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Abstract

This paper describes a multimodal deformable image registration method on the GPU. It is a CUDA-
based implementation of a paper by E. D’Agostino et. al, “A viscous fluid model for multimodal non-
rigid image registration using mutual information” [4]. In addition, we incorporate an alternative metric
as opposed to mutual information, called Bhattacharyya Distance, in the recent work of [9]. This paper
is accompanied with the source code, input data, parameters and output data that the authors used for
validating the algorithm.
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Deformable image registration (DIR) is one of the major problems in medical image processing, such as
dose calculation [10], treatment planning [19] and scatter removal of cone beam CT (CBCT) [14]. In many
clinical scenarios, it is required to precisely establish a pixel-to-pixel correspondence between two images.
For instance, registration of a CT image to MRI of a patient taken at different time can provide complemen-
tary diagnostic information. For applications as such, since the deformation of the patient anatomy cannot
be represented by a rigid transform, DIR is almost the sole means to establish this mapping. In solving a
DIR problem, a metric quantifying the similarity of two images is usually first defined. One then seeks for
deformation vector fields so that one of the two images after deformation matches the other. DIR can be
generally categorized into intra-modality and inter-modality, or multi-modality. While intra-modality DIR
can be easily handled by conventional intensity-based methods [7, 16], multimodality DIR problems are
still far from being satisfactory. Yet, since different imaging modalities usually provide their unique angles
to reveal patient anatomy and delineate microscopic disease, multimodality registration plays a key role to
combine the information from multiple modalities to facilitate diagnostics and treatment of a certain disease.

One straightforward approach to perform multimodal DIR is to first map the intensity of one image to
the other and then apply intra-modality registration algorithms [6, 13]. Nonetheless, this approach is very
difficult either, since it involves the precise intensity mapping between two modalities. In this paper, we
adopt mutual information (MI) as the similarity metric. Such a metric can assess the similarity of images
from the co-occurrence of intensities in both images as reflected by their joint histogram. It is widely used
for multimodal image registration since the pioneer work of Voila and Wells [18] and independently by
Maes et. al [11]. In addition, we consider another metric, Bhattacharyya Distance (BD) as proposed in [9],
to solve the multimodal DIR problems.

The DIR algorithm is computationally expensive considering that the images to be registered are usually of
3 dimension. To meet the clinical requirement for the processing time, we have implemented our algorithm
on a graphic processing uint (GPU) platform. Recently, GPUs have offered us a promising prospect of
increasing efficiency for heavy duty tasks, such as deformable image registration [5], image reconstruction
[8] and treatment plan optimization [12]. Though GPU has been used for multimodal image registration,
majority of those available works focus on rigid and/or Demons-types of methods. To the best of our
knowledge, the only two existing works on GPU-based multimodal DIR are [17, 15]. However, the former
uses only 2D textures and is implemented with OpenGL and GLSL. The the latter is a B-spline based method
and thus it is unable to handle large deformation.

The rest of the paper is organized as follows. A registration framework using the viscous fluid model [4] is
reviewed in Section 1 with two choices of similarity metrics: MI and BD. Section 2 discusses the fine details
of the GPU implementation, including the use of texture memory and how to efficiently compute the joint
histogram and 3D convolution. Section 3 serves as a user’s guide, followed by experiments in Section 4.
The conclusion is then given in Section 5.

1 The Viscous Fluid Model

In this section, we briefly review the viscous fluid model [4] as a framework for multimodal DIR. The
work of [4] is based on mutual information, while we include a new metric, the Bhattacharyya Distance, as
proposed in [9].

Mutual information M between any two images I1(~x) and I2(~x) is defined as

M (I1, I2) =
∫∫

p(i1, i2) log
p(i1, i2)

p(i1)p(i2)
di1di2 , (1)
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where i1 and i2 are the image intensity values and p(i1, i2) is the joint intensity distribution of I1 and I2 in
the overlap region V . p(i1), p(i2) are its marginal distributions, e.g.

p(i1) =
∫

p(i1, i2)di2 . (2)

Based on two images I1(~x) and I2(~x), p(i1, i2) can be obtained with the help of δ−function as

p(i1, i2) =
1
V

∫
V

δ(i1− I1(~x), i2− I2(~x))d~x ,

' 1
V

∫
V

Gσ(i1− I1(~x), i2− I2(~x))d~x ,

(3)

where Gσ is a Parzen windowing kernel taken to be a Gaussian function of a standard deviation σ.

As for another metric used to solve the multimodal DIR problem [9], Bhattacharyya Distance is defined as

B(I1, I2) =
∫∫ √

p(i1, i2)p(i1)p(i2)di1di2 . (4)

For the registration problem, we are seeking for a deformation field ~u(~x), such that I1(~x−~u(~x)) = I2(~x).
As such, I1, termed as a template or moving image, is deformed towards a target or fixed image I2 by the
deformation field ~u(~x), i.e., mapping a position~x in I2 onto the corresponding point~x−~u in I1. The viscous
fluid model [4] assumes that the deformation is governed by the Navier-Stokes equation of viscous fluid
motion. Mathematically it is expressed as

∇
2~v+~∇(~∇ ·~v)+~F(~x,~u) = 0 , (5)

where ~v(~x, t) is the deformation velocity, which is related to ~u by ~v = d~u
dt and ~F(~x,~u) is the force field

that drives the deformation in the appropriate direction. Here the force is considered to maximize mutual
information between I1(~x−~u) and I2(~x), which is equivalent to the gradient of M (I1(~x−~u), I2(~x)) with
respect to ~u. The force ~F is formulated as

~F(~x,~u) =
α

V

[
∂Gσ

∂i1
L(i1, i2;~u)

]
(I1(~x−~u), I2(~x))∇I1(~x−~u) , (6)

with a constant α and the term L corresponding to the mutual information is defined as

LM(i1, i2;~u) = 1+ log
p(i1, i2;~u)

p(i1;~u)p(i2)
. (7)

As for the Bhattacharyya distance, the force is to minimize BD, and hence has the following expression,

LB(i1, i2;~u) =−

√
p(i1;~u)p(i2)
p(i1, i2;~u)

−
∫ √

p(i2)p(i1, i2;~u)
p(i1;~u)

di2 . (8)

To solve the Navier-Stokes equation (5), successive over relaxation (SOR) is applied in [3]. However, this
approach is very computationally expensive. In this paper, we instead adopt the approach of convolution
of the force field with 3D Gaussian kernel Φs as an approaximation to the solution [2, 4]. In summary,
deformation field ~u at iteration k is given by

~vk = Φs~Fk , (9)

~R = ~vk −
3

∑
i=1

vk
i

[
∂uk

∂xi

]
, (10)

~uk+1 = ~uk +δt~R , (11)
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where~x = (x1,x2,x3)T ,~v = (v1,v2,v3)T and the time step δt is chosen adaptively during iteration

δt =
δu

max‖~R‖
, (12)

with δu (in voxels) the maximal voxel displacement that is allowed in one iteration.

To preserve the topology of the deformed template, re-gridding is performed when there exists ~x such that
the Jacobian of ~x−~u becomes less than a certain threshold, for instance, 0.5. Regridding is to set the
current deformed image as a new template and the incremental displacement field to zero. In the end, the
total deformation is the concatenation of the incremental deformation fields associated with each propagated
template.

We have also employed a multi-resolution technique to increase computation efficiency and avoid local
minima especially for large motion fields. It has been known that, the convergence rate of an iterative
approach is usually deteriorated when a very fine grid size is used [1]. Moreover, fine grid also implies a
large number of unknown variables, significantly increasing the size of the computation task. Therefore,
a hierarchy of resolution is performed. In particular, we construct the image pyramid by downsampling
the images by a factor of 2 in each dimension. We first perform registration at a low resolution grid. The
deformation field obtained in the lower resolution is interpolated as the initial values for the higher resolution
computation. At each resolution level, the registration algorithm consists of the following key steps:

1. warping of the input image according to the displacement field, i.e., I(~x) = I1(~x−~u);

2. computation of the joint histogram (3) of the warped image I and the fixed image I2;

3. computation of the image gradient;

4. 3D Gaussian convolution;

5. updating the displacement field according to (9)-(11);

6. re-gridding if necessary.

Fig. 1 summarizes our multimodal DIR algorithm.

2 GPU Implementation

Computer graphic cards, such as the NVIDIA GeForce series and the GTX series, are conventionally used
for display purpose on desktop computers. It typically consists of 32-240 scalar processor units and 256 MB
to 1 GB memory. Recently, NVIDIA introduces special GPUs solely dedicated for scientific computing,
such as the Tesla C1060 card that is used in this paper. Such a GPU card has a total number of 240 processor
cores (grouped into 30 multiprocessors with 8 cores each), each with a clock speed of 1.3 GHz. Though the
clock speed for each processor is lower than a typical CPU, the overall computational power is higher due
to the large amount of processors available on a single GPU. The card is also equipped with 4 GB DDR3
memory which is shared by all processor cores. Our DIR algorithm is coded under the Compute Unified
Device Architecture (CUDA) platform developed by NVIDIA, which enables us to extend the C language
to program an NVIDIA GPU 1.

1http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
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Figure 1: Flow chart of the multimodal DIR algorithm.
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2.1 Using Texture Memory 6

In fact, a number of computationally intensive tasks involved in our algorithm share a common feature, i.e.
applying a single operation to different part of data elements. For this type of tasks, it is straightforward to
accomplish them in a data-parallel fashion, namely having all GPU threads running the same operation, one
for a given subset of the data. Such a parallel manner is particularly suitable for the SIMD (single instruction
multiple data) structure of a GPU and high computation efficiency can be therefore achieved. In particular,
Step 3 and step 5 are accomplished by simply launching one thread on GPU for each pixel to compute its
gradient and to update its displacement field. Yet, other steps are not quite easily parallelizable, which will
be addressed in detail in the following sections.

2.1 Using Texture Memory

Texture memory is a special type of memory space in GPU, which supports fast data access due to its
associated memory cache. It also supports hardware linear interpolation in up to 3 dimensions, which
greatly facilitates our computation. The application of texture memory in our algorithm is mainly on the
following two contexts.

First, when warping the template image I1 into a new image I according to the deformation field ~u, i.e.
computing I(~x) = I1(~x−~u(~x)), new intensity values of I are found through linear interpolation. For this
purpose, we first copy the data I1 into an opaque CUDA memory of type CUDA Array and binding it with
appropriate texture memory references. To fetch the data I1(~x−~u(~x)) and assign it to I(~x), where ~x−~u(~x)
is not necessarily on a regular grid point~x, we invoke the built-in CUDA function tex3D, which returns the
interpolated image intensity on the desired coordinates~x−~u(~x).

Similarly, when it comes to regridding, we also create 3D textures for deformation fields as well, since we
need to compute the new vector field according to the following expression,

~Unew = ~Uold(~x−~u) (13)

where ~u is the deformation from the target to the current template and ~U is to the original one. Apparently,
trilinear interpolation is necessary in this update, and using the texture memory can greatly simply coding
while ensuring efficiency.

2.2 Histogram Computation

Computing the joint histogram is another frequently encountered task during the registration process. Con-
sider two images I1(~x) and I2(~x), whose intensities ranges in a known interval [a,b], for instance [0,255]. Let
us partition the interval [a,b] into a set of N bins of equal size. A joint histogram is simply a two dimensional
array of size N×N defined according to Eq. (3). In a CPU implementation, it is straightforward to compute
the joint histogram according to Eq. (3), where we sequentially loop over all the coordinate~x and increase
p(i1, i2) by unity at i1 = I1(~x) and i2 = I2(~x) followed by a Parzen window smoothing. However, it is difficult
to parallelize this sequential process on GPU. If we were simply having each GPU thread responsible for
one coordinate ~x and update p(i1, i2), we would encounter a memory conflict problem due to the potential
simultaneous update of a same memory address holding p(i1, i2) from different GPU threads. To ensure the
correctness, one thread will have to wait for another thread whenever this conflict occurs, thus significantly
reducing the computational efficiency.

To overcome this difficulty, we compute the joint histogram with the help of a GPU library called THRUST
2. Let us first lable the 2D histogram bins (i1, i2) by a 1D index i = i1 ∗N + i2 and create a vector P =

2http://code.google.com/p/thrust/wiki/QuickStartGuide

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License



2.3 3D Convolution 7

(I1(~x), I2(~x)),∀~x of dimension 2×Np, where Np is the number of voxels~x on two images. A thrust function
is then used to transform each pair in P to the corresponding histogram indices, yielding a vector PI of length
Np with entries

histogram index(~x) = bin index of I1(~x)×# of histogram bins + bin index of I2(~x) .

We then sort the histogram index vector PI using a sorting function thrust::sort from THRUST, so that
PI is in an ascending order. Finally, we compute a histogram p(i) by using a THRUST function to count
the number of entries in PI that equal to i. Note p(i) is exactly the joint histogram to be computed after
transforming the linear index i to its equivalent row and column subscripts i1 and i2. During this process, the
key operations invoking THRUST functions are executed on GPU in parallel, ensuring the computational
efficiency.

Once a joint histogram p(i1, i2) is obtained, the marginal distributions can be computed by summing p(i1, i2)
over i1 or i2 coordinate. To perform this computation on GPU, we employ a technique of parallel reduction 3.
Its computational complexity is O(log2 N), as opposed to O(N) in a sequential implementation of summing
over each coordinate i1 or i2. This also improves the computation efficiency considerably.

2.3 3D Convolution

Convolution is another key operation in the registration problem. It is often taken for granted to use FFT for
convolution. However, it is not optimal in the case of smoothing kernel of size much smaller than the image
size. For Gaussian type of kernels, which can be separated to be the product of two Gaussian kernels along
two directions, 2D convolution can be carried out by the combination of the one-dimensional convolution of
the image vertically and then horizontally afterwards. It’s tested that using convolutionSeparable 4 outper-
forms twice a purely texture-based implementation of the same algorithm running on the same hardware.
We adopt the same technique of convolutionSeparable for computing the convolution of a 3D separable
Gaussian kernel.

3 User’s Guide

The user needs to have CUDA toolkit properly installed. Please refer to the following page for details

http://developer.nvidia.com/cuda-toolkit-32-downloads

It is assumed that the users are familiar with NVIDIA GPU development environment. They should
have background on how to compile and execute CUDA code on an NVIDIA platform. For more in-
formation on this category, users are suggested to consult NVIDIA development documents such as
http://www.nvidia.com/object/cuda-home-new.html.

After downloading the package, there should be the following files under the target directory,

*.cu -> CUDA source codes

global.h -> C source code defining variables etc

Makefile -> Sample makefile for compiling and linking

3http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
4http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/convolutionSeparable/doc/convolutionSeparable.pdf
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To run the registration code, please follow these steps:

1. Configure Makefile according to the computer architecture. Then run ”make” to compile and link this
source code. You may also use NVIDIA NVCC to do so.

2. Execute the executable file. For example if the executable file is named tfr, you may run ./tfr This will
perform the registration on the case specified in the sample case. Information during the registration
will be displayed on screen, and simulation results will be written to an output files, which is raw data
of float type with no headers.

The format of the input data is float. The input parameters are specified in global.h. Note, the code should
be recompiled each time the input parameters are changed. Specifically you need to adjust the following
parameters in the first portion of global.h. It is not recommended to change other parameters unlisted here
unless you are familiar with the mathematical model.

NBLOCKX
--- the leading dimension of the 2d GPU thread grid

NTHREAD_PER_BLOCK
--- number of GPU threads per block

DEVICENUMBER
--- GPU device number to be used

NX0, NY0, NZ0
--- 3D image dimension

NSCALE
--- total number of scales for mutli-resolution

MAX_ITER
--- max number of iterations

METHOD
--- 1 for Bhattacharyya
--- 2 for mutual information

4 Experiments

The nVidia Tesla C1060 GPU is used in the present work, which contains 4GB off-chip device memory and
16KB of on-chip shared memory. The GPU supports a maximum of 512 threads per thread block.

We first demonstrate our algorithm on a real patient case of registering a CT image to cone beam CT
(CBCT). Both CT and CBCT are of size 256×256×68, while we only visualize one 2D slice in Figure 2.
The registration results are illustrated in Figure 3, which shows that MI and BD have the same performance.
It takes about 2.76 seconds to do 30 iterations on two multiresolution levels to get reasonable results.

It is also tested on a sample dataset that we provide in this submission. It consists of a T2 image and a DTI
baseline image as shown in Fig. 4. The data files are from the NA-MIC site 5 with two preprocessing steps:
(1) rigid registration of DTI to T2 and (2) cut the region of interest to be 256× 256× 64. BD seems to

5http://www.na-mic.org/Wiki/index.php/Projects:RegistrationLibrary:RegLib_C29
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Figure 2: Left: CT (template) and right: CBCT (target).

Figure 3: Top are the registered CT produced by BD(left) and MI (right). The checkerboard comparison
is on the bottom with CT+CBCT (left), registered CT by BD + CBCT (middle) and registered CT by MI +
CBCT.
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Figure 4: Left: DTI baseline image (template) and right: T2 image (target).

produce artifacts on the top part of the registered image as shown in Figure 5. It is mathematically correct
since it strives to match the boundary of DTI baseline image to the outer white boundary in the T2 image. It
can be improved by adding local constraints to the force term, which is beyond the scope of this paper.

5 Conclusion

In this paper, we have present a GPU-based implementation of 3D multimodal deformable image regis-
tration. It takes 2.76 seconds for a pair of images with size 256× 256× 68 to do 20 iterations on two
multiresolution levles. It meets clinical requirements in terms of both time and accuracy. We have provide
the users with source codes and sample dataset to test our algorithm. The future work is to visualize the reg-
istration process during iteration in order to allow experts to quickly check the plausibility of the registration
and stop properly.
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Figure 5: Top: deformed DTI via BD (left) and MI (right). Bottom is the comparison using checkerboard.
From left to right: DTI + T2, deformed DTI by BD + T2 and deformed DTI by MI + T2.
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