EM Segmentation: Automatic Tissue Class
Intensity Initialization Using K-means

P. Srinivasan, M. E. Shenton and S. Bouix
July 2011

ABSTRACT

Brain tissue segmentation is important in many medical image applications. We augmented the Expectation-
Maximization segmentation algorithm in Slicer3 (www.spl.harvard.edu) . Currently, in the EM Segmenter
module in Slicer3 user input is necessary to set tissue-class (Gray Matter, White Matter etc.) intensity values.
Our contribution to the current pipeline is to automatically compute such values using k-means clustering. Our
method can be applied to scans of varying intensity profiles and thus we obviate the need for a normalization
step. We applied this pipeline on multiple datasets and our method was able to accurately classify tissue-classes.
The implementation was done as a standalone utility in the Python programming language (www.python.org)
and work is underway to incorporate it in the EM processing pipeline.

INTRODUCTION

Brain tissue segmentation is an important step in many medical image applications for instance, in determining
tissue volume quantification in various pathology such as in Schizophrenia [1], in lesion location and
quantification etc. Many segmentation methods based on region growing, clustering, watershed transformation
and level sets have been developed. The segmentation algorithm in Slicer3 developed at the Surgical Planning
Laboratory (www.spl.harvard.edu) is based on the Expectation-Maximization (EM) Algorithm [2].

The pipeline of the EM segmentation module initially implemented in Slicer3 (www.slicer.org) [2] is
summarized below:

1. Creation of a hierarchical tree: This defines the way segmentation should proceed. For example, the
entire image can be first segmented into Background (BG), Gray Matter (GM), White Matter (WM ) and
Cerebro-spinal Fluid (CSF) . Then GM can be further divided in to Left GM and Right GM and so on.
The final structures to be segmented are the leaves of the tree.

2. Choosing Atlas Probability Priors: In this step the user has to input a prior atlas-probability map for each
leaf node i.e. the final structures to be segmented in the hierarchical tree created.

3. Multi-channel segmentation: This step allows the user to enter multiple contrast input images. For
instance CSF appears brighter in a T2-weighted image and thus this information can be used for
segmentation.

4. Intensity Normalization: This step is useful when 3D scans of different intensity profiles have to be
segmented but by only using common pre-determined template parameters like the global priors, atlas
weights, tissue class intensity distribution etc. for all the scans. This is to avoid choosing parameters, say,
the tissue-class intensity distribution manually for each 3D scan. For a chosen atlas image, the mean
value of pixels with the background excluded is chosen as the normalization value and all target images
are normalized to this value.

5. Selecting tissue-class intensity distributions: Users have two options, either selecting the tissue-class
intensity distribution manually by clicking on a few representative voxels for each structure to be
segmented, or using the template parameters computed from the intensity normalization step.

6. Hierarchical parameters: This step allows the user to select hierarchical parameters such as the global
prior, atlas weight and the weights to be given to each image in the multi-channel segmentation.

a) The global prior ranges from 0 to 1 and gives an idea of the size of the structure to be segmented.

b) The atlas weight also ranging from 0 to 1 determines if a particular spatial prior atlas needs to be
used when segmenting a structure. For instance, GM, WM and CSF are well delineated just by using
intensity parameters and so the atlas weight can be set to 0. On the other hand, atlas weight is
typically set to 1 for segmenting Left GM and Right GM.

¢) The weight for the multi-channel images determines how much a particular image should be used in


http://www.spl.harvard.edu/
http://www.slicer.org/
http://www.spl.harvard.edu/
http://www.python.org/

segmenting a structure. For instance, T2-weighted images can be given a weight of 1 while
segmenting CSF.
7. Registration: The step is done to align the atlas priors to the images provided in the multi-channel
segmentation step.

Improvements were done to the above processing pipeline as described in [3]. Only those that are part of the
processing pipeline are mentioned here excluding others like Bias Field correction. Briefly, the following were
incorporated:

1. In Step 5 above, for selecting the tissue-class distributions, a label map illustrating the relation between
color and tissue class is setup by the user; the mean and covariance values are then automatically
computed. This label map can be saved for further use. Also, a tissue-class intensity distribution
visualization tool was developed that allows the user to see the similarity or dissimilarity of the
distributions of the classes to be segmented.

2. A normalization tool allows the selection of a normalization value based on the image histogram that
appears in the Slicer3 GUI. Background excluded, the mean is calculated based on the threshold the user
chooses and the maximum intensity of the scan.

3. Global Prior Weights Calculation: A tool is provided that helps the user calculate global prior weights or
an estimate of the size of the tissue class to be segmented. Visual feedback is provided for each tissue
class as the user chooses global priors.

The primary motivation for the work described in this article is that there is currently no existing method in the
EM Segmenter module in Slicer3 that is fully automatic in setting the intensity profiles for the different tissue
classes. The method described in [3] of setting the label map intensities provides visual feedback still requires
manual user input and is fairly involved. Our contribution in the EM Segmentation pipeline is to automatically
compute tissue intensity values using k-means clustering. A key advantage of our approach is that in addition to
obviating manual user input, it can be applied to scans with varying intensity profiles since an explicit
normalization step is unnecessary.

Our intensity initialization algorithm is currently implemented as a standalone utility in the Python programming
language (www.python.org) and work is underway to incorporate this in the EM processing pipeline inside
Slicer3.

BACKGROUND THEORY
Expectation-Maximization

In this section, we briefly review the EM algorithm and refer the interested reader to [2] , [3] and [4] for more
details on the theory and implementation.

The EM algorithm iterates alternatively between an Expectation (E) step and a Maximization (M) step until
convergence is reached:

The E step produces a soft segmentation map of the hidden data by using the current estimates of the parameters.
In our case, the parameters are the mean, covariance and initial prior probability that a voxel belongs to a tissue
class (provided by the probabilistic atlas) and the hidden data are the labels of the final segmentation.

The M step uses the soft segmentation map to refine the parameters.

In Slicer3, a novel contribution includes incorporating the EM algorithm via a hierarchical tree [2] that describes
the relationship between the anatomical structures. For example, the image is divided into Background (BG) and
Intra-Cranial Content (ICC) which is further divided into Gray Matter (GM) , White Matter (WM) and Cerebro-
Spinal Fluid (CSF). By changing the tree any desired segmentation of the brain can be achieved. For example,
the GM can be further divided into Left GM and Right GM etc. as long as an accurate atlas prior exists for each


http://www.python.org/

structure to be segmented. Information such as tissue class intensity distributions and label probabilities for each
structure to be segmented are stored at the leaves and this is propagated upwards towards the respective parent
nodes of the leaves. The segmentation process proceeds downwards from the parent nodes to the leaves. This
framework is very flexible and at each sub-segmentation level, the problem is simplified.

The main limitation of the algorithm described in [2] is that any error made at the previous segmentation step
cannot be corrected and thus propagates to the rest of the tree.

K-means algorithm

K-means is a popular clustering algorithm in which the goal is to classify the data points in a sample into a given
number of clusters fixed a priori. Briefly, this algorithm accepts centroids one for each cluster to be classified.
The centroids for k-means can be chosen Then the distance between the each data point and all the centroids are
calculated and the data point is assigned to the centroid to which it is closest to. When all the points have been
assigned, the cluster centroids are then recalculated and this process is repeated. The goal of the algorithm is to
minimize the sum of the squares of the distances of each data point to its nearest centroid [5] .

METHODS

This section describes the steps followed in our approach. There are two steps viz. pre-processing and
computing final intensity parameters using k-means clustering.

Step 1 : Pre-Processing

1. Atlas probability priors are generated using the registration algorithm in[6].

2. Intensity inhomogeneity can be problematic in determining accurate tissue class intensities and also in
registration of atlas priors to the T1 structural image. Thus bias field correction of the T1 structural
image is done using FSL FAST [7].

3. The input atlas probability priors have to be pre-aligned with the T1 structural image before inputting
them in the Python pipeline. This is because the binarized atlas priors are multiplied with the structural
T1 image for k-means initialization (explained in detail below). The prior atlases are aligned using rigid
registration.

4. A template Slicer3 EM Segmenter scene with the required parameters such as global priors, atlas
weights and tree hierarchy is created using the EM Segmenter pipeline. Intensity values need not be
determined at this point. This scene is created only once and used as a template for further segmentation
of all other cases, assuming the same tree structure.

The Python command line implementation can be used once the above pre-processing steps are completed. The
algorithm used to initialize tissue class intensities is described in the following section.

Step 2: Computation of Final Intensities Using K-means in Python

1. From within the Slicer Python console, the module replace fileName.py for customizing the EM
Segmenter scene created in Step 4 of the pre-processing described above is called. This module takes in
paths to the T1 image and atlas priors for a new case and replaces the corresponding existing paths in the
template scene.

2. Next the module kmeans_start.py for performing k-means is called. In addition to the two input paths to
the T1 image and atlas priors, this takes in a text file and the template EM Segmenter scene. This module
automatically performs the following tasks:

a) Determines the number of partitions in the k-means clustering. This is automatically calculated
based on the number of rows in the user-defined input text file class leaf text (explained
below). The number of rows can be set intuitively based on the data. For example, the brain
clearly has four different intensity profiles i.e. Background (BG), Cerebro-spinal Fluid (CSF),
Gray Matter (GM) and White Matter (WM). Although GM, say, is further split into left, right,
sub etc. in the final EM Segmentation in our case, each of the substructure is assumed to have



the same intensity. Thus individual atlas priors of different lobes of GM are added to give one
single GM prior atlas [Figure 1] (see also class! in class_leaf text below) making up one row in
class leaf text. This can be easily extended to any data and the number of desired partitions can
be easily increased as the user sees fit simply by adding more rows in the text file and by giving
a corresponding prior atlas. The entries corresponding to each row must correspond to leaf nodes
in the template scene. An example of the text file used for our brain parcellation is shown below:

classO: BG

classl: Itgml, ltgm?2, ltgm3, ltgm4, rtgm1, rtgm2, rtgm3, rtgm4, subgm

class2: Itwml, Itwm2, ltwm3, ltwm4, rtwm1, rtwm?2, rtwm3, rtwm4, subwm

class3: CSF

where, It=left, rt=right, subgm=subcortical gray matter, subwm=subcortical white matter.

Figure 1: The figure above shows the summed GM atlas prior consisting of atlas priors of the individual lobes
for one 2D slice.

b)

Initializes the centroid values for k-means. In this step, the atlas is first binarized by thresholding
the summed atlas probability priors (scaled between 0 - 100) at a value of 70. This ensures that
only those pixels of a particular structure whose probability is greater than 70 is considered for
centroid initialization for that structure. The threshold value was chosen after experimenting
with other values and was found to be best given the atlas priors. Figure 2 shows the thresholded
binarized atlas priors. Finally, the thresholded atlas priors are multiplied with the structural T1
image and the mean of the resulting 3D structure is calculated. This mean is provided as the
initial centroid value for k-means clustering. Figure 3 shows an example for the GM structure.



Figure 3: Resulting structure after multiplying thresholded atlas priors with T1 image for the GM of one slice.
The mean for the whole 3D GM similar to the above is calculated and provided as the initialization value for
GM in k-means clustering.

c) Calls the module calc_means covariance.py. Briefly, this calculates the k-means clusters using
scipy.cluster.vq.kmeans2. The number of clusters is determined by the number of rows provided
in class_leaf text as described above.

d) Calls the module replace mrml.py. Briefly, this overwrites the existing log mean and log
covariance values in the template scene for each of the leaf names e.g. ltgml, ltgm2 etc.
provided in class_leaf text as above.

RESULTS

1. The results of segmentation for the brain structures in the above mentioned class_leaf text example for a
volume scan from a 3 Tesla scanner is shown in Figure 4.

2. Intensity normalization is not required across scans of varying intensity profile. This is because for each
scan regardless of the intensity profile, k-means computes a suitable starting cluster initialization based
on the multiplication of the atlas priors and the respective T1 structural scan. The segmentation of scans
for the same subject but different intensity profiles is shown in Figure 5.

3. A comparison of segmentation from k-means initialized intensity values with an algorithm that uses



aligned atlases and corresponding T1 image sampling to obtain intensity values is shown in Figure 6.
The differences in white matter estimation can be clearly seen in row 1 (k-means) and row 2 (Tl
sampling) below. Also CSF is underestimated throughout the volume with just T1 sampling.

Figure 4: 3 Tesla T1 structural scans and the respective segmented scans.




A

minimim:0,maximum: 486 minimum:0,maximum: 1956

Bg 1124
Fgo

R 30
AS50
50

Bg 1124

Fg 17 : monk
Figure 5: The figure above shows scans for the same subject but with different intensity profiles. The
minimum and maximum values for the whole 3D scan respectively is shown in the figure. The value

at a single voxel location indicated by the mouse pointer.




Figure 6: Row 1 -Segmentation obtained using k-means initialization. Row 2 — Segmentation obtained
using T1 sampling. Row 3 — Original T1 image.

CONCLUSION

As observed in the experimental results, k-means clustering method is well suited in our effort to automate tissue
class intensities. In addition to obviating user input, the other advantages are that an explicit normalization step
for scans of different intensity profile is not necessary and the results obtained are reproducible because the
starting initializations for the clusters remain the same. Thus different users will get the same results for a given
subject. The current disadvantage of this method is that the atlas priors have to be aligned prior to giving them as



inputs to the k-means pipeline. However, work is in progress to incorporate our approach in the EM pipeline
such that the atlas priors will need not be aligned beforehand.

REFERENCES

1. Neocortical Gray Matter Volume in First-Episode Schizophrenia and First-Episode Affective Psychosis:
A Cross-Sectional and Longitudinal MRI Study. M. Nakamura, D.F. Salisbury, Y. Hirayasu, S. Bouix, K.
Pohl, T. Yoshida, M. Koo, M. Koo, R. McCarley. Biological Psychiatry. 2007

2. A Hierarchical Algorithm for MR Brain Image Parcellation. K. Pohl, S. Bouix, M. Nakamura, T.
Rohlfing, R. McCarley, R. Kikinis, W. Grimson, M. E._Shenton, W. Wells. IEEE Transactions on
Medical Imaging Volume 26, Number 9, Pages 1201-1212, 2007

3. New Expectation Maximization segmentation pipeline in Slicer 3. Rannou N., Jaume S., Pieper S.,
Kikinis R. Insight Journal. 2009

4. Tutorial on Expectation-Maximization: Application to Segmentation of Brain MRI. Maria Murgasova.
May 6, 2007

5. Pattern Recognition and Machine Learning. Christopher Bishop. 2006

6. Asymmetric Image-Template Registration. Mert R. Sabuncu , B.T. Thomas Yeo , Koen Van Leemput,
Tom Vercauteren, and Polina Golland . Med Image Comput Comput Assist Interv. 2009;12(Pt 1):565-73.

7. Segmentation of brain MR images through a hidden Markov random field model and the expectation

maximization algorithm. Zhang, M. Brady, and S. Smith. /[EEE Trans. on Medical Imaging, 20(1):45-57,
2001.


javascript:AL_get(this,%20'jour',%20'Med%20Image%20Comput%20Comput%20Assist%20Interv.');
http://pnl.bwh.harvard.edu/people/profiles/shenton.html
http://pnl.bwh.harvard.edu/people/profiles/shenton.html
http://pnl.bwh.harvard.edu/people/profiles/nakamura.html
http://pnl.bwh.harvard.edu/people/profiles/bouix.html

	Step 1 : Pre-Processing

