Improving features and performance of binary
erode and dilate filters

Gaétan Lehmann

February 19, 2006

Unité de Biologie du Développement et de la Reproductiostjtut National de la Recherche
Agronomique, 78350 Jouy-en-Josas, France

Abstract

Binary erosion and dilation are the base filters of binary hreatatical morphology. In ITK 2.4.1
BinaryDi | at el mageFi [ter and Bi naryEr odel mageFi | ter implement an efficient algorithm de-
scribed in P]. However, those filter lack support for boundary valuesyeha poor progress report,
and can be quite inefficient for complex 3D images.

1 Implementation

Thread support have been completely removed: only a smaliopahe filter is treadable, and sadly, it's
the creation of the output image during the flooding stagecwkake the most time to run, and it can't be
threaded.

Adding boundary support was quite easy: the temporary iniagd internally is created with an extra pixel
on all borders, and the value of those pixel is set to foreggoar background value, depending of the option
set by the user.

To improve the progress report, the output pixels are sahduhe burning stage, so there is no need to
create a list with an unknown size.

To improve the performance, the output image is no more edeafith an output iterator - the iterator is
really inefficient in that case, because it copy all the nedghpixels in a buffer, while the filter need to
access a small number of those pixels.

2 Performance

A timing test comparing performance on a 3¢ B71x 34 image with a binary ball structuring element of
size 20x 20 x 7 shows that the new filters give better results than the oéd.on

border is foreground foreground value new erode old erodew dikate old dilate

no 100 18.4086 s / 11.7803s 59.7689 s
no 200 13.5472 s / 2.65948 s 8.28261s
yes 100 16.2584s 58.4875s 19.8128s /
yes 200 11.7388s 17.3176s 10.7766 s /

Table 1: Execution times.
3 Examples

Figuresl, 2 and3 show some examples of of dilation and erosion with diffegnicturing elements, and
different parameters.

4 Code sample

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkConmmand. h"

#include "itkSinpl eFilterWatcher.h"

#include "itkBinaryDilatel nageFilter.h"
#include "itkBinaryBal | StructuringEl ement. h"
#include "itkNei ghborhood. h"

int main(int, char * argv[])

{

const int dim= 2;

typedef unsigned char PType;
typedef itk::lmage< PType, dim> |Type;

typedef itk::lmgeFil eReader< | Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fi | eNane(argv[4]);

typedef itk::BinaryBallStructuringEl ement< PType, dim> SRType;
SRType kernel;

kernel . Set Radi us(10);

kernel . CreateStructuringEl ement();

typedef itk::BinaryDilatel mageFilter< |Type, |Type, SRType > FilterType;
FilterType::Pointer filter = FilterType::New();

filter->Setlnput(reader->CetQutput());

filter->SetKernel (kernel);

filter->Set ForegroundVal ue(atoi(argv[1]));

filter->Set BackgroundVal ue(atoi(argv[2]));

filter->SetBoundaryl sForeground(atoi(argv[3]));

itk::SinpleFilterWatcher watcher(filter, "filter");

(a) input image (b) foreground =100, background =0, b¢c) foreground = 100, background =0, bor-
der is background der is foreground

D0®

(d) foreground = 100, background = 15@) foreground = 100, background = 15@), foreground = 200, background = 0, bor-
border is background border is foreground der is background

PO®

(g) foreground =200, background =0, bgh) foreground = 200, background = 150), foreground = 200, background = 150,
der is foreground border is background border is foreground

Figure 1: Dilation with a binary ball structuring elementraflius 10.

(a) input image (b) foreground = 100, background =0, bge) foreground = 100, background =0, bor-
der is background der is foreground

(d) foreground = 100, background = 15@) foreground = 100, background = 15@), foreground = 200, background = 0, bor-
border is background border is foreground der is background

(g) foreground =200, background =0, bgh) foreground = 200, background = 150), foreground = 200, background = 150,
der is foreground border is background border is foreground

Figure 2: Erosion with a binary ball structuring elementadius 10.

(a) input image (b) foreground =100, background =0, b¢c) foreground = 100, background =0, bor-
der is background der is foreground

(d) foreground = 100, background = 15@) foreground = 100, background = 15@), foreground = 200, background = 0, bor-
border is background border is foreground der is background

(g) foreground =200, background =0, bgh) foreground = 200, background = 150), foreground = 200, background = 150,
der is foreground border is background border is foreground

Figure 3: Dilation and erosion with a structuring elementihvanly one point.

typedef itk::lmageFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType:: New();
witer->Setlnput(filter->CetQutput());
writer->SetFileNanme(argv[5]);

writer->Update();

return 0;

5 Conclusion

The new proposed filters outperform the old ones, and praviole features. However, it is surely possible to improve
the performance of the new filters. The creation of the ouitpage still use lots of time. An iterator which put only
the neighbors in a buffer may be a great help in that case.

6 Acknowledgments

| thank Dr Pierre Adenot and MIMA2 confocal facilitiest({ p: // m ma2. j ouy. i nra. fr) for providing image sam-
ples.

| also thank Jerome SCHMID for his explanations, and for It fiork on those filters.

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

[2] N. Nikopoulos. An efficient algorithm for 3d binary morplogical transformations with 3d structuring elements
or arbitrary size and shap&EE Transactions on Image Processing, 9(3):283-286, 200Qidocument)

http://mima2.jouy.inra.fr

	Implementation
	Performance
	Examples
	Code sample
	Conclusion
	Acknowledgments

