Boolean Operations on Surfaces in VTK
Without External Libraries

Release 1.00
Cory Quammen, Chris Weigle, and Russell M. Taylor Il

May 12, 2011

Department of Computer Science
The University of North Carolina at Chapel Hill

Abstract

We have written a set of classes than enable computation of boolean operations on surface meshes using
only VTK classes. In addition to being compatible with the VTK license, our contribution preserves
surface mesh topology to the extent possible in boolean operations and passes point data and cell data
through to the output mesh where possible.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3262]
Distributed under Creative Commons Attribution License

Contents
1 Introduction 2
2 Previous Work 2
3 Mesh-to-Mesh Signed Distance Calculation 3
3.1 wvtkImplicitPolyData e 3
3.2 wvtkPolyDataDistance e 4
4 Boolean Operations on Surfaces Using Signed Distance 4
5 Clipping One Surface Mesh with Another 5
5.1 Identifying the Surface Intersection 6
5.2 Splittingthe Mesh e 7
5.3 vtkPolyDatalntersection 9
6 Putting it All Together 9
6.1 Setting up a VTK Pipeline for Boolean Operations on Surfaces 9

6.2 vtkPolyDataBooleanOperationFilter 9

7 Results 10
8 Limitations 10
9 Software Requirements 10

1 Introduction

Let A and B be sets. A boolean operation can be used to define a third set C. Three common boolean
operations on sets are:

union

C=AUB={x|x€AorxeB}

intersection

C=ANB={x|x€Aandx € B}

difference

C=A—-B={x|xc€Aandx¢ B}

In geometric modeling, a closed, orientable 2-manifold surface mesh in 3D M4 may be considered the
boundary of an infinite set of 3D points A. Given a second surface mesh Mp with the same properties, a
boolean operation may be applied to obtain a third surface mesh M that bounds the infinite set of points
C resulting from the boolean operation on A and B. For brevity, we use the phrase “boolean operation on
surfaces” to refer to the process of determining M¢ from My, Mp, and a boolean operation. These simple
operations can be used to define complex geometries.

Rather than somehow converting two mesh representations to a set of points, performing the boolean oper-
ations on those points, and reconstructing a third mesh from the resulting points, direct operations on the
bounding geometry based on signed distance fields and mesh-to-mesh clipping can be used. This article
describes an implementation of those methods to realize boolean operations on surfaces in VTK.

2 Previous Work

Lloyd previously contributed a VTK class for computing boolean operations on surface meshes [?]. His
contribution wrapped the GNU Triangulated Surface Library (GTS) in a VTK class that performed conver-
sion between the VTK mesh data structure and the GTS mesh data structure and vice versa. This work filled
a need often requested by users on the VTK mailing lists.

Unfortunately, his work is unable to be incorporated into the main VTK repository because of the incom-
patible GTS license. Furthermore, any projects using Lloyd’s contribution are subject to the licensing re-
quirements of GTS. Our contribution is not subject to an incompatible license as it makes use of no external
libraries or code.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3262]
Distributed under Creative Commons Attribution License

Furthermore, our contribution extend’s Lloyd’s work by copying point and cell data from the input meshes
to the output meshes appropriately, interpolating point data where necessary. When portions of two input
meshes are combined into one mesh, the common point and cell data in both meshes is copied to the output.

3 Mesh-to-Mesh Signed Distance Calculation

The distance field f(x) of a mesh is defined as the distance from x to the nearest point on the surface defined
by the mesh. The signed distance field is similar to the distance field, but the sign of the field is negative for
locations x inside the space bounded by the mesh and positive for outside locations. To determine whether x
is inside or outside the mesh, a vector V = x —m is defined where m is the nearest point on the mesh. The
sign of the distance field is the same as the dot product of V with the angle-weighted pseudonormal of the
mesh at m when the mesh is a closed, orientable 2-manifold surfaces in 3D Euclidean space [?].

The angle-weighted pseudonormal is defined separately for faces, edges, and points in a mesh, and forms
a discontinuous vector field over the surface defined by the mesh. For a face, it is simply the face normal.
For an edge, it is the average of the normals for the faces that share the edge. For a point, it is the sum of
the angle-weighted normals from each face where the weight for a face normal is the angle between the two
edges of that face incident to the point.

We introduce the vtkImplicitPolyData class that defines a signed distance function given an in-
put vtkPolyData. This class is a subclass of vtkImplicitFunction, so it can be used by
classes that operate on vtkImplicitFunction objects (see, e.g., vtkSampleFunction). The method
double EvaluateFunction(double x[3]) is overridden to return the signed distance, and void
EvaluateGradient (double x[3], double g[3]) isoverridden to return the angle-weighted pseudonor-
mal.

3.1 vtkimplicitPolyData
The class vtkImplicitPolyData operates on a vtkPolyData input. Use the method
void SetInput (vtkPolyData *input);

to specify the vtkPolyData on which it should operate. The class also has several options that can be set.
Use

void SetNoValue (double value);

to set the value returned by double EvaluateFunction (double x[3]) when an error occurs. Likewise,
void SetNoGradient (double value[3]);

to set the gradient returned when an error is encountered. Finally,

void SetTolerance (double tolerance);

use to determine when the absolute value of the signed distance is close enough to zero to be considered
Zero.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3262]
Distributed under Creative Commons Attribution License

3.2 vtkPolyDataDistance 4

3.2 vtkPolyDataDistance

To support distance-based boolean operations, we introduce another class, vtkPolyDataDistance, that
computes the distance from points in the first input vtkPolyData to a second by evaluating the signed
distance field from the second input using the vtkImplicitPolyData class. Optionally, the distance from
points in the second input vtkPolyData to the first can also be computed. These distances are stored as a
point data field named “Distance”.

vtkPolyDataDistance has some options. Use the methods

void SetSignedDistance (int value);
void SignedDistanceOn () ;
void SignedDistanceOff();

to turn computation of the signed distance on or off. By default, this option is on. If it is off, the unsigned
distance function is computed.

Use the methods

void SetNegateDistance (int value);
void NegateDistanceOn () ;
void NegateDistanceOff();

to enable or disable negation of the signed distance field. If the SignedDistance option is off, then this
option has no effect. NegateDistance option is off by default.

The methods

void SetComputeSecondDistance (int value);

void ComputeSecondDistanceOn();

void ComputeSecondDistanceOff();

enables computation of the signed distance for the second input. Finally, a convenience method

vtkPolyData* GetSecondDistanceOutput () ;

can be called to get the second output.

4 Boolean Operations on Surfaces Using Signed Distance

Boolean operations can be computed with only the signed distance field for each mesh. The sign of the dis-
tance field at a point in the mesh corresponds to whether that point is inside (negative), outside (positive), or
on (zero) the other mesh; the surfaces bounding the volumes produced by the boolean operations described
in Section 1 can therefore be defined as:

union

The set of cells in each mesh such that the distance from each cell point to the other mesh is greater
than or equal to zero.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3262]
Distributed under Creative Commons Attribution License

intersection

The set of cells in each mesh such that the distance from each cell point to the other mesh is less than
or equal to zero.

difference

The difference is defined as the set of cells of M4 whose points are a non-negative distance from Mp
combined with the cells of Mp whose points are a non-positive distance from M.

5 Clipping One Surface Mesh with Another

While it seems possible to use the class vtkClipPolyData together with vtkImplicitPolyData to extract
the necessary portions of each input surface to produce the boolean surfaces, doing so would produce in-
accurate results. vtkClipPolyData treats the implicit function as a single piecewise linear function within
each cell of the vtkPolyData being clipped. In general, an implicit function is not guaranteed to be a single
piecewise linear function in each cell, and the same is true for the signed distance field. The result is that
clipped surfaces produced by vtkClipPolyData will not be clipped at the true zero level of the distance
field. Consequently, the clipped portions of each input geometry will not match at the zero level where they
should fuse seamlessly. Figure 1 shows an example where the zero level of the distance field (black) does
not match the surface intersection (white).

Figure 1: A case where the zero level of the distance field from the cylinder (black lines) computed on the cone
does not match the intersection between the cylinder and the cone (white lines). Because of this mismatch, the class
vtkClipPolyData is not suitable for accurate splitting of one surface mesh by another without further mesh processing.

Instead of clipping the input meshes based on the signed distance evaluated at mesh points, it is necessary
to split each input mesh at the actual intersection of the two surfaces (hereafter referred to as the surface
intersection). All points on the zero-level of the distance field are then completely defined by the points and
edges of the surface intersection, and the surface intersection marks the accurate boundary between inside
and outside portions of the mesh surface.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3262]
Distributed under Creative Commons Attribution License

5.1 Identifying the Surface Intersection 6

5.1 Identifying the Surface Intersection

Identifying the surface intersection between two surface meshes is the most complex part of the boolean
operation algorithm. It involves identifying the intersection between each triangle in the first mesh with
all triangles in the second mesh that intersect it. A triangle-triangle intersection test yields two endpoints
(possibly the same) of the actual line segment defining the intersection when the triangles intersect. If the
endpoints are the same, then the intersection line is degenerate, and it is not added to the set of intersection
lines. The intersection between overlapping and co-planar triangles is more complicated; our work does not
explicitly handle intersections between two coplanar triangles.

Oriented bounding box (OBB) trees are used to accelerate the identification of triangle-triangle intersec-
tions between meshes. Two vtkOBBTree objects are instantiated, one for each input mesh. The method
vtkOBBTree: :IntersectWithOBBTree () is then called on one OBB tree with the second OBB tree and
a callback function passed as parameters. The callback function performs a more accurate triangle-triangle
intersection test between the triangles in overlapping nodes from the two OBB trees and stores the line
defining the intersection and other information in several data structures used later in the algorithm.

End points from the triangle-triangle intersections are stored in a vtkPoints object and the line cells are
stored in a vtkCellArray. The points are merged using a vtkPointLocator object with a small tolerance,
leading to many fewer connected components than if the line segments were stored as “line soup”. Merging
the end points also simplifies later operations. In addition, each end point is tested to see if it lies on an edge
of the two input triangles. If so, a key-value pair is stored in a std: :multimap where the key is the ID of
the endpoint and the value is a 3-tuple consisting of the index of the triangle, the index of the triangle edge,
and the index of the intersecting line.

The entries in the std: :multimap described above are used to split the fully connected intersection lines to
respect the topology of each input mesh. Because the end points of the intersection lines are merged during
construction, they need to be split at locations where the mesh is split. For example, as shown in Figure ??,
a mesh representing a cube often has duplicate points at the corners to store three different normals, one for
each face incident to the point. These normals enable the appearance of sharp edges on the mesh. If the
surface intersection on a cube splits an edge that connects two of these corners, then two points should be
inserted at the split point rather than one to ensure that two face normals are defined at the split point.

More generally, the end result of splitting the surface intersection should be that a copy of each line end
point is produced for each set of triangles that share an edge. This is done by iterating over the entries of the
edge point multimap. The first time a particular point ID is encountered in a multimap key-value pair, all
other entries with the same key are checked to determine if the cell with the cell ID in the value shares the
edge indicated by the first entry’s value. If the entry is for a shared edge, then the entry is removed from the
multimap and not processed any further. If not, the entry is left in the multimap for further processing.

If any multimap entries are left that have the current point ID as key, then that point lies on a split in the mesh
and requires duplication. In this case, a copy of the point is inserted into the list of points for the intersection
line data structure, and the first such entry in the multimap is read. All other entries in the multimap with
the point ID as key are again examined to determine which share an edge with the first entry. Entries that do
not share an edge are left in the multimap. For entries that share an edge, the point ID in the line referenced
by the line ID stored in the entry is replaced with the ID of the newly duplicated point. The entry is then
removed from the multimap. The process described in this paragraph is repeated if any entries are left that
have the current point ID as key. Otherwise, the first multimap entry is removed.

During the above process, another auxiliary data structure is built. Every time a point is duplicated, a key-
value pair is added to a map where the key is the point ID and the value is the cell ID from which the point

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3262]
Distributed under Creative Commons Attribution License

5.2 Splitting the Mesh 7

Figure 2: Splitting a mesh with duplicate normals. The box object has three duplicate points at each corner each of
which has a different normal (gray arrows). The surface intersection between the box in the front (gray, solid) and the
box in the back (white, outline) is shown in green. Points from the intersection lines that lie on the duplicate edges of
the box are also duplicated by the mesh splitting procedure. The normal at a duplicated point, along with other point
data, is interpolated from the cell that contains the intersection line that references that point.

data at the point should be interpolated. It does not matter which cell ID from the set of cells that share an
edge is associated with a point on that edge because the interpolation results will be the same.

After the intersection lines are split, the points in the input mesh and their associated point data are copied
to the points in the output mesh. The points from the intersection lines are then appended to the point set in
the output mesh, and the point data is interpolated at those points.

5.2 Splitting the Mesh

After the intersection lines are split for a mesh, the next step is to identify candidate cells for splitting. A
cell is a candidate cell in two cases:

1. The cell index is in the intersection line map, meaning that intersection lines lie inside the cell.
2. The cell is the neighbor of a cell identified by case 1.
The second case is important because one of the mesh-mesh intersection lines may have an endpoint on the

edge of one cell, but no line that uses that endpoint on the cell neighbor across that edge. The cell neighbor
needs to be split to avoid introducing a T-junction and therefore a hole in the output mesh.

Splitting proceeds on a cell-by-cell basis. For each cell that needs splitting, the following points and lines
are gathered:

1. The three points that define the cell (green spheres in Figure 3).

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3262]
Distributed under Creative Commons Attribution License

5.2 Splitting the Mesh 8

2. The boundary lines of the cell (red lines in Figure 3).
3. The split intersection lines that lie in the cell (if any) (white lines in Figure 3).
4. The points that define the lines in 3 (purple spheres in Figure 3).

5. Points from neighboring cells that lie on a cell edge but which were not already added in 4 (orange
sphere in Figure 3).

Figure 3: The points and lines required for splitting a cell.

The lines collected above are used to constrain a new triangulation of the points. In other words, these
lines will be present in the output mesh. Special processing of the boundary lines is required to achieve the
desired split. Specifically, boundary lines must be split at points that lie on them. Boundary line splitting is
achieved by sorting points on the boundary lines according to the angle between the first edge of the cell and
the vector formed by subtracting the cell center from the point. Adjacent points in the sorted list are then
connected with lines, include a line between the last and first points in the list. Because the last boundary
point is connected to the first, the absolute order of the boundary points is not important.

The vtkDelaunay2D class can be used to determine a triangulation from the cell, surface intersection lines,
and boundary points and lines. A transformation of the points collected above that rotates them to the XY-
plane is computed and set as the transform for the vtkDelaunay2D object. A new vtkPolyData object
that contains the collected points and lines is defined and passed as both the input and constraint source
to a vtkDelaunay2D object. The line point indices are renumbered to point to their locations in the new
vtkPolyData object, and a map from the original indices is created to remap the output cell indices from
the triangulation to the point indices in the output mesh. If a point in the surface intersection is within some
small tolerance distance from a point in the surface mesh, the point in the surface mesh is used instead. This
prevents unintentional splitting of the surface mesh.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3262]
Distributed under Creative Commons Attribution License

5.3 vtkPolyDatalntersection 9

5.3 vtkPolyDatalntersection

We have defined a new class vtkPolyDatalIntersection that encapsulates the algorithm described above
to compute the surface intersection between two surface meshes and optionally split the input meshes by the
surface intersection. The surface meshes must consist of triangles. Two options are available for this filter:

void SetSplitFirstOutput (int value);
void SplitFirstOutputOn();
void SplitFirstOutputOff();

void SetSplitSecondOutput (int value);
void SplitSecondOutputOn();
void SplitSecondOutputOff();

These options specify whether the output meshes should be split. Each option is on by default.

6 Putting it All Together

There are two ways to use the classes we have developed to compute the surface mesh resulting
from a boolean operation on two surface meshes: setting up a VTK pipeline or using a new class
vtkPolyDataBooleanOperationFilter.

6.1 Setting up a VTK Pipeline for Boolean Operations on Surfaces

To compute a surface resulting from a boolean operation on surface meshes, the pipeline of classes shown in
Figure 4 can be used to compute the desired surface. The two arrows between vtkPolyDatalIntersection
and vtkPolyDataDistance indicate that the two output surfaces from vtkPolyDataIntersection are set
as the input to vtkPolyDataDistance. The two instances of vtkThreshold operate on different outputs
of vtkPolyDataDistance.

6.2 vikPolyDataBooleanOperationFilter

For convenience, we have included a single class that replicates the functionality class for computing boolean
operations on surface meshes, vtkPolyDataBooleanOperationFilter, that encapsulates the functionality
of the pipeline above. This class has three options. The desired boolean operation is specified with one of

void SetOperationToUnion();

void SetOperationTolIntersection();
void SetOperationToDifference();
void SetOperation(int operation);

The default operation is union.

When computing the difference boolean operation, part of the resulting surface mesh will have reversed
normals and a reversed order of cell points. The ReorientDifferenceCells option is used to enable
reversal of the normals and reorientation of these cells and can be set using the methods

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3262]
Distributed under Creative Commons Attribution License

10

vtkPolyData vtkPolyData

! !
vtkPolyDatalIntersection

! !

vtkPolyDataDistance
/ N\
vtkThreshold vtkThreshold
| !
vtkDataSetSurface vtkDataSetSurface

1 !

1 vtkReverseSense

1 !
vtkAppendPolyDataFilter

!

vtkDataSetSurfaceFilter

Figure 4: Possible pipeline for computing boolean operations on surface meshes. The instance of vtkReverseSense
is optional and can be used when the boolean difference is desired to reorient the intersection portion of the second
surface so that its normals face toward the outside of the resulting surface.

void SetReorientDifferenceCells (int value);
void ReorientDifferenceCellsOn();
void ReorientDifferenceCellsOff();

Lastly, the Tolerance sets a threshold on the absolute value of a distance field value below which the
distance is considered to be zero.

7 Resulis

Results from boolean operations on various pairs of geometric objects are shown in Figure 5.

8 Limitations

The vtkPolyDataIntersection class operates only on triangulated surface meshes, and it does not prop-
erly handle intersections between coplanar triangles. When two triangles are determined to be coplanar,
the intersection information is discarded. If this occurs, then the output of a boolean operation may not be
exactly correct at the location of the coplanar triangles.

9 Software Requirements
The source code contributed with this article has been built against VTK git commit

9f132a45a7becel15d77ad74723c6378{2f29d869.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3262]
Distributed under Creative Commons Attribution License

11

Union Intersection Difference
My UMp MsNMpg My —Mp

v
1
®

Figure 5: The blue parts of the surface come from the first input mesh M, and the red parts come from the
second input mesh Mp.

P -
Wt
o ™
v o
L o

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3262]
Distributed under Creative Commons Attribution License

