pipeline of data processing. The modification of an input
anywhere in the pipeline triggers the execution of the whole remaining, downward processes. An obvious
consequence is the impossibility to plug the output of a filter directly to an upward input ’as is’: this feedback
connection will create in many cases an infinite loop. However, it is possible to do almost everything in the
execution method, as far as the inputs are not modified. The first element of the deformable model suit is
a vtkPolyDataAlgorithm-inherited class, namely vtkIterativePolyDataAlgorithm. It implements a
caching procedure and a special iteration mechanism.

1.2 Caching the input

In order to avoid a modification of the input, a call to vtkIterativePolyDataAlgorithm::RequestData
copy the first connection of the first input port into a CachedInput member under certain condition:

• this is the first iteration (i.e. CurrentIteration is false)

• the filter is asked to compute all the iteration at each Update (i.e. IterateFromZero is true)

• Maximum number of iterations (variable NumberOfIterations) has been set to zero

The copy is a performed by:

// Copy input
this->CachedInput->DeepCopy(inputMesh);
// Reset current iteration
this->CurrentIteration = 0;
// User define initial condition
this->Reset(inputVector);

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3251]
Distributed under Creative Commons Attribution License

1.3 Iterating 3

Here, inputMesh points to the first input connection of the first port. This copy implies that the
CurrentIteration is 0. Child classes should overwrite the Reset function in order to implement spe-
cial initial states.

1.3 Iterating

While CurrentIteration is less than NumberOfIterations, the classical iterative process is performed :

• transform the CachedInput and name it IterativeOutput

• Increment the CurrentIteration

• copy the IterativeOutput over CachedInput

The manipulation of CachedInput is implemented in the specialisations of
vtkIterativePolyDataAlgorithm::IterativeRequestData:

while(this->CurrentIteration < this->NumberOfIterations)
{

// Effective call to the iterative algorithm. Child classes
// should override this function
this->IterativeRequestData(inputVector);

this->CachedInput->DeepCopy(this->IterativeOutput);
this->CurrentIteration ++;

}

Two important points are illustrated in these lines of code. First, it is the responsability of the
IterativeRequestData function to set the IterativeOutput data. Second, the algorithm will iterate
from CurrentIteration to NumberOfIterations. It means that the whole iterations are not necessar-
ily computed, unless it is explicitely asked by setting IterateFromZero to 1. It is useful for a dynamic
visualisation of an iterative process.

The final step, in a VTK point of view, is to copy the iterative output over the real output of the filter:

vtkInformation *outMeshInfo = outputVector->GetInformationObject(0);
vtkPolyData* outputMesh = vtkPolyData::SafeDownCast(

outMeshInfo->Get(vtkDataObject::DATA_OBJECT()));

if(this->NumberOfIterations == 0)
outputMesh->DeepCopy(inputMesh);

else
outputMesh->DeepCopy(this->IterativeOutput);

In the case where IterateFromZero is 1, the iterative process could be resetted by setting
NumberOfIterations to 0:

• the initial input cache is performed

• the output of the filter is set to inputMesh

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3251]
Distributed under Creative Commons Attribution License

4

(a) i = 0 (b) i = 100 (c) i = 250

Figure 1: Deformation of a spherical mesh towards an ellipsoid image at different iterations i

2 Explicit deformable model

2.1 Dynamic point warping

A simple implementation of the deformation of a point set is realized in vtkPolyDataIterativeWarp.
An internal pipeline made of brownian vectors and point warping is built. The input of this pipeline is
CachedInput and the IterativeOutput is set to be the output of the warp filter.

A basic illustration may be found in Examples/IterativeWarp.cxx. A point cloud vtkPointSource
is passed through the vtkIterativePolyDataAlgorithm and an infinite loop increments the number of
iterations before rendering the output. The example may run for a while, as it doesn’t iterate from zero at
each update of the filter.

2.2 Deformable mesh

This iterative point warping is easily extended to an explicit deformable mesh framework. Let the input be a
polygonal mesh; let the warp vectors being computed from a second input volume: If the warp vectors point
to a minimum of an energy, then each point of the mesh will convergence towards these minima.

The class vtkDeformableMesh implements such a behaviour. The main difference between this one and
vtkPolyDataIterativeWarp is that the warp vectors are not randomly generated. They are expected as a
vector array inside a vtkImageData given on input port 1.

Although the input mesh may include topological information, those are not taken into account: Each point
are moved independently from each other. It means that it is not possible to introduce internal forces in the
deformation process in this class. Another specialisation has to be implemented.

The example Examples/DeformableMesh.cxx shows this deformable model evolving in a volume of size
643, representing an ellipsoid of radius (18,14,28) and centered in the volume. The external forces are
computed in a classical fashion. Let I be an intensity image, S the 3D Sobel operator. The second input of
the vtkDeformableMesh is then S(|S(I)|). The input is an UV-sphere (vtkSphereSource). Executing the
example shows the sphere deforming to an ellipsoid (figure 1).

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3251]
Distributed under Creative Commons Attribution License

5

3 Paraview plugin

The presented VTK classes are optionnally wrapped into a ParaView plugin. If the option
“BUILD PARAVIEW PLUGINS” has been set to true during the CMake procedure, then the compila-
tion will output a vtkPVExplicitDeformableModel dynamic library. This library is loadable in ParaView:

"Tools" -> "Manage Plugins" -> "Load New ..."

A new submenu Deformable model appears in the Filters menu, with both Iterative Warp and
Deformable Mesh.

3.1 Basic pipeline

The ParaView filters are directly linked to the VTK classes. The parameters have then the same meaning.
Deformable Mesh is a multiple input filter: First, the input mesh has to be selected and put as input of
Deformable Mesh. Then, a dialog box will appear to ask for a second input containing Vectors.

When triggering the Apply button, the iterative polydata filter will iterate internally until
NumberOfIterations.

3.2 Rendering of successive iterations

By harnessing the Animation View, it is possible to litteraly see the input mesh or point cloud deforming,
while keeping the usual interactions on the render window available. The screenshot in figure 2 shows
the settings of the animation view. The option IterateFromZero is important here, as it will avoid the
computation of the whole iterations at each timestep.

4 Software Requirements

This software has been successfully tested with ParaView-3.8.1 and ParaView-3.9 development branch on
Linux Fedora 13.

5 Conclusion

We presented a set of classes that design the iterative deformation of a point set. A generic class, inherited
from vtkPolyDataAlgorithm is derived to specialise the deformation process. These deformable models
are available in ParaView for interactive visualization of the deformation.

Future works will focus on the regularization of deformable meshes for a segmentation point of view, and
the generalisation of input data structures.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3251]
Distributed under Creative Commons Attribution License

References 6

Figure 2: Setting of the animation view to see the iterative deformation of the input PolyData

References

[1] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models. In ICCV,
pages 259–268, London, Engl, 1987. IEEE, New York, NY, USA. (document)

[2] Johan Montagnat, H. Delingette, and N. Ayache. A review of deformable surfaces : Topology, geometry
and deformation. Image and Vision Computing., 19:1023–1040, 2001. Image and Vision Computing.
(document)

[3] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically deformable models. In
SIGGRAPH, pages 205–214, New York, NY, USA, 1987. ACM Press. (document)

[4] Demetri Terzopoulos and Andrew Witkin. Physically based models with rigid and deformable compo-
nents. IEEE Computer Graphics and Applications, 8(6):41 – 51, 1988. (document)

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3251]
Distributed under Creative Commons Attribution License

