CITK - an architecture and examples of CUDA
enabled ITK filters

Release 0.00

Richard Bearel, Daniel Micevski, Chris Share
Luke Parkinson, Phil Ward, Wojtek Goscinskil, Mike Kuiper2

May 25, 2011

lRichard.Beare@monash.edu, Monash University, Melbgukostralia
’mike@vpac.org, Victorian Partnership for Advanced CorimgytMelbourne, Australia.

Abstract

There is great interest in the use of graphics processirtg (GPU) for general purpose applications
because the highly parallel architectures used in GPUstbigotential for huge performance increases.
The use of GPUs in image analysis applications has been umdestigation for a number of years.
This article describes modifications to the InsightToo(KItK) that provide a simple architecture for
transparent use of GPU enabled filters and examples of howrite ®PU enabled filters using the
NVIDIA CUDA tools.

This work was performed between late 2009 and early 2010sabéeing published as modifications
to ITK 3.20. It is hoped that publication will help inform delepment of more general GPU support
in ITK 4.0 and facilitate experimentation by users requgrfanctionality of 3.20 or wishing to pursue
CUDA based developments.

Contents
1 Introduction 2
2 CITK Architecture 2

2.1 WEAKNESSES o o e e e e e e e e

3 Installation and building 4
3.1 CUDA compiler and software developmentkit 4
3.2 Fetch this contribution fromgooglecode 4

3.3 PatchITK3.20. e
3.4 Build and install modified ITK.
3.5 Buildexamples. e e e
3.6 Changes to standard processes for building ITK apiest 5

4 Anatomy of a CUDA enabled filter 5
4.1 Memory management. e e e e e e
4.2 Templated kernelfiles. e

4.3 Usingthrust algorithms. e 7
5 Testing 7

5.1 ITK o e 7

5.2 Testing CUDATIlters. e e 7
6 Performance 7
7 Conclusions 8

1 Introduction

Data must be resident in GPU device memory in order to be psaceby the GPU. In order for an ITK
filter to be accelerated using GPUs an image must be copidtetddvice memory and the result copied
back if the next filter is not GPU enabled. Copying betweert hod device memory is quite slow and can
easily offset any benefits achieved by faster GPU proces#iigtherefore essential that redundant copies
between host and device memory are eliminated. It is alsioadhds that new, GPU enabled, filters can be
included in applications without changing programmindesty

This article describes a simple modification to the itk::¢r@aclass that allows transparent use of CUDA
enabled filters. A range of standard filters have been impi@&deand extensive testing performed.

2 CITK Architecture

The aim of the architecture outlined below was to allow GPualded filters to be included in an application
without change of programming style or losing performanieer@dundant host to device memory copies.

A number of architectures were considered. These wereatEfiom online discussions and small samples
of code available online:

e Break the pipeline at the beginning of filter execution byytog data to device memory, processing,
and then copying back after execution completes. Thiste®lthe GPU code from the rest of the
pipeline and requires no change to ITK infrastructure, btrbduces redundant copies if subsequent
filters are GPU enabled.

¢ Include interface objects between filters in the pipelinmnage copying. This can eliminate redun-
dant copies but requires that the programmer be aware ofwfittiers are GPU enabled. There is also
a minor change of programming style.

Neither of these options require a modification to core IT&ssks.

The approach used in CITK does require a modification to cof& Iclasses, but has a
number of advantages. A similar approach has since beeninedition the ITK Wiki
http://ww. cmake. or g/ Wki /| TK_Rel ease_4/ GPU_Accel erati on.

The fundamental component of the pipeline is itke:Image class. Within this class is a pixel container
called ImportlmageContainer, used to manage the image data. CITK includes a substitké gintainer

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3269]
Distributed undeCreative Commons Attribution License

http://www.cmake.org/Wiki/ITK_Release_4/GPU_Acceleration
http://www.insight-journal.org
http://hdl.handle.net/10380/3269
http://creativecommons.org/licenses/by/3.0/us/

2.1 Weaknesses 3

namedCudal mportlmageContainer. This pixel container has all the same functionality of fimportlmage-
Container which results in full compatibility with existing ITK compents.

The CudalmportlmageContainer manages image data on both the host and device. When a siditidar
requests the image data, such as through an iteratoutia mportlmageContainer checks whether the
most up to date image is on the device or the host. If it is ordéwéce, it is copied back onto the host. This
data is then supplied to the user. Similarly when a GPU fikguests the image data, t@adal mportlm-
ageContainer would check where the most up to date image is, and copy ietddvice if required.

The CudalmportlmageContainer can track where the most up to the date image is by which setnezod
was used last, and assumes the data is modified when a stéedatol requests it.

The result of this is memory transfers are only performednuigguired and are completed transparent to
both the developer and the user. This leaves all the redplityson the architect, rather than the developer
or the user such as in the other attempts.

Some exceptions have been uncovered during this develdprivinor changes have also been made to
the AllocateOutputs method of thdatkinPlacel mageFilter to support pipelines that connect in place, multi-
threaded CPU filters to a CUDA filter. Other exceptions arewdised below.

2.1 Weaknesses

e This framework only supports CUDA, and not OpenCL. The ITR gproposal supports OpenCL.
Limitations of the CUDA development environment mean thaaneCUDA integration is less com-
plete than hoped, with significant changes to compilatiat@sses being necessary (see below).

e A copy between host and device always results in the sourtteeafopy being considered redundant.
This could be inefficient in some cases. The problem is ctiyrdealing with identical copies on both
host and device. If, for example, a pipeline is branched sui@hone branch in on GPU and the other
on CPU, then the branch point is likely to become a sourcecafrrdant copies.

e The need to copy between device and host memory breaks same wdual assumptions, leading to
some ugly use ofnutable declarations in CudalmportimageContainer.

e Morphology filters included in the package use texture m@grbat are not as generic as the standard
ITK versions.

e ITK filters are able to provide their own implementations ef/knethods, such adlocateOutpults.
This can lead to problems when connecting CUDA enabled coems to a CPU pipeline. This prob-
lem has been observed in thkStatisticslmageFilter, which is a multi-threadetinageTol mageFilter
with its own AllocateOutputs method passing input througlotitput. This bypasses the trigger to
copy device memory back to the host, leading to incorreatlt®s Other filters with unusual struc-
ture are likely to cause problems. The simple fix for suchr8lie to call GetBufferPointer in the
AllocateOutputs method.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3269]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3269
http://creativecommons.org/licenses/by/3.0/us/

3 Installation and building

3.1 CUDA compiler and software development kit

This framework requires CUDA 3.2 and the SDK. Titeust library is also included in the examples to
implement more complex components of some sample filters.

3.2 Fetch this contribution from google code

The source code is included with this article and is also lablE from google code:
http://code. googl e. com p/ cuda- i nsi ght - t ool ki t/ . The patch for ITK is included.

3.3 Patch ITK 3.20

The code distributed with this article includes a patch talifyd TK 3.20, calledpatch.3.20.0.dif. This can
be applied as follows:
e fetchhttp://voxel.dl.sourceforge. net/sourceforge/itk/InsightTool kit-3.20.0.tar.gz
e extract
e cd ITK-3.20

e patch -pO< path/to/cuda-insight-toolkit/patch.3.20.0.dif

Alternatviely, this code may currently be retrieved vig g# follows:

e git clone git://github.com/richardbeare/ITK.git
e cdITK

e git checkout v3.20.0cuda

3.4 Build and install modified ITK

There are many options available when building ITK. Thisgess has been tested under Linux and there
are a number of changes to defaults required to avoid limitatto the CUDA development tools.

e Specify location of CUDA SDK. Note that if there is troublec&ding libcutil.a, it may be set explicitly
under advanced options - CUDEUT_LIBRARY.

e Turn off SSE options for VNL - see advanced/VNL. This avoid®es caused by multiple inclusion
of SSE files.

e Enable ITK_LUSE_REVIEW under advanced options, in order to build all of thete

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3269]
Distributed undeCreative Commons Attribution License

http://code.google.com/p/cuda-insight-toolkit/
http://voxel.dl.sourceforge.net/sourceforge/itk/InsightToolkit-3.20.0.tar.gz
http://www.insight-journal.org
http://hdl.handle.net/10380/3269
http://creativecommons.org/licenses/by/3.0/us/

3.5 Build examples 5

3.5 Build examples

The Examples subdirectory in the citk distribution inclsicee CMakeFile for building all examples and
running tests. Location of the patched ITK, nvcc and CUDA Sm#st be provided during configuration.
It is also necessary to set CITKISE_CUDA to ON. This option has been included to allow the Insight
Journal to run some tests without requiring CUDA developnieols.

3.6 Changes to standard processes for building ITK applications

Typical application development in ITK utilizes templatesd generic programming and therefore does not
require that the developer track new object code depengendhen adding new filters. In principle the
same procedure should be possible when using CUDA enablaceddoy compiling all application code
with nvcc, leading to non-CUDA code being compiled with thesthc++ compiler and CUDA code being
compiled with CUDA compilers. This would also allow usefahiplating of CUDA kernels, leading to a
relatively seamless integration with traditional ITK demment. Unfortunately the current generation of
CUDA tools is not able to cope with c++ of the complexity usedlTiK. It is therefore necessary to compile
CUDA kernels separately, which means the developer musifggle correct object dependencies to the
linker. Examples of this can be seen in the CMake files inaualith this article.

This approach also implies that the CUDA kernels need to Ibgpded for the appropriate types, and this
is currently achieved using a set of macros supporting ddihmiange of input and output types. Compiling
application code with nvcc would eliminate these macros.

Alternatives, such as compiling all CUDA kernels into adty, are feasible but haven’t been tested during
this development.

4 Anatomy of a CUDA enabled filter

CUDA enabled filters can look very like a conventional ITKdiltwith the main difference being a call to
a CUDA kernel function from within th&enerateData method. CUDA-enabled filters should never have
ThreadedGenerateData methods as threading is provided within the CUDA portion.

Pointers to device memory are obtained using@etDevicePointer method and are passed to CUDA kernel
functions.

4.1 Memory management

Two base classes have been provided to handle standard miierory management CudalnPla-
celmageFilter and CudalmageTolmageFilter. These filters allow the standard allocation structure to
be used viathis—AllocateOutputs(). Explicit allocation of device memory can be achieved using
Image—AllocateGPU()

4.2 Templated kernel files
ITK filters are generic with respect to pixel type and dimensand hence CUDA kernels should offer the

same flexibility. This is not currently possible. The stwretoutlined in this section is the best approxima-

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3269]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3269
http://creativecommons.org/licenses/by/3.0/us/

4.2 Templated kernel files 6

tion we have been able to achieve and we hope it will evolveetbditer integrated with ITK as the CUDA
tools improve.

Each kernel function has a declaration - e.g. CudaAddImiigekernel.h contains

tenplate <class T, class S> extern
voi d Addl mageKer nel Function(const T* inputl, const T* input2, S* output, unsigned int N);

The corresponding CudaAddimageFilterKernel.cu file costa

tenplate <class T, class S
__global __ void Addl mageKernel (T *output, const S *input, int N

{
int idx = blockldx.x * blockDimx + threadldx. x;
if (idx<N)
output[idx] += input[idx];
}
}

tenplate <class T, class S
__global __ void Addl mageKernel (T *output, const S *inputl, const S* input2, int N
{

int idx = blockldx.x * blockDimx + threadldx.x;

if (idx<N)

{
output[idx] = inputl[idx] + input2[idx];
}

}

tenplate <class T, class S>
voi d Addl mageKer nel Function(const T* inputl, const T* input2, S* output, unsigned int N)

{

/'l Conpute execution configuration
int blockSize = 128;
int nBlocks = N blockSize + (Nbl ockSi ze == 070:1);

Il Call kernels optimzed for in place filtering

if (output == inputl)
Addl mageKer nel <<< nBl ocks, bl ockSize >>> (output, input2, N);
el se

Addl mageKer nel <<< nBl ocks, blockSize >>> (output, inputl, input2, N);
}

#define TH STYPE fl oat
tenpl ate void Addl mageKer nel Functi on<THI STYPE, TH STYPE>(const THI STYPE * input1,
const THI STYPE * input 2,
TH STYPE * output, unsigned int N);
#undef TH STYPE
#define TH STYPE int
tenpl ate void Addl mageKer nel Functi on<THI STYPE, TH STYPE>(const THI STYPE * input1,
const THI STYPE * input 2,

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3269]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3269
http://creativecommons.org/licenses/by/3.0/us/

4.3 Using thrust algorithms 7

THI STYPE *out put, unsigned int N);
#undef TH STYPE

#define TH STYPE short
tenpl ate void Addl mageKer nel Functi on<THI STYPE, TH STYPE>(const THI STYPE * input1,

const THI STYPE * input 2,

THI STYPE *out put, unsigned int N);
#undef TH STYPE

#define TH STYPE unsi gned char
tenpl ate void Addl mageKer nel Functi on<THI STYPE, TH STYPE>(const THI STYPE * input1,

const THI STYPE * input 2,

THI STYPE *out put, unsigned int N);
#undef TH STYPE

This is a simple structure that allows a number kernels torbegmpiled for different voxel types.

4.3 Using thrust algorithms

The thrust projecthtt p: // code. googl e. coml p/ thrust/, is a source of templated, CUDA-enabled al-
gorithms. The CudaStatisticsimageFilter makes use okth&gorithms. It is also possible to implement
simple arithmetic filters using the thrusansform algorithm (leading to more elegant code), but prelimi-

nary tests suggest a significant loss in performance. Therexamples of thrust-based arithmetic in several
sample filters that can be switched on with a cmake option.

5 Testing

The online testing within the Insight Journal does not sup@& DA and therefore cannot be used to test
this contribution.

51 ITK

Changes to ITK classes have been tested using standard $78¥ peoducing the same results as an unmod-
ified ITK.

5.2 Testing CUDA filters

A range of simple CUDA enabled filters have been developeccampared to the CPU equivalents. CMake
based test are included in this contribution.

6 Performance

Improved computational performance is the reason for éstein GPU imaging applications. However
there are many stories of how difficult this is to achieve iagice, and similar difficulties are likely to be
experienced in the imaging domain. Some of the difficultiesfavsee are:

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3269]
Distributed undeCreative Commons Attribution License

http://code.google.com/p/thrust/
http://www.insight-journal.org
http://hdl.handle.net/10380/3269
http://creativecommons.org/licenses/by/3.0/us/

e A real imaging application is likely to utilize a large nunmkedf ITK filters. It is likely to be a long
time before a significant portion of ITK is CUDA (or GPU) enathl Therefore a developer will
only experience a nett performance gain if the CUDA enablest fiffers sufficient speedup to offset
memory transfer costs and a small proportion of the apjpticas particularly time consuming.

e Filters that are easy to port to the GPU tend to be fast on CRWan and typically don't represent
a large proportion of application time. Examples includevakel-wise operations, such as masking
and arithmetic.

e Many potentially time consuming operations, such as filgemvith large kernels, have been highly
optimised for CPU implementation. It is important the comg@ns are made with these optimised
CPU implementations.

We won't discuss the mechanics of CUDA performance profiimthis article - there are many resources
available online.

One point worth noting when testing CUDA enabled ITK filtesghat there is a per-process cost associated
with running a CUDA-enabled application. This cost appeargelate to a number of things, including
loading libraries and initializing the device. This coshdze very significant - as much as 2.5 seconds on
one of our test machines - and can give an exagerated negmafivession of the filter performance.

Finally, some positive performance results. These teste warried out using a Tesla T10 in a 16 core,
2261.051MHz, Intel L5520 Xeon:

e Performance improvement of 190 times observed with simyitleraetic, such as adding or subtract-
ing constants from images. Ssenple_perf_test.cxx for details.

e Image filtering with kernels, for example simple means, o3 times speedup for 3d kernels, radius
10 voxels on images size 560500x 500 and 50 times speedup for kernels radius 20.. This is
potentially interesting for applications requiring kelsef specific shape, because most accelerated
CPU schemes can only implement a restricted range of shapel&eNeither CPU nor GPU examples
exploits redundancy in this test.

7 Conclusions

We have provided some simple modifications to ITK infragice that allow integration of CUDA enabled
filters with ITK applications, and provided a number of exdespand validation tests. We hope this frame-
work will encourage immediate experimentation with GPlfdtand inform some of the GPU development
scheduled for ITK 4.

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://ww.itk.org/ItkSoftwareGuide.pdf, 2003.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3269]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3269
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	CITK Architecture
	Weaknesses

	Installation and building
	CUDA compiler and software development kit
	Fetch this contribution from google code
	Patch ITK 3.20
	Build and install modified ITK
	Build examples
	Changes to standard processes for building ITK applications

	Anatomy of a CUDA enabled filter
	Memory management
	Templated kernel files
	Using thrust algorithms

	Testing
	ITK
	Testing CUDA filters

	Performance
	Conclusions

