Extending the tracking device support in the
Image-Guided Surgery Toolkit (IGSTK):
CamBar B2, EasyTrack 500, and Active

Polaris

Release 0.00

Ozgiir Giiler', Zoltan R. Bardosi', Murat Ertugrul’, and Wolfgang Freysinger'

May 9, 2011

'4D Visualization Laboratory
Univ. ENT Clinic

Innsbruck Medical University
Anichstralle 35,

6020 Innsbruck

*Vienna University of Technology
Faculty of Informatics
Erzherzog-Johann-Platz 1/E180
1040 Vienna

Abstract

The Image-Guided Surgery Toolkit (IGSTK) provides tracker interfaces for various tracking devices. The tracker component of
IGSTK was extended with three new tracking interfaces: CamBar B2, EasyTrack 500, and Active Polaris. Using an IGSTK
application we evaluated the precision of each of the tracking systems. Based on our evaluation we conclude that all tracking
systems are sufficiently accurate for ENT procedures.

Contents

1 Introduction 2
2 Materials 4
3 Experimental Evaluation 7
4 Sample Code 8

5 Discussion & Conclusion 14

1 Introduction

Position measurement systems are one of the key technologies in Image-Guided Systems (IGS). They
enable the localization of surgical instruments and anatomical structures in space. According to
requirements, different measurement technologies are available, however optical and electromagnetic
tracking systems are the most established [1;2]. Optical tracking systems often have better accuracy
whereas electromagnetic systems do not impose the “line-of-sight” requirement. The Image-Guided
Surgery Toolkit (IGSTK) provides tracking system APIs for both types of measurement systems [3].

1.1 Tracker Component in IGSTK

IGSTK abstracts a position measurement device using a class for the tracker and another for the tracker
tool. The igstk::Tracker class is an abstract representation of a tracking device. It is responsible for
establishing the connection, initializing the device, starting and stopping tracking. To specify a concrete
device the pure virtual member functions of the igstk::Tracker class beginning with “internal” have to be
implemented (e.g. “InternalOpen()” for initializing the tracker). This is where the device specific behavior
is implemented. The igstk::Tracker class can handle several tracker tools abstracted by the
igstk::TrackerTool class. The abstract tracker tools are held in a container inside the igstk::Tracker class.
Figure 1 shows the tracker component and its interaction with other IGSTK components.

According to the frequency, set by the user, a pulse generator triggers updates. The igstk::Tracker class
copies the current transformations from an internal buffer to the appropriate TrackerTool object. Since the
SpatialObjects which represent the TrackerTool in the scene are connected over the coordinate system
mechanism in IGSTK with the TrackerTool, they follow the change in position too. Operations such as
triggering an update from the pulse generator, passing new transforms to the tracker tools and changing
the position of the spatial objects happen inside the application’s main thread. The communication with
the concrete device and retrieving the current position of the rigid body is performed by an additional

Pulse Generator}f Tracker

\ S

- ~ Communication runs

|
Communication 1T in a separate thread:
| Internal ThreadedUpdate

|
Pulse Generator !
|
- Frr v] | .
transforms and | L ‘L J, is called at the natural
I
I
I
I
I

drives the Update:

|

- o ! o 3
tool status are I rate of the tracking
|

|
|
|
- |
copied from the (V! 1 system and the information
buffer to the \ Tracker Buffer J! | 1s stored in a buffer.
TrackerTool objects R Rt I
L] L e | ,
- - - - e Tracking
‘ Spatial Object]-— Tracker Tool 0] Device
A > - >

.

Spatial Object |‘— Tracker Tool 1

~

[Spatia\ Object |<— [Tracker Tool 2

N J

Figure 1: IGSTK tracker component architecture.

Latest version available at the Insight Journal link http:hdl.handle.net/10380/
Distributed under Creative Commons Attribution License

thread. The components participating in this separate thread are shown in Figure 1 inside the dashed line.

Currently IGSTK supports the following tracking devices: Aurora and Polaris from Northern Digital Inc.
(Waterloo, ON, Canada) [4], flock of birds and 3D Guidance from Ascension Technology Corp. (Milton,
VT, USA) [5], InfiniTrack from Atracsys LLC. (Le Mont-sur-Lausanne, Switzerland)[6] and Micron
Tracker from Claron Technology Inc. (Toronto, ON, Canada)[7].

IGSTK also provides tracker classes for test and debug purposes such the MouseTracker, QMouseTracker
and SimulatedTracker.

In this work we add support for the following tracking systems: CamBar B2 from AXIOS 3D Services
GmbH (Oldenburg, Germany), EasyTrack 500 from Atracsys LLC., (Le Mont-sur-Lausanne,
Switzerland)[6], and the original Polaris system, “Polaris Classic”, from Northern Digital Inc. (Waterloo,
ON, Canada)[4].

The CamBar B2 and EasyTrack 500 were previously not supported in IGSTK. The Polaris Spectra and
Vicra are supported in IGSTK, but the “Polaris Classic”, is not. This is due to changes in the system’s
API. The “Polaris Classic” is an active optical tracking system that utilizes wired rigid bodies. The
tracked rigid bodies are connected to one of three physical ports on the Tool Interface Unit. The three
ports are accessed using the appropriate port number. The NDI command interpreter currently
implemented in IGSTK only supports the updated APl which uses the concept of handles. This API is
shared by the Polaris and Aurora systems and allows multiple tools to be connected to the same physical
port (i.e. two 5 degree of freedom electromagnetic sensors on one physical port). Therefore addressing the
rigid bodies using the port number is not possible and a handle concept is used instead. Figure 2 shows
the updated tracker hierarchy in IGSTK.

| igstk::Ascension3DGTracker |

|igslk::AscensionTracker |

I igstk::InfiniTrackTracker I

igstk::MicronTracker
igstk::MouseTracker
igstk::NDITracker

| igstk::QMouseTracker |

igstk::Object }4—{ igst Tracker

igstk::AuroraTracker
igstk::PolarisTracker

igstk:EasyTrack500Tracker

|igstk::SimuIatedTracker iﬂ—{ igstk::CircularSimulated Tracker |

igstcAxios3DTracker

igst:PolarisClassicTracker I

Figure 2: Inheritance diagram for the igstk::Tracker classes, additions highlighted in grey.

Latest version available at the Insight Journal link http:hdl.handle.net/10380/
Distributed under Creative Commons Attribution License

2 Materials

Three new tracker interfaces for the optical tracking systems listed below were integrated into IGSTK and
evaluated:

- CamBar B2, AXIOS 3D Services GmbH, Germany (http:www.axios3d.de)
- EasyTrack 500, Atracsys LLC., Switzerland (http:www.atracsys.com)
"Polaris Classic”, Northern Digital Inc., Ontario, Canada (http:www.ndigital.com)

The CamBar B2 is an optical tracking device designed by Axios 3D that supports passive tracking of
retro-reflective spherical markers, flat markers, bore holes, inkjet printed markers, and laser engravings.
Communication with the device is done by network cable (RJ-45). The workspace is frustum shaped and
begins at 800 mm and ends at 2500 mm from the tracking systems origin along the viewing direction. The
system can track up to eight tools simultaneously. New reference frames can be readily created using the
retro-reflective spherical markers or inkjet markers. Figure 3 shows this system.

The EasyTrack 500 device is an optical measurement system designed by Atracsys that supports active
tracking of rigid-bodies with LEDs. Communication with the device is done via a USB connection. The
workspace is frustum shaped and begins at 220 mm and ends at 1000 mm from the tracking systems
origin along the viewing direction. It supports up to four internal (plugged-in) and eight external tools. A
kit for building custom markers is also available. The active tracker tools are automatically recognized by
the device, thus they need no additional configuration. It is shipped with open-source drivers for
Windows 7, Windows XP, GNU/Linux and Mac OS X. The system uses three one dimensional cameras
to estimate the tool positions. Figure 4 shows this system.

The “Polaris Classic” is an optical tracking device designed by NDI that supports active tracking of LEDs
mounted on rigid-bodies. Communication with the device is done by serial interface (RS-232). The
workspace is silo shaped and begins at 1400 mm and ends at 2500 mm from the tracking systems origin
along the viewing direction. The system can track up to three tools simultaneously. Figure 5 shows this
system.

Table 1 summarizes the technical specifications of these systems.

Latest version available at the Insight Journal link http:hdl.handle.net/10380/
Distributed under Creative Commons Attribution License

Figure 3: CamBar B2, AXIOS 3D, Setup shows tracking camera on the right, dynamic reference frame on the left
and the probe on the outer left.

Figure 4: EasyTrack 500, Atracsys

Latest version available at the Insight Journal link http:hdl.handle.net/10380/
Distributed under Creative Commons Attribution License

Figure 5: Polaris Classic, Northern Digital Inc.

Model Name

CamBar B2 Typ 1.2

EasyTrack 500

Polaris CLASSIC

Manufacturer

AXIO0S 3D Services GmbH,
Oldenburg, Germany

Atracsys LLC., Switzerland

NDI, Ontario, Canada

Working Volume (min/ max 800 mm / 2500 mm* 220 mm /1000 mm 1400 mm /1900 mm
distance to the camera)

*Built to specification
Accuracy inside Working 50 um 0.2 mm RMS 0.35 mm
Volume (manufacturer data
sheet)
Dimensions in mm (W/H/D): 285/75/163 554 /98 /65 585/76/115
Weight: 2.2 kg 1.6 kg 2 kg
Frequency (max) 64 images/sec 300 LEDs/sec 60 Hz
Interface Network UsSB1l.lor20 RS-232
Platform Win32 Win32, UNIX, 0OS X Win32, UNIX, OS X
Approvals CE certified medical product | For research only For research only

Table 1 Detailed manufacturer information about each tracking system.

We next evaluate the accuracy of the tracking devices.

Latest version available at the Insight Journal link http:hdl.handle.net/10380/
Distributed under Creative Commons Attribution License

3 Experimental Evaluation

Using an IGSTK application we evaluated the precision of each of the tracking systems. Figures 3, 4 and
5 show the setup for the experiments. A dynamic reference frame (DRF), and a probe, were fixed on a
table. We performed three data acquisitions. First we acquired 1000 measurements from a single marker
(one LED of a “Polaris Classic” or Easy Track 500 rigid-body, one retro-reflective spherical marker of a
CamBar B2 rigid-body) using custom non IGSTK programs. Then we acquired 1000 pose measurements
of a DRF. Finally, we acquired 1000 pose measurements for both tools, DRF and probe. Data was
acquired after system warm-up. The measured markers or tools were positioned in the center of the
working volume. Tracking after system warm-up and at the center of the working volume should ensure
stable and reproducible measurements.

The EasyTrack 500 and CamBar B2 had comparable results in all experiments, including single marker,
single DRF and probe-to-DRF measurements. The “Polaris Classic” was the least stable/accurate. Table 2
shows the standard deviations of all experiments in the X, Y and Z directions. Table 3 shows the
maximum error in the X, Y and Z directions for single marker, DRF, and probe to DRF measurements,
respectively. Also here the EasyTrack 500 and the CamBar B2 had comparable results in all experiments.

Standard Axios EasyTrack Polaris
Deviation 3D B2 500 CLASSIC
[mm] X Y Z X Y Z X Y Z
Single Marker | 0.0068 | 0.0057 | 0.0250 | 0.0052 0.0061 | 0.0135 | 0.0274 | 0.0086 | 0.0430
DRF 0.0123 | 0.0119 | 0.0212 | 0.0040 | 0.0043 0.0156 | 0.0166 | 0.0148 | 0.0283
DRF to Probe | 0.0132 | 0.0278 | 0.0890 | 0.0189 | 0.0324 | 0.0208 | 0.2971 | 0.0868 | 0.1581
Table 2: Precision of the three optical tracking systems given in the X, Y and Z directions
Max Error Axios EasyTrack Polaris

3D B2 500 P1
[mm] X Y Z X Y Z X Y y4
Single Marker | 0.0172 | 0.0125 | 0.0849 | 0.0190 | 0.0250 | 0.0418 | 0.0573 | 0.0695 | 0.1272
DRF 0.0296 | 0.0293 | 0.0633 | 0.0200 | 0.0137 | 0.0945 | 0.0661 | 0.0795 | 0.0869
DRF to Probe | 0.0477 | 0.0896 | 0.3152 | 0.0460 | 0.2398 | 0.1465 | 0.6308 | 0.1439 | 0.2512

Table 3: Maximum error of the three optical tracking systems given in the X, Y and Z directions

Latest version available at the Insight Journal link http:hdl.handle.net/10380/
Distributed under Creative Commons Attribution License

4 Sample Code

An IGSTK application was used to log the tracker measurements using either one or two connected
tracker tools into a text file. The application needs to initialize the tracker, and attach two tracker tool
objects, so that we can measure the position and orientation of a tool w.r.t. the tracker, or another
reference tool. As a first step, we define an abstract Trackerinitializer' class, to define a device
independent initialization scheme.

Later we will specialize this class to implement the device dependent initializer classes.
This is the definition of the class "Trackerlnitializer":

#include <list>
#include <string>

#include "igstkTrackerTool.h"

class TrackerInitializer {
public:
TrackerInitializer ()
{
}

~TrackerInitializer();

virtual igstk::Tracker::Pointer CreateTracker() = 0;
virtual igstk::TrackerTool::Pointer CreateTrackerTool(int id) = 0;

static std::list<std::string> GetAvailableTrackerTypes () {
m_trackerTypes.clear () ;
register the available tracker types
#ifdef IGDT USE EASYTRACK
m_trackerTypes.push back("EasyTrack500");

#endif
#ifdef IGDT USE CLASSICPOLARIS

m_ trackerTypes.push back("ClassicPolaris");
#endif

#ifdef IGDT USE AXIOS3D

m trackerTypes.push back("Axios3D");
#endif B B

return m trackerTypes;

}

static TrackerInitializer *CreateTrackerInitializer(std::string type
);
protected:

static std::list<std::string> m trackerTypes;
}i

Latest version available at the Insight Journal link http:hdl.handle.net/10380/
Distributed under Creative Commons Attribution License

To use the Atracsys EasyTrack 500 device, we create a specialization of the TrackerInitializer class, using
the EasyTrack 500 IGSTK implementation. In the Logger application, we used several CMake macro
definitons to turn the specific tracker implementations on and off.

#ifdef IGDT USE EASYTRACK
#include "igstkAtracsysEasyTrack.h"
#include "igstkAtracsysEasyTrackTool.h"

class EasyTrackInitializer : public TrackerInitializer

{

public:
EasyTrackInitializer () : TrackerInitializer() {}
~EasyTrackInitializer () {}

igstk::Tracker::Pointer CreateTracker ()
{
EasyTrack 500 instance is created here.

return igstk::AtracsysEasyTrack::New () .GetPointer () ;

We define two tools and instantiate appropriate TrackerTool objects.

igstk::TrackerTool: :Pointer CreateTrackerTool (int id)

{
switch(id) {
case 0:

{

igstk::AtracsysEasyTrackTool::Pointer tool
igstk::AtracsysEasyTrackTool: :New () ;
tool->RequestSetPortNumber (0) ;
return tool.GetPointer();

}

case 1:

{

igstk::AtracsysEasyTrackTool::Pointer tool
igstk::AtracsysEasyTrackTool: :New () ;
tool->RequestSetPortNumber (1) ;

return tool.GetPointer();

}

return NULL;
}i
#endif

Latest version available at the Insight Journal link http:hdl.handle.net/10380/
Distributed under Creative Commons Attribution License

10

To use the “Polaris Classic” tracker, we create a specialization of the Trackerlnitializer class, using the
“Polaris Classic” IGSTK implementation.

#ifdef IGDT USE CLASSICPOLARIS

#include "igstkSerialCommunication.h"
#include "igstkPolarisClassicTracker.h"
#include "igstkPolarisTrackerTool.h"

class ClassicPolarisInitializer : public TrackerInitializer
{
ClassicPolarisInitializer () : TrackerInitializer () {}
~ClassicPolarisInitializer () {}

igstk::Tracker *CreateTracker ()

{

After creating the SerialCommunication object the “Polaris Classic” instance is created.

// create the communication object
igstk::SerialCommunication: :Pointer serialComm =
igstk::SerialCommunication: :New();

serialComm->SetPortNumber(igstk::SerialCommunication::PortNumber3);
serialComm->SetParity(igstk::SerialCommunication: :NoParity);
serialComm->SetBaudRate(igstk::SerialCommunication::BaudRatel15200);
serialComm->SetDataBits(igstk::SerialCommunication::DataBits8);
serialComm->SetStopBits(igstk::SerialCommunication::StopBitsl);
serialComm->SetHardwareHandshake(

igstk::SerialCommunication: :HandshakeOff);
serialComm->SetTimeoutPeriod(100);
serialComm->SetCaptureFileName(
"RecordedStreamBySerialCommunicationTest.txt");
serialComm->SetCapture(true);
if(serialComm->GetCapture() != true)
{

std::cout << "Set/GetCapture() failed" << std::endl;

std::cout << "[FAILED]" << std::endl;

}

std::cout << "CaptureFileName:
<< serialComm->GetCaptureFileName() << std::endl;

serialComm->OpenCommunication();

igstk::PolarisTracker::Pointer tracker = igstk::PolarisTracker::New();
tracker->SetCommunication(serialComm);

return tracker.GetPointer();

Latest version available at the Insight Journal link http:hdl.handle.net/10380/
Distributed under Creative Commons Attribution License

11

We define two tools and instantiate appropriate TrackerTool objects.

igstk::TrackerTool* CreateTrackerTool(int id)
{

switch(id){

case 0:

{

igstk::PolarisTrackerTool: :Pointer tool
igstk::PolarisTrackerTool: :New();
tool->RequestSelectWiredTrackerTool();
tool->RequestSetPortNumber(0);

return tool.GetPointer();

}

case 1:

{
igstk::PolarisTrackerTool::Pointer tool =
igstk::PolarisTrackerTool: :New();
tool->RequestSelectWiredTrackerTool();
tool->RequestSetPortNumber(1);
return tool.GetPointer();

}

}
return NULL;

bi

#endif

Specialization for the Axios3D tracker:

#ifdef IGDT USE AXIOS3D
class Axios3DInitializer : public TrackerInitializer

{

Axios3DInitializer () : TrackerInitializer() {}
~Axios3DInitializer () {}

igstk::Tracker *CreateTracker ()

{

We instantiate the Axios3D tracker and set the appropriate configuration files of each rigid-body.

igstk::Axios3DTracker::Pointer tracker = igstk::Axios3DTracker::New();
tracker->RequestLoadLocatorsXML("C:/workspace/IGDTTrackerLogger/DRF.xml");
tracker->RequestLoadLocatorsXML (
"C:/workspace/IGDTTrackerLogger/Probe.xml");
tracker->setVirtualMode(false);

Latest version available at the Insight Journal link http:hdl.handle.net/10380/
Distributed under Creative Commons Attribution License

12

return tracker.GetPointer();

We define two tools and instantiate appropriate TrackerTool objects.

igstk::TrackerTool* CreateTrackerTool(int id)

{
switch(id){

case 0O:

{
igstk::Axios3DTrackerTool: :Pointer tool =
igstk: :Axios3DTrackerTool: :New();
tool->RequestSetMarkerName("PROBE");
return tool.GetPointer();

}

case 1:

{
igstk::Axios3DTrackerTool::Pointer tool =
igstk: :Axios3DTrackerTool: :New();
tool->RequestSetMarkerName("DRF");
return tool.GetPointer();

}

return NULL;

}s

#endif

We use the Factory design pattern to allow the creation of the device specific Trackerlnitializer classes
using a string as the tracker identifier.

TrackerInitializer *TrackerInitializer::CreateTrackerInitializer(std::string
type)
{
#ifdef IGDT USE EASYTRACK
if(type == "EasyTrack500") {
return new EasyTrackInitializer();

}

#endif
#ifdef IGDT USE CLASSICPOLARIS
if(type == "ClassicPolaris") {
return new ClassicPolarisInitializer();
}
#endif
#ifdef IGDTiUSEiAXIOSBD
if(type == "Axios3D") {

return new Axios3DInitializer();

Latest version available at the Insight Journal link http:hdl.handle.net/10380/
Distributed under Creative Commons Attribution License

13

}
#endif

return NULL;

We next look at the implementation details of the TrackerLogger application. One important concept is
that we hold all the available specific trackers as a list of their identifiers. We define a static method in the
TrackerlInitializer class so that we can query the available tracker implementations. It also requires a static
member m_trackerTypes, which has to be defined here.

#include <iostream>
#include <fstream>

#include "igstkTracker.h"

#include "igstkTrackerTool.h"
#include "igstkTransform.h"
#include "igstkTransformObserver.h"
#include "igstkAxesObject.h"

#include "IGDTTrackerLogger.h"

// data storage of available trackers
std::list<std::string> TrackerInitializer::m trackerTypes;

The main function of our application defines the application logic in a tracker independent way using only
the Trackerlnitializer interface to create and initialize the appropriate IGSTK Tracker object along with
the required TrackerTool based objects. In the followings we show how to query the identifiers of the
available tracker implementations, and how to initialize a tracker with the given identifier.

First, we query the identifier list of the available tracker implementations.

std::1list<std::string> trackerIDs =
TrackerInitializer::GetAvailableTrackerTypes() ;
for(std::list<std::string>::iterator it = trackerIDs.begin();
it != trackerIDs.end(); ++it)
{
std::cout << "\t" << *it << std::end
}

Once we have the identifier for the desired tracker, we can create the device specific Trackerlnitializer
derived object using the static factory method from the TrackerlInitializer class.

TrackerInitializer *trackerInitializer =
TrackerInitializer::CreateTrackerInitializer (trackerID);

Latest version available at the Insight Journal link http:hdl.handle.net/10380/
Distributed under Creative Commons Attribution License

14

Now we have the specialization of the initializer for the desired tracker object, so we can request the
objects required by the IGSTK framework.

igstk::Tracker::Pointer tracker = trackerInitializer->CreateTracker();
tracker->RequestSetTransformAndParent (transform, worldReference);

tracker->RequestOpen () ;

igstk::TrackerTool: :Pointer tool0 =
trackerInitializer->CreateTrackerTool (0) ;

tool0->RequestConfigure () ;

tool0->RequestAttachToTracker (tracker);

igstk::TrackerTool::Pointer tooll;

if (bRefMode) {
tooll = trackerInitializer->CreateTrackerTool (1) ;
tooll->RequestConfigure () ;
tooll->RequestAttachToTracker (tracker);

tracker->RequestSetReferenceTool (tooll) ;

Everything is in place, we can use the standard IGSTK tracker framework with the objects we received
from the tracker initializer.

std::cout << "start tracking\n"; std::cout.flush();
tracker->RequestStartTracking() ;
std::cout << "start tracking done\n"; std::cout.flush();

5 Discussion & Conclusion

IGSTK enables the rapid development of image-guided surgery applications. A key component of these is
the tracking device. IGSTK already provides tracker interfaces for various tracking devices. We have
extended the tracker component of IGSTK with three new tracking interfaces. The EasyTrack 500 and
CamBar B2 systems come with C++ libraries that facilitate data acquisition while the Polaris system
provides a more primitive string based communication protocol. However the CamBar B2 has drivers for
Windows XP/Vista/7 only. Having the APIs the implementation of IGSTK classes was straight forward.
This implementation enables easy data acquisition.

Based on our evaluation we conclude that all tracking systems are sufficiently accurate for ENT
procedures where the required accuracy is approximately 1-2 mm (RMS). It should be noted that the
Polaris system evaluated in this study has been in use since 1996. Empirical system accuracy is still
stable.

The implementations described in this manuscript can be downloaded from the IGSTK sandbox, and are
released under the toolkit’s BSD license.

Latest version available at the Insight Journal link http:hdl.handle.net/10380/
Distributed under Creative Commons Attribution License

15

The IGSTK sandbox can be checked out directly from CVS as follows:

cvs —-d :pserver:anonymous@public.kitware.com:/cvsroot/IGSTK login

password: igstk

cvs -d :pserver:anonymous@public.kitware.com:/cvsroot/IGSTK co IGSTKSandbox

ACKNOWLEDGMENT

We would like to thank Dr. Ziv Yaniv for his help editing this manuscript.

This work was supported by the Austrian Science Foundation under Grant P 20604-B13 (Ozgur Giiler)
and the Austrian National Bank, Jubilee Fond, Project no. 13003 (Zoltan Bardosi).

Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Z. Yaniv and K. Cleary, "Image-Guided Procedures: A Review," Imaging Science and Information
Systems Center, Georgetown University, Washington, DC,CAIMR TR-2006-3, 2006.

K. Cleary and T. M. Peters, "Image-guided interventions: technology review and clinical
applications,” Annu. Rev. Biomed. Eng, vol. 12, pp. 119-142, Aug.2010.

A. Enquobahrie, D. Gobbi, M. W. Turek, P. Cheng, Z. Yaniv, F. Lindseth, and K. Cleary,
"Designing tracking software for image-guided surgery applications: IGSTK experience," Int. J.
Computer Aided Radiology and Surgery, vol. 3, pp. 395-403, 2008.

Northern Digital Inc. (Waterloo, ON, Canada), http://www.ndigital.com/medical , Date
Accessed: 16-6-2011

Ascension Technology Corp. (Milton,VT,USA), http://www.ascension-tech.com , Date
Accessed: 16-6-2011

Atracsys LLC. (Le Mont-sur-Lausanne, Switzerland), http://www.axios3d.de/index_en.html
, Date Accessed: 16-6-2011

Claron Technology Inc. (Toronto, ON, Canada), http://www.clarontech.com , Date
Accessed: 16-6-2011

Latest version available at the Insight Journal link http:hdl.handle.net/10380/
Distributed under Creative Commons Attribution License

http://www.ndigital.com/medical
http://www.ascension-tech.com/
http://www.axios3d.de/index_en.html
http://www.clarontech.com/

