A Simple Command Line Argument Parser

Release 1.0
Marius Staring1 and Stefan Klein?

April 12, 2011

IDivision of Image Processing, Leiden University Medical Center, Lidde Netherlands
2Biomedical Imaging Group Rotterdam, Departments of Radiology & Medicatinétics, Erasmus MC,
Rotterdam, The Netherlands

Abstract

This document describes the implementation of a simple canaine argument parser using the Insight
Toolkit ITK ww. i t k. org. Such a parser may be useful for use in the examples of the ITK.
This paper is accompanied with the source code.

Latest version available at ttesight Journa] htt p: // hdl . handl e. net / 1926/ xxxx]
Distributed undeCreative Commons Attribution License

Contents

1 Introduction 1
2 Example of usage 2
3 Conclusion 2

1 Introduction

Command line argument parsing is a common task for many (small) programs. Ve chex
ated such a parser and have used it extensively for many years noweirtotikit praxi x:
http://code. googl e. conl p/ praxi x/. The parser is extremely simple, and has only three functions.
One to set the command line arguments, and two to get them. Arguments are set with

par ser - >Set ConmandLi neAr gunent s(argc, argv);

Arguments are fetched using

www.itk.org
http://www.insight-journal.org
http://hdl.handle.net/1926/xxxx
http://creativecommons.org/licenses/by/3.0/us/
http://code.google.com/p/praxix/

par ser - >Get CommandLi neAr gunent ("-key", argument);
or
par ser - >Ar gument Exi sts("-key");

The tool assumes that arguments are passed in key value pairs, forlexkeypvaluel value2. Keys are
identified as a "-“ followed by a string; subsequent entries that are exg kre the values. One or more
values can be specified or even no values.

Arguments can be initialized to default values, which will be left untouchedeifkity is not provided at
the command line. If an argument is initialized with a vectosiafe > 1, and if only one (1) argument is
provided in the command line, we create a vector of size and fill it with the single argument.

Internally, the command line arguments are stored istan: map of the argument (key) as aid: : string
together with the index. We make use of the casting functionality of string strieeawgomatically cast the
stored string to the requested type.

2 Example of usage

The command line argument parser can be used as follows:

#include "itkCommandLi neAr gument Par ser . h"

/I Create a command |ine argument parser.
i tk:: CommandLi neAr gunent Par ser: : Poi nter parser = itk::CommandLi neAr gunent Parser:: New();
par ser - >Set ConmandLi neAr gunent s(argc, argv);

[l Use it:
std::vector<std::string> inputFileNanes; // no default
bool retin = parser->Get CommandLi neArgument ("-in", inputFileNanes);

std::vector<int> vecA(3, 1); // using default values
bool retpA = parser->Cet CommandLi neArgunent ("-pA", vecA);

float pi = 3.0; // default
bool retpi = parser->Get CommandLi neArgument("-pi", pi);

bool conpress = parser->Argunent Exi sts("-z");
Arguments are passed to the command as follows:

execut abl ename -in inputl.mhd input2.mhd -z -out output.png -pi 3.1415926535

3 Conclusion

This document describes the implementation of a simple command line argumesttysng the Insight
Toolkit ITK www. i t k. or g. Such a parser may be useful for use in the examples of the ITK or onilii's w

Latest version available at thiesight Journa] htt p: // hdl . handl e. net/ 1926/ xxxx]
Distributed undetCreative Commons Attribution License

www.itk.org
http://www.insight-journal.org
http://hdl.handle.net/1926/xxxx
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Example of usage
	Conclusion

