

 Extending the tracking device support in the
Image-Guided Surgery Toolkit (IGSTK):
CamBar B2, EasyTrack 500, and Active

Polaris

Release 0.00

Özgür Güler1, Zoltan R. Bardosi1, Murat Ertugrul2, and Wolfgang Freysinger1

May 9, 2011
1
4D Visualization Laboratory

Univ. ENT Clinic

Innsbruck Medical University

Anichstraße 35,

6020 Innsbruck
2
Vienna University of Technology

Faculty of Informatics

Erzherzog-Johann-Platz 1/E180

1040 Vienna

Abstract

The Image-Guided Surgery Toolkit (IGSTK) provides tracker interfaces for various tracking devices. The tracker component of

IGSTK was extended with three new tracking interfaces: CamBar B2, EasyTrack 500, and Active Polaris. Using an IGSTK

application we evaluated the precision of each of the tracking systems. Based on our evaluation we conclude that all tracking

systems are sufficiently accurate for ENT procedures.

Contents

1 Introduction 2

2 Materials 4

3 Experimental Evaluation 7

4 Sample Code 8

5 Discussion & Conclusion 14

 2

Latest version available at the Insight Journal link http:hdl.handle.net/10380/

Distributed under Creative Commons Attribution License

1 Introduction

Position measurement systems are one of the key technologies in Image-Guided Systems (IGS). They

enable the localization of surgical instruments and anatomical structures in space. According to

requirements, different measurement technologies are available, however optical and electromagnetic

tracking systems are the most established [1;2]. Optical tracking systems often have better accuracy

whereas electromagnetic systems do not impose the “line-of-sight” requirement. The Image-Guided

Surgery Toolkit (IGSTK) provides tracking system APIs for both types of measurement systems [3].

1.1 Tracker Component in IGSTK

IGSTK abstracts a position measurement device using a class for the tracker and another for the tracker

tool. The igstk::Tracker class is an abstract representation of a tracking device. It is responsible for

establishing the connection, initializing the device, starting and stopping tracking. To specify a concrete

device the pure virtual member functions of the igstk::Tracker class beginning with “internal” have to be

implemented (e.g. “InternalOpen()” for initializing the tracker). This is where the device specific behavior

is implemented. The igstk::Tracker class can handle several tracker tools abstracted by the

igstk::TrackerTool class. The abstract tracker tools are held in a container inside the igstk::Tracker class.

Figure 1 shows the tracker component and its interaction with other IGSTK components.

According to the frequency, set by the user, a pulse generator triggers updates. The igstk::Tracker class

copies the current transformations from an internal buffer to the appropriate TrackerTool object. Since the

SpatialObjects which represent the TrackerTool in the scene are connected over the coordinate system

mechanism in IGSTK with the TrackerTool, they follow the change in position too. Operations such as

triggering an update from the pulse generator, passing new transforms to the tracker tools and changing

the position of the spatial objects happen inside the application’s main thread. The communication with

the concrete device and retrieving the current position of the rigid body is performed by an additional

Figure 1: IGSTK tracker component architecture.

 3

Latest version available at the Insight Journal link http:hdl.handle.net/10380/

Distributed under Creative Commons Attribution License

thread. The components participating in this separate thread are shown in Figure 1 inside the dashed line.

Currently IGSTK supports the following tracking devices: Aurora and Polaris from Northern Digital Inc.

(Waterloo, ON, Canada) [4], flock of birds and 3D Guidance from Ascension Technology Corp. (Milton,

VT, USA) [5], InfiniTrack from Atracsys LLC. (Le Mont-sur-Lausanne, Switzerland)[6] and Micron

Tracker from Claron Technology Inc. (Toronto, ON, Canada)[7].

IGSTK also provides tracker classes for test and debug purposes such the MouseTracker, QMouseTracker

and SimulatedTracker.

In this work we add support for the following tracking systems: CamBar B2 from AXIOS 3D Services

GmbH (Oldenburg, Germany), EasyTrack 500 from Atracsys LLC., (Le Mont-sur-Lausanne,

Switzerland)[6], and the original Polaris system, “Polaris Classic”, from Northern Digital Inc. (Waterloo,

ON, Canada)[4].

The CamBar B2 and EasyTrack 500 were previously not supported in IGSTK. The Polaris Spectra and

Vicra are supported in IGSTK, but the “Polaris Classic”, is not. This is due to changes in the system’s

API. The “Polaris Classic” is an active optical tracking system that utilizes wired rigid bodies. The

tracked rigid bodies are connected to one of three physical ports on the Tool Interface Unit. The three

ports are accessed using the appropriate port number. The NDI command interpreter currently

implemented in IGSTK only supports the updated API which uses the concept of handles. This API is

shared by the Polaris and Aurora systems and allows multiple tools to be connected to the same physical

port (i.e. two 5 degree of freedom electromagnetic sensors on one physical port). Therefore addressing the

rigid bodies using the port number is not possible and a handle concept is used instead. Figure 2 shows

the updated tracker hierarchy in IGSTK.

Figure 2: Inheritance diagram for the igstk::Tracker classes, additions highlighted in grey.

 4

Latest version available at the Insight Journal link http:hdl.handle.net/10380/

Distributed under Creative Commons Attribution License

2 Materials

Three new tracker interfaces for the optical tracking systems listed below were integrated into IGSTK and

evaluated:

- CamBar B2, AXIOS 3D Services GmbH, Germany (http:www.axios3d.de)

- EasyTrack 500, Atracsys LLC., Switzerland (http:www.atracsys.com)

- "Polaris Classic”, Northern Digital Inc., Ontario, Canada (http:www.ndigital.com)

The CamBar B2 is an optical tracking device designed by Axios 3D that supports passive tracking of

retro-reflective spherical markers, flat markers, bore holes, inkjet printed markers, and laser engravings.

Communication with the device is done by network cable (RJ-45). The workspace is frustum shaped and

begins at 800 mm and ends at 2500 mm from the tracking systems origin along the viewing direction. The

system can track up to eight tools simultaneously. New reference frames can be readily created using the

retro-reflective spherical markers or inkjet markers. Figure 3 shows this system.

The EasyTrack 500 device is an optical measurement system designed by Atracsys that supports active

tracking of rigid-bodies with LEDs. Communication with the device is done via a USB connection. The

workspace is frustum shaped and begins at 220 mm and ends at 1000 mm from the tracking systems

origin along the viewing direction. It supports up to four internal (plugged-in) and eight external tools. A

kit for building custom markers is also available. The active tracker tools are automatically recognized by

the device, thus they need no additional configuration. It is shipped with open-source drivers for

Windows 7, Windows XP, GNU/Linux and Mac OS X. The system uses three one dimensional cameras

to estimate the tool positions. Figure 4 shows this system.

The “Polaris Classic” is an optical tracking device designed by NDI that supports active tracking of LEDs

mounted on rigid-bodies. Communication with the device is done by serial interface (RS-232). The

workspace is silo shaped and begins at 1400 mm and ends at 2500 mm from the tracking systems origin

along the viewing direction. The system can track up to three tools simultaneously. Figure 5 shows this

system.

Table 1 summarizes the technical specifications of these systems.

 5

Latest version available at the Insight Journal link http:hdl.handle.net/10380/

Distributed under Creative Commons Attribution License

Figure 3: CamBar B2, AXIOS 3D, Setup shows tracking camera on the right, dynamic reference frame on the left

and the probe on the outer left.

Figure 4: EasyTrack 500, Atracsys

 6

Latest version available at the Insight Journal link http:hdl.handle.net/10380/

Distributed under Creative Commons Attribution License

Figure 5: Polaris Classic, Northern Digital Inc.

Model Name CamBar B2 Typ 1.2 EasyTrack 500 Polaris CLASSIC

Manufacturer AXIOS 3D Services GmbH,

Oldenburg, Germany

Atracsys LLC., Switzerland NDI, Ontario, Canada

Working Volume (min/ max

distance to the camera)

800 mm / 2500 mm*

*Built to specification

220 mm / 1000 mm

1400 mm / 1900 mm

Accuracy inside Working

Volume (manufacturer data

sheet)

50 µm 0.2 mm RMS 0.35 mm

Dimensions in mm (W/H/D): 285 / 75 / 163 554 / 98 / 65 585 / 76 / 115

Weight: 2.2 kg 1.6 kg 2 kg

Frequency (max) 64 images/sec 300 LEDs/sec 60 Hz

Interface Network USB 1.1 or 2.0 RS-232

Platform Win32 Win32, UNIX, OS X Win32, UNIX, OS X

Approvals CE certified medical product For research only For research only

Table 1 Detailed manufacturer information about each tracking system.

We next evaluate the accuracy of the tracking devices.

 7

Latest version available at the Insight Journal link http:hdl.handle.net/10380/

Distributed under Creative Commons Attribution License

3 Experimental Evaluation

Using an IGSTK application we evaluated the precision of each of the tracking systems. Figures 3, 4 and

5 show the setup for the experiments. A dynamic reference frame (DRF), and a probe, were fixed on a

table. We performed three data acquisitions. First we acquired 1000 measurements from a single marker

(one LED of a “Polaris Classic” or Easy Track 500 rigid-body, one retro-reflective spherical marker of a

CamBar B2 rigid-body) using custom non IGSTK programs. Then we acquired 1000 pose measurements

of a DRF. Finally, we acquired 1000 pose measurements for both tools, DRF and probe. Data was

acquired after system warm-up. The measured markers or tools were positioned in the center of the

working volume. Tracking after system warm-up and at the center of the working volume should ensure

stable and reproducible measurements.

The EasyTrack 500 and CamBar B2 had comparable results in all experiments, including single marker,

single DRF and probe-to-DRF measurements. The “Polaris Classic” was the least stable/accurate. Table 2

shows the standard deviations of all experiments in the X, Y and Z directions. Table 3 shows the

maximum error in the X, Y and Z directions for single marker, DRF, and probe to DRF measurements,

respectively. Also here the EasyTrack 500 and the CamBar B2 had comparable results in all experiments.

Standard
Deviation

 Axios
3D B2

 EasyTrack
500

 Polaris
CLASSIC

[mm] X Y Z X Y Z X Y Z

Single Marker 0.0068 0.0057 0.0250 0.0052 0.0061 0.0135 0.0274 0.0086 0.0430

DRF 0.0123 0.0119 0.0212 0.0040 0.0043 0.0156 0.0166 0.0148 0.0283

DRF to Probe 0.0132 0.0278 0.0890 0.0189 0.0324 0.0208 0.2971 0.0868 0.1581

Table 2: Precision of the three optical tracking systems given in the X, Y and Z directions

Max Error Axios
3D B2

 EasyTrack
500

 Polaris
P1

[mm] X Y Z X Y Z X Y Z

Single Marker 0.0172 0.0125 0.0849 0.0190 0.0250 0.0418 0.0573 0.0695 0.1272

DRF 0.0296 0.0293 0.0633 0.0200 0.0137 0.0945 0.0661 0.0795 0.0869

DRF to Probe 0.0477 0.0896 0.3152 0.0460 0.2398 0.1465 0.6308 0.1439 0.2512

Table 3: Maximum error of the three optical tracking systems given in the X, Y and Z directions

 8

Latest version available at the Insight Journal link http:hdl.handle.net/10380/

Distributed under Creative Commons Attribution License

4 Sample Code

An IGSTK application was used to log the tracker measurements using either one or two connected

tracker tools into a text file. The application needs to initialize the tracker, and attach two tracker tool

objects, so that we can measure the position and orientation of a tool w.r.t. the tracker, or another

reference tool. As a first step, we define an abstract 'TrackerInitializer' class, to define a device

independent initialization scheme.

 Later we will specialize this class to implement the device dependent initializer classes.

 This is the definition of the class 'TrackerInitializer':

#include <list>

#include <string>

#include "igstkTrackerTool.h"

class TrackerInitializer {

public:

 TrackerInitializer()

 {

 }

 ~TrackerInitializer();

 virtual igstk::Tracker::Pointer CreateTracker() = 0;

 virtual igstk::TrackerTool::Pointer CreateTrackerTool(int id) = 0;

 static std::list<std::string> GetAvailableTrackerTypes() {

 m_trackerTypes.clear();

 register the available tracker types

#ifdef IGDT_USE_EASYTRACK

 m_trackerTypes.push_back("EasyTrack500");

#endif

#ifdef IGDT_USE_CLASSICPOLARIS

 m_trackerTypes.push_back("ClassicPolaris");

#endif

#ifdef IGDT_USE_AXIOS3D

 m_trackerTypes.push_back("Axios3D");

#endif

 return m_trackerTypes;

 }

 static TrackerInitializer *CreateTrackerInitializer(std::string type

);

protected:

 static std::list<std::string> m_trackerTypes;

};

 9

Latest version available at the Insight Journal link http:hdl.handle.net/10380/

Distributed under Creative Commons Attribution License

To use the Atracsys EasyTrack 500 device, we create a specialization of the TrackerInitializer class, using

the EasyTrack 500 IGSTK implementation. In the Logger application, we used several CMake macro

definitons to turn the specific tracker implementations on and off.

#ifdef IGDT_USE_EASYTRACK

#include "igstkAtracsysEasyTrack.h"

#include "igstkAtracsysEasyTrackTool.h"

class EasyTrackInitializer : public TrackerInitializer

{

public:

 EasyTrackInitializer() : TrackerInitializer() {}

 ~EasyTrackInitializer() {}

 igstk::Tracker::Pointer CreateTracker()

 {

EasyTrack 500 instance is created here.

 return igstk::AtracsysEasyTrack::New().GetPointer();

 }

We define two tools and instantiate appropriate TrackerTool objects.

 igstk::TrackerTool::Pointer CreateTrackerTool(int id)

 {

 switch(id){

 case 0:

 {

igstk::AtracsysEasyTrackTool::Pointer tool =

igstk::AtracsysEasyTrackTool::New();

 tool->RequestSetPortNumber(0);

 return tool.GetPointer();

 }

 case 1:

 {

igstk::AtracsysEasyTrackTool::Pointer tool =

igstk::AtracsysEasyTrackTool::New();

 tool->RequestSetPortNumber(1);

 return tool.GetPointer();

 }

 }

 return NULL;

 }

};

#endif

 10

Latest version available at the Insight Journal link http:hdl.handle.net/10380/

Distributed under Creative Commons Attribution License

To use the “Polaris Classic” tracker, we create a specialization of the TrackerInitializer class, using the

“Polaris Classic” IGSTK implementation.

#ifdef IGDT_USE_CLASSICPOLARIS

#include "igstkSerialCommunication.h"

#include "igstkPolarisClassicTracker.h"

#include "igstkPolarisTrackerTool.h"

class ClassicPolarisInitializer : public TrackerInitializer

{

 ClassicPolarisInitializer() : TrackerInitializer() {}

 ~ClassicPolarisInitializer() {}

 igstk::Tracker *CreateTracker()

 {

After creating the SerialCommunication object the “Polaris Classic” instance is created.

 // create the communication object
igstk::SerialCommunication::Pointer serialComm =
igstk::SerialCommunication::New();

 serialComm->SetPortNumber(igstk::SerialCommunication::PortNumber3);
 serialComm->SetParity(igstk::SerialCommunication::NoParity);
 serialComm->SetBaudRate(igstk::SerialCommunication::BaudRate115200);
 serialComm->SetDataBits(igstk::SerialCommunication::DataBits8);
 serialComm->SetStopBits(igstk::SerialCommunication::StopBits1);

serialComm->SetHardwareHandshake(
igstk::SerialCommunication::HandshakeOff);

 serialComm->SetTimeoutPeriod(100);
 serialComm->SetCaptureFileName(
 "RecordedStreamBySerialCommunicationTest.txt");
 serialComm->SetCapture(true);
 if(serialComm->GetCapture() != true)
 {
 std::cout << "Set/GetCapture() failed" << std::endl;
 std::cout << "[FAILED]" << std::endl;
 }

std::cout << "CaptureFileName: "
 << serialComm->GetCaptureFileName() << std::endl;

 serialComm->OpenCommunication();

 igstk::PolarisTracker::Pointer tracker = igstk::PolarisTracker::New();
 tracker->SetCommunication(serialComm);

 return tracker.GetPointer();

 }

 11

Latest version available at the Insight Journal link http:hdl.handle.net/10380/

Distributed under Creative Commons Attribution License

We define two tools and instantiate appropriate TrackerTool objects.

igstk::TrackerTool* CreateTrackerTool(int id)

 {

 switch(id){
 case 0:
 {

igstk::PolarisTrackerTool::Pointer tool =
igstk::PolarisTrackerTool::New();

 tool->RequestSelectWiredTrackerTool();
 tool->RequestSetPortNumber(0);
 return tool.GetPointer();
 }
 case 1:
 {

igstk::PolarisTrackerTool::Pointer tool =
igstk::PolarisTrackerTool::New();

 tool->RequestSelectWiredTrackerTool();
 tool->RequestSetPortNumber(1);
 return tool.GetPointer();
 }
 }
 return NULL;

 }

};

#endif

 Specialization for the Axios3D tracker:

#ifdef IGDT_USE_AXIOS3D

class Axios3DInitializer : public TrackerInitializer

{

 Axios3DInitializer() : TrackerInitializer() {}

 ~Axios3DInitializer() {}

 igstk::Tracker *CreateTracker()

 {

We instantiate the Axios3D tracker and set the appropriate configuration files of each rigid-body.

 igstk::Axios3DTracker::Pointer tracker = igstk::Axios3DTracker::New();
 tracker->RequestLoadLocatorsXML("C:/workspace/IGDTTrackerLogger/DRF.xml");

tracker->RequestLoadLocatorsXML(
"C:/workspace/IGDTTrackerLogger/Probe.xml");

 tracker->setVirtualMode(false);

 12

Latest version available at the Insight Journal link http:hdl.handle.net/10380/

Distributed under Creative Commons Attribution License

 return tracker.GetPointer();

 }

We define two tools and instantiate appropriate TrackerTool objects.

 igstk::TrackerTool* CreateTrackerTool(int id)

 {

switch(id){
 case 0:
 {

igstk::Axios3DTrackerTool::Pointer tool =
igstk::Axios3DTrackerTool::New();

 tool->RequestSetMarkerName("PROBE");
 return tool.GetPointer();
 }
 case 1:
 {

igstk::Axios3DTrackerTool::Pointer tool =
igstk::Axios3DTrackerTool::New();

 tool->RequestSetMarkerName("DRF");
 return tool.GetPointer();
 }
 return NULL;

 }

};

#endif

We use the Factory design pattern to allow the creation of the device specific TrackerInitializer classes

using a string as the tracker identifier.

TrackerInitializer *TrackerInitializer::CreateTrackerInitializer(std::string

type)

{

#ifdef IGDT_USE_EASYTRACK

 if(type == "EasyTrack500"){

 return new EasyTrackInitializer();

 }

#endif

#ifdef IGDT_USE_CLASSICPOLARIS

 if(type == "ClassicPolaris"){

 return new ClassicPolarisInitializer();

 }

#endif

#ifdef IGDT_USE_AXIOS3D

 if(type == "Axios3D"){

 return new Axios3DInitializer();

 13

Latest version available at the Insight Journal link http:hdl.handle.net/10380/

Distributed under Creative Commons Attribution License

 }

#endif

 return NULL;

}

We next look at the implementation details of the TrackerLogger application. One important concept is

that we hold all the available specific trackers as a list of their identifiers. We define a static method in the

TrackerInitializer class so that we can query the available tracker implementations. It also requires a static

member m_trackerTypes, which has to be defined here.

#include <iostream>

#include <fstream>

#include "igstkTracker.h"

#include "igstkTrackerTool.h"

#include "igstkTransform.h"

#include "igstkTransformObserver.h"

#include "igstkAxesObject.h"

#include "IGDTTrackerLogger.h"

// data storage of available trackers

std::list<std::string> TrackerInitializer::m_trackerTypes;

The main function of our application defines the application logic in a tracker independent way using only

the TrackerInitializer interface to create and initialize the appropriate IGSTK Tracker object along with

the required TrackerTool based objects. In the followings we show how to query the identifiers of the

available tracker implementations, and how to initialize a tracker with the given identifier.

First, we query the identifier list of the available tracker implementations.

std::list<std::string> trackerIDs =

TrackerInitializer::GetAvailableTrackerTypes();

for(std::list<std::string>::iterator it = trackerIDs.begin();

it != trackerIDs.end(); ++it)

{

 std::cout << "\t" << *it << std::end

}

Once we have the identifier for the desired tracker, we can create the device specific TrackerInitializer

derived object using the static factory method from the TrackerInitializer class.

TrackerInitializer *trackerInitializer =

TrackerInitializer::CreateTrackerInitializer(trackerID);

 14

Latest version available at the Insight Journal link http:hdl.handle.net/10380/

Distributed under Creative Commons Attribution License

Now we have the specialization of the initializer for the desired tracker object, so we can request the

objects required by the IGSTK framework.

 igstk::Tracker::Pointer tracker = trackerInitializer->CreateTracker();

 tracker->RequestSetTransformAndParent(transform, worldReference);

 tracker->RequestOpen();

 igstk::TrackerTool::Pointer tool0 =

trackerInitializer->CreateTrackerTool(0);

 tool0->RequestConfigure();

 tool0->RequestAttachToTracker(tracker);

 igstk::TrackerTool::Pointer tool1;

 if(bRefMode){

 tool1 = trackerInitializer->CreateTrackerTool(1);

 tool1->RequestConfigure();

 tool1->RequestAttachToTracker(tracker);

 tracker->RequestSetReferenceTool(tool1);

 }

Everything is in place, we can use the standard IGSTK tracker framework with the objects we received

from the tracker initializer.

 std::cout << "start tracking\n"; std::cout.flush();

 tracker->RequestStartTracking();

 std::cout << "start tracking done\n"; std::cout.flush();

5 Discussion & Conclusion

IGSTK enables the rapid development of image-guided surgery applications. A key component of these is

the tracking device. IGSTK already provides tracker interfaces for various tracking devices. We have

extended the tracker component of IGSTK with three new tracking interfaces. The EasyTrack 500 and

CamBar B2 systems come with C++ libraries that facilitate data acquisition while the Polaris system

provides a more primitive string based communication protocol. However the CamBar B2 has drivers for

Windows XP/Vista/7 only. Having the APIs the implementation of IGSTK classes was straight forward.

This implementation enables easy data acquisition.

Based on our evaluation we conclude that all tracking systems are sufficiently accurate for ENT

procedures where the required accuracy is approximately 1-2 mm (RMS). It should be noted that the

Polaris system evaluated in this study has been in use since 1996. Empirical system accuracy is still

stable.

The implementations described in this manuscript can be downloaded from the IGSTK sandbox, and are

released under the toolkit’s BSD license.

 15

Latest version available at the Insight Journal link http:hdl.handle.net/10380/

Distributed under Creative Commons Attribution License

The IGSTK sandbox can be checked out directly from CVS as follows:

cvs -d :pserver:anonymous@public.kitware.com:/cvsroot/IGSTK login

password: igstk

cvs -d :pserver:anonymous@public.kitware.com:/cvsroot/IGSTK co IGSTKSandbox

ACKNOWLEDGMENT

We would like to thank Dr. Ziv Yaniv for his help editing this manuscript.

This work was supported by the Austrian Science Foundation under Grant P 20604-B13 (Özgür Güler)

and the Austrian National Bank, Jubilee Fond, Project no. 13003 (Zoltan Bardosi).

Reference

 [1] Z. Yaniv and K. Cleary, "Image-Guided Procedures: A Review," Imaging Science and Information

Systems Center, Georgetown University, Washington, DC,CAIMR TR-2006-3, 2006.

 [2] K. Cleary and T. M. Peters, "Image-guided interventions: technology review and clinical

applications," Annu. Rev. Biomed. Eng, vol. 12, pp. 119-142, Aug.2010.

 [3] A. Enquobahrie, D. Gobbi, M. W. Turek, P. Cheng, Z. Yaniv, F. Lindseth, and K. Cleary,

"Designing tracking software for image-guided surgery applications: IGSTK experience," Int. J.

Computer Aided Radiology and Surgery, vol. 3, pp. 395-403, 2008.

 [4] Northern Digital Inc. (Waterloo, ON, Canada), http://www.ndigital.com/medical , Date

Accessed: 16-6-2011

 [5] Ascension Technology Corp. (Milton,VT,USA), http://www.ascension-tech.com , Date

Accessed: 16-6-2011

 [6] Atracsys LLC. (Le Mont-sur-Lausanne, Switzerland), http://www.axios3d.de/index_en.html

, Date Accessed: 16-6-2011

 [7] Claron Technology Inc. (Toronto, ON, Canada), http://www.clarontech.com , Date
Accessed: 16-6-2011

http://www.ndigital.com/medical
http://www.ascension-tech.com/
http://www.axios3d.de/index_en.html
http://www.clarontech.com/

