
CITK - an architecture and examples of CUDA
enabled ITK filters

Release 0.00

Richard Beare1, Daniel Micevski, Chris Share
Luke Parkinson, Phil Ward, Wojtek Goscinski1, Mike Kuiper2

May 25, 2011

1Richard.Beare@monash.edu, Monash University, Melbourne, Australia
2mike@vpac.org, Victorian Partnership for Advanced Computing, Melbourne, Australia.

Abstract

There is great interest in the use of graphics processing units (GPU) for general purpose applications
because the highly parallel architectures used in GPUs offer the potential for huge performance increases.
The use of GPUs in image analysis applications has been underinvestigation for a number of years.
This article describes modifications to the InsightToolkit(ITK) that provide a simple architecture for
transparent use of GPU enabled filters and examples of how to write GPU enabled filters using the
NVIDIA CUDA tools.

This work was performed between late 2009 and early 2010 and is being published as modifications
to ITK 3.20. It is hoped that publication will help inform development of more general GPU support
in ITK 4.0 and facilitate experimentation by users requiring functionality of 3.20 or wishing to pursue
CUDA based developments.

Contents

1 Introduction 2

2 CITK Architecture 2
2.1 Weaknesses. 3

3 Installation and building 4
3.1 CUDA compiler and software development kit. 4
3.2 Fetch this contribution from google code. 4
3.3 Patch ITK 3.20 . 4
3.4 Build and install modified ITK. 4
3.5 Build examples. 5
3.6 Changes to standard processes for building ITK applications 5

4 Anatomy of a CUDA enabled filter 5
4.1 Memory management. 5
4.2 Templated kernel files. 5

2

4.3 Usingthrust algorithms . 7

5 Testing 7
5.1 ITK . 7
5.2 Testing CUDA filters . 7

6 Performance 7

7 Conclusions 8

1 Introduction

Data must be resident in GPU device memory in order to be processed by the GPU. In order for an ITK
filter to be accelerated using GPUs an image must be copied to the device memory and the result copied
back if the next filter is not GPU enabled. Copying between host and device memory is quite slow and can
easily offset any benefits achieved by faster GPU processing. It is therefore essential that redundant copies
between host and device memory are eliminated. It is also desirable that new, GPU enabled, filters can be
included in applications without changing programming style.

This article describes a simple modification to the itk::Image class that allows transparent use of CUDA
enabled filters. A range of standard filters have been implemented and extensive testing performed.

2 CITK Architecture

The aim of the architecture outlined below was to allow GPU enabled filters to be included in an application
without change of programming style or losing performance via redundant host to device memory copies.

A number of architectures were considered. These were derived from online discussions and small samples
of code available online:

• Break the pipeline at the beginning of filter execution by copying data to device memory, processing,
and then copying back after execution completes. This isolates the GPU code from the rest of the
pipeline and requires no change to ITK infrastructure, but introduces redundant copies if subsequent
filters are GPU enabled.

• Include interface objects between filters in the pipeline tomanage copying. This can eliminate redun-
dant copies but requires that the programmer be aware of which filters are GPU enabled. There is also
a minor change of programming style.

Neither of these options require a modification to core ITK classes.

The approach used in CITK does require a modification to core ITK classes, but has a
number of advantages. A similar approach has since been outlined on the ITK Wiki
http://www.cmake.org/Wiki/ITK_Release_4/GPU_Acceleration.

The fundamental component of the pipeline is theitk::Image class. Within this class is a pixel container
calledImportImageContainer, used to manage the image data. CITK includes a substitute pixel container

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3269]
Distributed underCreative Commons Attribution License

http://www.cmake.org/Wiki/ITK_Release_4/GPU_Acceleration
http://www.insight-journal.org
http://hdl.handle.net/10380/3269
http://creativecommons.org/licenses/by/3.0/us/

2.1 Weaknesses 3

namedCudaImportImageContainer. This pixel container has all the same functionality of theImportImage-
Container which results in full compatibility with existing ITK components.

TheCudaImportImageContainer manages image data on both the host and device. When a standard filter
requests the image data, such as through an iterator, theCudaImportImageContainer checks whether the
most up to date image is on the device or the host. If it is on thedevice, it is copied back onto the host. This
data is then supplied to the user. Similarly when a GPU filter requests the image data, theCudaImportIm-
ageContainer would check where the most up to date image is, and copy it to the device if required.

TheCudaImportImageContainer can track where the most up to the date image is by which set command
was used last, and assumes the data is modified when a standarditerator requests it.

The result of this is memory transfers are only performed when required and are completed transparent to
both the developer and the user. This leaves all the responsibility on the architect, rather than the developer
or the user such as in the other attempts.

Some exceptions have been uncovered during this development. Minor changes have also been made to
theAllocateOutputs method of theitkInPlaceImageFilter to support pipelines that connect in place, multi-
threaded CPU filters to a CUDA filter. Other exceptions are discussed below.

2.1 Weaknesses

• This framework only supports CUDA, and not OpenCL. The ITK 4.0 proposal supports OpenCL.
Limitations of the CUDA development environment mean that even CUDA integration is less com-
plete than hoped, with significant changes to compilation processes being necessary (see below).

• A copy between host and device always results in the source ofthe copy being considered redundant.
This could be inefficient in some cases. The problem is correctly dealing with identical copies on both
host and device. If, for example, a pipeline is branched suchthat one branch in on GPU and the other
on CPU, then the branch point is likely to become a source of redundant copies.

• The need to copy between device and host memory breaks some ofthe usual assumptions, leading to
some ugly use ofmutable declarations in CudaImportImageContainer.

• Morphology filters included in the package use texture memory but are not as generic as the standard
ITK versions.

• ITK filters are able to provide their own implementations of key methods, such asAllocateOutputs.
This can lead to problems when connecting CUDA enabled components to a CPU pipeline. This prob-
lem has been observed in theitkStatisticsImageFilter, which is a multi-threadedImageToImageFilter
with its own AllocateOutputs method passing input through to output. This bypasses the trigger to
copy device memory back to the host, leading to incorrect results. Other filters with unusual struc-
ture are likely to cause problems. The simple fix for such filters is to callGetBufferPointer in the
AllocateOutputs method.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3269]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3269
http://creativecommons.org/licenses/by/3.0/us/

4

3 Installation and building

3.1 CUDA compiler and software development kit

This framework requires CUDA 3.2 and the SDK. Thethrust library is also included in the examples to
implement more complex components of some sample filters.

3.2 Fetch this contribution from google code

The source code is included with this article and is also available from google code:
http://code.google.com/p/cuda-insight-toolkit/. The patch for ITK is included.

3.3 Patch ITK 3.20

The code distributed with this article includes a patch to modify ITK 3.20, calledpatch.3.20.0.dif. This can
be applied as follows:

• fetchhttp://voxel.dl.sourceforge.net/sourceforge/itk/InsightToolkit-3.20.0.tar.gz

• extract

• cd ITK-3.20

• patch -p0< path/to/cuda-insight-toolkit/patch.3.20.0.dif

Alternatviely, this code may currently be retrieved via git, as follows:

• git clone git://github.com/richardbeare/ITK.git

• cd ITK

• git checkout v3.20.0cuda

3.4 Build and install modified ITK

There are many options available when building ITK. This process has been tested under Linux and there
are a number of changes to defaults required to avoid limitations to the CUDA development tools.

• Specify location of CUDA SDK. Note that if there is trouble locating libcutil.a, it may be set explicitly
under advanced options - CUDACUT LIBRARY.

• Turn off SSE options for VNL - see advanced/VNL. This avoids errors caused by multiple inclusion
of SSE files.

• Enable ITK USE REVIEW under advanced options, in order to build all of the tests.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3269]
Distributed underCreative Commons Attribution License

http://code.google.com/p/cuda-insight-toolkit/
http://voxel.dl.sourceforge.net/sourceforge/itk/InsightToolkit-3.20.0.tar.gz
http://www.insight-journal.org
http://hdl.handle.net/10380/3269
http://creativecommons.org/licenses/by/3.0/us/

3.5 Build examples 5

3.5 Build examples

The Examples subdirectory in the citk distribution includes a CMakeFile for building all examples and
running tests. Location of the patched ITK, nvcc and CUDA SDKmust be provided during configuration.
It is also necessary to set CITKUSE CUDA to ON. This option has been included to allow the Insight
Journal to run some tests without requiring CUDA development tools.

3.6 Changes to standard processes for building ITK applications

Typical application development in ITK utilizes templatesand generic programming and therefore does not
require that the developer track new object code dependencies when adding new filters. In principle the
same procedure should be possible when using CUDA enabled devices by compiling all application code
with nvcc, leading to non-CUDA code being compiled with the host c++ compiler and CUDA code being
compiled with CUDA compilers. This would also allow useful templating of CUDA kernels, leading to a
relatively seamless integration with traditional ITK development. Unfortunately the current generation of
CUDA tools is not able to cope with c++ of the complexity used in ITK. It is therefore necessary to compile
CUDA kernels separately, which means the developer must specify the correct object dependencies to the
linker. Examples of this can be seen in the CMake files included with this article.

This approach also implies that the CUDA kernels need to be compiled for the appropriate types, and this
is currently achieved using a set of macros supporting a limited range of input and output types. Compiling
application code with nvcc would eliminate these macros.

Alternatives, such as compiling all CUDA kernels into a library, are feasible but haven’t been tested during
this development.

4 Anatomy of a CUDA enabled filter

CUDA enabled filters can look very like a conventional ITK filter, with the main difference being a call to
a CUDA kernel function from within theGenerateData method. CUDA-enabled filters should never have
ThreadedGenerateData methods as threading is provided within the CUDA portion.

Pointers to device memory are obtained using theGetDevicePointer method and are passed to CUDA kernel
functions.

4.1 Memory management

Two base classes have been provided to handle standard filtermemory management -CudaInPla-
ceImageFilter and CudaImageToImageFilter. These filters allow the standard allocation structure to
be used viathis→AllocateOutputs(). Explicit allocation of device memory can be achieved using
Image→AllocateGPU()

4.2 Templated kernel files

ITK filters are generic with respect to pixel type and dimension and hence CUDA kernels should offer the
same flexibility. This is not currently possible. The structure outlined in this section is the best approxima-

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3269]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3269
http://creativecommons.org/licenses/by/3.0/us/

4.2 Templated kernel files 6

tion we have been able to achieve and we hope it will evolve to be better integrated with ITK as the CUDA
tools improve.

Each kernel function has a declaration - e.g. CudaAddImageFilterKernel.h contains

template <class T, class S> extern
void AddImageKernelFunction(const T* input1, const T* input2, S* output, unsigned int N);

The corresponding CudaAddImageFilterKernel.cu file contains:

template <class T, class S>
__global__ void AddImageKernel(T *output, const S *input, int N)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx<N)
{
output[idx] += input[idx];
}

}

template <class T, class S>
__global__ void AddImageKernel(T *output, const S *input1, const S* input2, int N)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx<N)

{
output[idx] = input1[idx] + input2[idx];
}

}

template <class T, class S>
void AddImageKernelFunction(const T* input1, const T* input2, S* output, unsigned int N)
{

// Compute execution configuration
int blockSize = 128;
int nBlocks = N/blockSize + (N%blockSize == 0?0:1);

// Call kernels optimized for in place filtering
if (output == input1)

AddImageKernel <<< nBlocks, blockSize >>> (output, input2, N);
else

AddImageKernel <<< nBlocks, blockSize >>> (output, input1, input2, N);
}

#define THISTYPE float
template void AddImageKernelFunction<THISTYPE, THISTYPE>(const THISTYPE * input1,

const THISTYPE * input2,
THISTYPE * output, unsigned int N);

#undef THISTYPE
#define THISTYPE int
template void AddImageKernelFunction<THISTYPE, THISTYPE>(const THISTYPE * input1,

const THISTYPE * input2,

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3269]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3269
http://creativecommons.org/licenses/by/3.0/us/

4.3 Using thrust algorithms 7

THISTYPE *output, unsigned int N);
#undef THISTYPE

#define THISTYPE short
template void AddImageKernelFunction<THISTYPE, THISTYPE>(const THISTYPE * input1,

const THISTYPE * input2,
THISTYPE *output, unsigned int N);

#undef THISTYPE

#define THISTYPE unsigned char
template void AddImageKernelFunction<THISTYPE, THISTYPE>(const THISTYPE * input1,

const THISTYPE * input2,
THISTYPE *output, unsigned int N);

#undef THISTYPE

This is a simple structure that allows a number kernels to be precompiled for different voxel types.

4.3 Using thrust algorithms

The thrust project,http://code.google.com/p/thrust/, is a source of templated, CUDA-enabled al-
gorithms. The CudaStatisticsImageFilter makes use of these algorithms. It is also possible to implement
simple arithmetic filters using the thrusttransform algorithm (leading to more elegant code), but prelimi-
nary tests suggest a significant loss in performance. There are examples of thrust-based arithmetic in several
sample filters that can be switched on with a cmake option.

5 Testing

The online testing within the Insight Journal does not support CUDA and therefore cannot be used to test
this contribution.

5.1 ITK

Changes to ITK classes have been tested using standard ITK tests, producing the same results as an unmod-
ified ITK.

5.2 Testing CUDA filters

A range of simple CUDA enabled filters have been developed andcompared to the CPU equivalents. CMake
based test are included in this contribution.

6 Performance

Improved computational performance is the reason for interest in GPU imaging applications. However
there are many stories of how difficult this is to achieve in practice, and similar difficulties are likely to be
experienced in the imaging domain. Some of the difficulties we forsee are:

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3269]
Distributed underCreative Commons Attribution License

http://code.google.com/p/thrust/
http://www.insight-journal.org
http://hdl.handle.net/10380/3269
http://creativecommons.org/licenses/by/3.0/us/

8

• A real imaging application is likely to utilize a large number of ITK filters. It is likely to be a long
time before a significant portion of ITK is CUDA (or GPU) enabled. Therefore a developer will
only experience a nett performance gain if the CUDA enabled filter offers sufficient speedup to offset
memory transfer costs and a small proportion of the application is particularly time consuming.

• Filters that are easy to port to the GPU tend to be fast on CPU anyway, and typically don’t represent
a large proportion of application time. Examples include all voxel-wise operations, such as masking
and arithmetic.

• Many potentially time consuming operations, such as filtering with large kernels, have been highly
optimised for CPU implementation. It is important the comparisons are made with these optimised
CPU implementations.

We won’t discuss the mechanics of CUDA performance profilingin this article - there are many resources
available online.

One point worth noting when testing CUDA enabled ITK filters is that there is a per-process cost associated
with running a CUDA-enabled application. This cost appearsto relate to a number of things, including
loading libraries and initializing the device. This cost can be very significant - as much as 2.5 seconds on
one of our test machines - and can give an exagerated negativeimpression of the filter performance.

Finally, some positive performance results. These tests were carried out using a Tesla T10 in a 16 core,
2261.051MHz, Intel L5520 Xeon:

• Performance improvement of 190 times observed with simple arithmetic, such as adding or subtract-
ing constants from images. Seesimple perf test.cxx for details.

• Image filtering with kernels, for example simple means, offer 32 times speedup for 3d kernels, radius
10 voxels on images size 500× 500× 500 and 50 times speedup for kernels radius 20.. This is
potentially interesting for applications requiring kernels of specific shape, because most accelerated
CPU schemes can only implement a restricted range of shape kernels. Neither CPU nor GPU examples
exploits redundancy in this test.

7 Conclusions

We have provided some simple modifications to ITK infrastructure that allow integration of CUDA enabled
filters with ITK applications, and provided a number of examples and validation tests. We hope this frame-
work will encourage immediate experimentation with GPU filters and inform some of the GPU development
scheduled for ITK 4.

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3269]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3269
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	CITK Architecture
	Weaknesses

	Installation and building
	CUDA compiler and software development kit
	Fetch this contribution from google code
	Patch ITK 3.20
	Build and install modified ITK
	Build examples
	Changes to standard processes for building ITK applications

	Anatomy of a CUDA enabled filter
	Memory management
	Templated kernel files
	Using thrust algorithms

	Testing
	ITK
	Testing CUDA filters

	Performance
	Conclusions

