
The Iteration Direction Optimized Image Iterator
Release 0.00

Wanlin Zhu1

February 27, 2006
1 National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences

Abstract

This document describes the iteration direction optimized Image Iterators . Comparing with the origi-
nal corresponding iterators, the new iterators provide automatic iteration direction optimization and give
more flexible. They are more efficient when the fastest moving direction has small size. The derived
template class ImagePieceWiseLinearIteratorWithIndex is a generic class that can be replace the Im-
ageLinearIterator and ImageSliceIterator. The paper present the implementation and examples of these
classes. This paper is accompanied with the source code and experiments.

Contents

1 Introduction 1

2 Implementation 2

3 performance 2

4 Usage 3

5 Example Code 4

6 Conclusion 6

1 Introduction

Iterator classes like itk::ImageRegionIterator and itk::ImageRegionIteratorWithIndex are very essential for
ITK system. As a result, their performance contribute largely to most filters. We improved the original
template class itk::ImageConstIterator and itk::ImageConstIteratorWithIndex to optimize its performance
when the fastest moving direction is thin. Moreover the improved iterator is more flexible for iteration
direction selection.



2

2 Implementation

A new template class named itk::DirectionArray inherited from itk::FixedArray is defined. It is a represen-
tation of itk::Image iteration directions and has a method to sort image iteration directions based on the size
of input region. For example, when the size of the requested region of an itk::Image is [100, 200, 100], the
optimized iteration directions are [1,0,2].

Based on the current version itk::ImageConstIterator and itk::ImageConstIteratorWithIndex, we plus new
data members to them, an itk::DirectionArray object and two iterators point to the first and last iteration
direction respectively. The iteration directions are stored in itk::DirectionArray object,such as [2,1,0,...],
where 0 direction is the fastest moving direction. They are optimized automatically or can be specified by
user. Only directions among itk::DirectionArray::m ItBegin and itk::DirectionArray::m ItEnd will be iter-
ated. The mechanism bring flexibility that you can specify any directions with any order to iterate a region of
itk::image. When create an object of itk::ImageConstIterator or itk::ImageConstIteratorWithIndex or their
derived classes, the iteration directions will automatically re-sort based on the input region size(One can
turn off the automatic optimization by input bool variable false to constructor). The usage of the optimized
iterators are exactly the same as itk::ImageConstIterator and itk::ImageConstIteratorWithIndex.

The new classes are as follows:

• itk::DirectionArray

• itk::ImageOptimizedConstIterator

• itk::ImageRegionOptimziedConstIterator

• itk::ImageRegionOptimizedIterator

• itk::ImageOptimizedConstIteratorWithIndex

• itk::ImageRegionOptimizedConstIteratorWithIndex

• itk::ImageRegionOptimizedIteratorWithIndex

• itk::ImagePieceWiseLinearConstIteratorWithIndex

• itk::ImagePieceWiseLinearIteratorWithIndex

3 performance

We performed experiments to test the performance of optimized iterators. all experiments are done with
empty loops with given region. when image size is 1× 256× 256, there are 256 ∗ 256 times loop. All
experiments are performed on the following iterators:

1. itk::ImageRegionIterator

2. itk::ImageRegionIteratorWithIndex

3. itk::ImageRegionOptimizedIterator

4. itk::ImageRegionOptimizedIteratorWithIndex



3

No. 1×256×256 256×1×256 256×256×1 256×256×256
1 0.02599 0.00090 s 0.00088 s 0.22409 s
2 0.00504 0.00228 s 0.00226 s 0.57043 s
3 0.00098 0.00098 s 0.00094 s 0.24284 s
4 0.00232 0.00233 s 0.00236 s 0.59339 s
5 / / / 0.51076 s
6 / / / 0.50138 s
7 / / / 0.59501 s

Table 1: Execution times.

5. itk::ImageLinearIteratorWithIndex

6. itk::ImageSliceIteratorWithIndex

7. itk::ImagePieceWiseIteratorWithIndex

From table.1, The optimized iterators run faster than original ones when the first iteration direction has small
size. The optimized iterators have the same performance for a give size image regardless the size order. It’s
the desired property. The performance ehancement for iterators with index is not as obvious as iterators
without index. When iteration directions have similar size , the optimized iterators are slightly slower than
orignal ones. It may caused by the additional dereference needed by changing direction. We only give one
experiments results for ImagePieceWiseLinearIteratorWithIndex, It is an iterator that divide the iteration
into two parts, in both part, it will optimize the iteration directions. From our experiments, it is not faster
than the linear or slice iterator.However it is generic and can bring more flexibility.

4 Usage

The usage of these iterators are the same as their corresponding orignal ones. Some additional methods are
provided to supply more flexibility. For eample, declare an iterator

ImageRegionOptimizedIteratorWithIndex<ImageType, dimension> it(image,region);
for(it.GoToBegin(); !it.IsAtEnd(); ++it)
{
// do something.
}

If you do not want to declare an iterator with optimization, you can turn off it by adding a bool variable like
follows

ImageRegionOptimizedIteratorWithIndex<ImageType, dimension> it(image, region, false);

Now the declared iterator behave exactly the same as ImageRegionIteratorWithIndex iterator. for iterators
with index, you can specify the iteration directions. such as

it.SetIterationDimension(2);

Then the iterator will only iterate the first and second directions. (Important: the SetIterationDimension()
method is not supported for iterators without index). The ImagePieceWiseLinearIteratorWithIndex can be
used to replace ImageLinearIteratorWithIndex and ImageSliceIteratorWithIndex. Fox example:



4

ImagePieceWiseLinearIteratorWithIndex pit(image,region);
pit.SetDirection(1);

Now it behave the same as ImageLinearIteratorWithIndex. if input

ImagePieceWiseLinearIteratorWithIndex pit(image,region);
pit.SetDirections(1,2);

The iterator behave the same as ImageSliceIteratorWithIndex.

5 Example Code

#include "itkImage.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageRegionConstIteratorWithIndex.h"
#include "itkImageRegionOptimizedIterator.h"
#include "itkImageRegionOptimizedConstIterator.h"
#include "itkImageRegionOptimizedIteratorWithIndex.h"
#include "itkImageRegionOptimizedConstIteratorWithIndex.h"
#include "itkTimeProbe.h"
#include <iomanip>
///////////////////////////////////////////////////////////////////////
int main(int argc, char *argv[])
{
if(argc < 2)
{
std::cerr<<"Input Parameters error!"<<std::endl;
return -1;
}
const unsigned int dimension = 3;
const unsigned int testnumbers = 50;
typedef float PixelType;
typedef itk::Image<PixelType,dimension> ImageType;
typedef ImageType::RegionType RegionType;
typedef ImageType::IndexType IndexType;
typedef ImageType::SizeType SizeType;
typedef itk::TimeProbe TimeProbeType;

typedef itk::ImageRegionOptimizedConstIteratorWithIndex<ImageType>
ImageRegionOptimizedConstIteratorWithIndexType;
typedef itk::ImageRegionOptimizedIteratorWithIndex<ImageType>
ImageRegionOptimizedIteratorWithIndexType;
typedef itk::ImageRegionConstIteratorWithIndex<ImageType>
ImageRegionConstIteratorWithIndexType;
typedef itk::ImageRegionIteratorWithIndex<ImageType>
ImageRegionIteratorWithIndexType;
typedef itk::ImageRegionOptimizedConstIterator<ImageType>
ImageRegionOptimizedConstIteratorType;
typedef itk::ImageRegionOptimizedIterator<ImageType>
ImageRegionOptimizedIteratorType;



5

typedef itk::ImageRegionConstIterator<ImageType>
ImageRegionConstIteratorType;
typedef itk::ImageRegionIterator<ImageType>
ImageRegionIteratorType;

IndexType ind;
SizeType size;
for(unsigned int i = 0; i < dimension; i++)
{
ind[i] = 0;
size[i] = 300;
}

RegionType region(ind,size);
ImageType ::Pointer = ImageType::New();
image->SetRegions(region);
image->Allocate();

for(unsigned int i = 0; i < dimension; i++)
{
ind[i] = 10;
size[i] = 256;
}
size[0] = 1;
region.SetIndex(ind);
region.SetSize(size);

TimeProbeType time;

for(int i = 0; i < testnumbers; ++i)
{
ii = 0;
time.Start();

//1. Image region iterator with index
// ImageRegionIteratorWithIndexType it(image,region);
// ImageRegionConstIteratorWithIndexType it(image,region);
// ImageRegionOptimizedIteratorWithIndexType it(image,region);
// ImageRegionOptimizedConstIteratorWithIndexType it(image,region);
// it.SetIterationDimension(2);

// for(it.GoToReverseBegin(); !it.IsAtReverseEnd(); --it);

//2. Image region iterator
// ImageRegionIteratorType it(image,region);
// ImageRegionConstIteratorType it(image,region);
// ImageRegionOptimizedIteratorType it(image,region);
// ImageRegionOptimizedConstIteratorType it(image,region);

// for(it.GoToEnd(); !it.IsAtBegin(); --it);

for(it.GoToBegin(); !it.IsAtEnd(); ++it);



6

time.Stop();
}

std::cout << std::setprecision(6)
<<"Image Region Iterator Mean Clock Time = "
<<time.GetMeanTime()<<std::endl;

return 0;

}

6 Conclusion

The optimized image iterators bring more flexibility coming with good performance,They can be treat as
the improved version of the current version.

References

[1] L. Ibanez, W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-
10-6, http://www.itk.org/ItkSoftwareGuide.pdf, first edition, 2003.


