OpenlTGLINKMUSIIC:
A Standard Communications Protocol
for Advanced Ultrasound Research

Release 1.00
Hyun-Jae Kang®, Philipp J Stolka' and Emad Boctor*?

July 15, 2011

1Computer Science, Johns Hopkins University, Baltimore, MD/USA
2Department of Radiology, DMIP, Johns Hopkins Medical Institutions, Baltimore, MD/USA

Abstract

Ultrasound imaging is the most popular and safe diagnostic medical imaging modality. Over the past years, a considerable
number of studies have been conducted on new medical ultrasound imaging modalities such as ultrasound-based elasticity
imaging, photoacoustic imaging, thermal imaging, etc. Moreover, results of such advanced ultrasound research are readily
integrated with Image Guided Therapy (IGT) systems due to the advantages of ultrasound imaging such as mobility and real-time
data acquisition. For integrating two systems, a communication method between systems has to be devised. OpenlGTLink is a
standardized TCP/IP-based protocol for the integration of medical imaging and IGT systems. However, OpenlGTLink is not
sufficient for communicating between IGT and advanced ultrasound research systems, because OpenlGTLink does not define
any message type for general ultrasound data and some results of ultrasound researching.

In this paper, we propose an extension to OpenlGTLink, called OpenlGTLinkMUSIiC, by adding new message types and new
network classes. Our new message types are designed for containing raw ultrasound data, advanced ultrasound modalities, and
text-based control parameters. The network classes of OpenlGTLinkMUSIiC improve upon the performance of existing network
classes by implementing a multithread architecture. Finally, we present two ultrasound research applications using
OpenlGTLink-MUSIiC.

Contents

1 Introduction 2

2 OpenlGTLinkMUSIIC 3
2.1 New message types in OpenlGTLinkMUSIiC 3
2.1.1 New ultrasound messages in OpenlGTLinkMUSIiC 3
2.1.2 New control messages in OpenlGTLinkMUSIiC 5
2.2 Network classes of OpenlGTLinkMUSIiC 7

2.2.1 Concurrent queue for multithreading program::MUSiiCQueue 7

2.2.2 Client class of OpenlGTLinkMUSiiC::MUSIiiCClientT 8
2.2.3 Server class of OpenlGTLinkMUSIiC::MUSIiiCServerT 8
3 Applications for advanced ultrasound research using OpenlGTLinkMUSIiC 9
3.1 Ultrasound thermal monitoring system with real-time 9
3.2 Ultrasound photoacoustic imaging system with real-time 11
4 Conclusions 11

1 Introduction

Clinical ultrasound imaging is the most popular and safe diagnostic medical imaging modality. Moreover,
ultrasound is frequently used as the imaging basis of Image Guided Therapy (IGT) systems [1] due to its
features such as real-time data acquisition, mobility, and harmless nature for patient and operator.

Over the past years, a multitude of research directions have sprung up around new medical ultrasound
imaging modalities: ultrasound elasticity imaging [1-3], ultrasound photo-acoustic imaging [4],
ultrasound thermal imaging [5], and etc. The results of the advanced ultrasound research are also
integrated with IGT system by providing new ultrasound image modality.

But, for integrating the results of advanced ultrasound research with existing IGT systems, we have to
consider two things. One concern is the collection of low-level ultrasound data, Radio-Frequency (RF)
data or pre-beamformed RF data, in real-time. Such low-level ultrasound data is a necessary part for
computing advanced ultrasound image modalities such as ultrasound elastography or ultrasound photo-
acoustic imaging. Another aspect is data communication with existing IGT systems. For solving the
former issue, we developed an ultrasound research platform, called MUSIIiC Toolkit, in our previous
research [6]. In this paper, we will follow up on this and discuss a standard communication protocol for
integrating our application modules of the MUSIIiC Toolkit with existing IGT systems via TCP/IP
networking.

In 2008 a standard TCP/IP network protocol for IGT systems named OpenlGTLink was announced. This
protocol enabled the communication of position, transformation, and image data, as well as commands or
system status messages between two processes of distributed IGT systems [7-10]. Thanks to its simple
and extensible nature, several research groups and commercial companies has taken up OpenlGTLink in
their development [8]. Also, our group chose OpenlGTLink for communicating ultrasound data, the
outputs of our advanced ultrasound modules, and localization data of tracker devices between modules of
our MUSIIC Toolkit and existing research IGT systems such as 3DSlicer.

However, the existing OpenlGTLink turned out not to be sufficient for this application scenario, as it
included no specific messages that can contain extra information of low-level ultrasound data or output

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx
Distributed under Creative Commons Attribution License

http://www.insight-journal.org/
http://hdl.handle.net/10380/xxxx
http://creativecommons.org/licenses/by/3.0/us/

values of advanced ultrasound computation. So, in this paper, we introduce our extension version of
OpenlGTLink, named OpenlGTLinkMUSIiC, for advanced ultrasound research in real-time, and some
applications using it.

This paper is organized as following: Section 2 describes new message types and new network classes of
OpenlGTLinkMUSIIC. In Section 3, we introduce several applications of advanced ultrasound research
with OpenlGTLinkMUSIiC. We conclude with a discussion in Section 4.

2 OpenlGTLinkMUSIIC

The OpenlGTLink protocol has been suggested by the NAMIC group for providing a standardized
TCP/IP network mechanism for image-guided therapy (IGT) systems [9, 10]. For its features — open,
simple, platform-independent, and ready-to-use — several IGT research groups have used this tool for their
own applications and research.

Recently, OpenlGTLink has experienced upgrades by the addition of new message types, supporting
several data types of IGT systems: tracking data, image-meta data, points of fiducials, trajectory data etc.
[10]. However, there is still no message type for containing general ultrasound data or advanced
ultrasound imaging modalities on even the new versions of OpenlGTLink.

Our MUSIIC Toolkit is composed of several specialized executable modules. Each module has its own
task, and they are communicating with each other via TCP/IP networking. That is, each module has its
own TCP/IP server socket, client socket, or both. Furthermore, communication in the MUSIiC Toolkit is
unidirectional. In this case, a server socket provides data to other client modules. On the other side, the
client socket of the client module receives the data on behalf of the module. Frequently, a server socket
will provide the same data to multiple client modules, e.g. for navigated laparoscope ultrasound systems
[6]. For this reason, multiple-clients connection functionality of the server socket is necessary. Although
the existing OpenlGTLink has its own server and client socket implementations, these do not support
multiple-client connections.

Because of these reasons, our group built our own extension version of OpenlGTLink by adding several
new message types as well as network classes to support multiple clients. In this section, we introduce our
new message types and describe of our network classes for multiple-client connection.

2.1 New message types in OpenlGTLinkMUSIIC

In OpenlGTLinkMUSIiC, we add five new message types. Two message types are for transmission of
general ultrasound data and the results of our advanced ultrasound research modules. The remaining three
messages are for communicating text-based control arguments and files.

2.1.1 New ultrasound messages in OpenlGTLinkMUSIiC

USMessage and EIMessage message types in OpenlGTLinkMUSIIC are extensions of the ImageMessage
in OpenlGTLink, containing general ultrasound data with its extra information and elastography data with
the results of its computation, respectively. Figure 1 represents the class diagram and the structure of
these two messages with ImageMessage of OpenlGTLink. As seen from the figure, the two message

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx
Distributed under Creative Commons Attribution License

http://www.insight-journal.org/
http://hdl.handle.net/10380/xxxx
http://creativecommons.org/licenses/by/3.0/us/

types have same structure: each message is a subclass of ImageMessage, and each carries its own tag after
the ImageMessage data block.

<<OpenlGTLink>>
@ = ® Image us El
l} Message Message Message
<<OpenlGTUnk>> !
ImageMessage b
3
TR :
<<OpenlGTLINKMUSIC >> <<OpeniGTLINKMUSIC>>
ElMessage 5 B
+: igtiNewMacro +: igtiewacro %k
#Type: int #Lmgang: flost
#Tof: ik #ACC: float
#5t: ink #Broderwidth: flost
#FPS: int #AveStrain: float
#Lden: int #RecDelay: flost
Jsm:#d #m_EITag: unsigned char
A ang: float): void
#Elements: int +SetACC(acc: float): void -
#FPrch: nt]
FRadius: +5etAveStraindas: float): void —
mm_,w'*\da ot +SetRecDelay(rd: fioat): void g"_- %2 g’"‘"’
#TxOffzet: int +GetlmpAng(): =] © o (=]
#m_USTag: unsigned char :WCO‘M w "‘G a a -
+5etUsDataType(type: USO GetAveStrain(): flost @ 0 o 0n o % =
+sanmmmm?:£):m1 ;mmmo:ﬂoa o] = D = D ‘o
+kw T H
+5etFPS(fps: int): void <<destroy>>-ElMessage() @ -6‘ = oD = g < s
+SetlineDensiy(ld: int): void #GetBodyP. w o QO Q @n Q
+SetSteeringAngle(sa: int): void #PackBody(): int (7] {=)] E O {=1] g'
+SetProbelD(id: int): void nt o @ m & o o ﬁ
+SetExtensiondngle(ea: int): void — e
+SetElements(num: int): E E E 5 E (1)
+SetPich{pach: int): void -_— =2 -— m
S <
+ 2 ink):
+SetTxOfFset(txoffset: int): void
+SetUsDataType(): int
+GexTransmitFrequency(): int
:int
+GAFPE(): int
ik
+Get St it
+GatProbelD(): int
it
+GetElements(): int
+GetPich(): int
+GetRadus(): int
+GetProbeAngle(): int
+GETOfFset(): int
<<destroy > >-USMessage()
e
#UnpacBody(): int —Y

Figure 1 Two new message types — USMessage and EIMessage: (a) class diagram, (b) general structure.

More specifically, general ultrasound data will be contained in the ImageMessage part of USMessage
with its metric information, data matrix size, position, and orientation. Additionally, ultrasound-specific
data is stored in the US Tag (Table 1) of USMessage. EIMessage has same way to store the data of
elastography; the ImageMessage part of EIMessage contains the elastography image and the El Tag
(Table 2) has extra information of El data. As seen in Figure 1, each message has its own serialization and
deserialization functions for its own tag.

Because these two message types are subclasses of ImageMessage, they can contain 2D/3D ultrasound
data or elastography data. In the case of 3D data transfers, sub-volume data can be partially updated using
these two messages. Moreover, these messages are backwards-compatible with ImageMessage in
deserializing procedures.

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx
Distributed under Creative Commons Attribution License

http://www.insight-journal.org/
http://hdl.handle.net/10380/xxxx
http://creativecommons.org/licenses/by/3.0/us/

Data Type Description
txf 32bit int transmit frequency of ultrasound beam
sf 32bitint sampling frequency of ultrasound data
dr 32bit int frame rate
Is 32bit int line density
sa 32bit int steering angle
probe 32bit int ID of ultrasound probe
ea 32bit int extension angle
elements 32bit int the number of elements in the probe
pitch 32bitint the spacing between elements
radius 32bit int the curvature of the probe
probe_angle 32bit int the field of view of the probe
tx_offset 32bit int the offset in the steering image (phased array)
Table 1: US_Tag of USMessage
Data Type Description
ImagAng 32bit float extension angle
ACC 32bit float Average Cross-correlation
BorderWidth 32bit float Border-Width of Elasfography
AveStrain 32bit float Average Strain value
RecDelay 32bit float The delay of Receiving

Table 2: EI_Tag of EIMessage

2.1.2 New control messages in OpenlGTLinkMUSIiC

From our experience, we identified the need to communicate a general user-defined message such as “any
number of arguments” or “any kind of file”. Although there is a StatusMessage type in OpenlGTLink, the
message has an already defined set of status parameters. For more universal data transfer and
communication, we built new three message types in OpenlGTLinkMUSIiC: GenMessage, ArgMessage,
and FileMessage. GenMessage has the general header of OpenlGTLink for compatibility with Pack() and
UnPack() functions of the existing OpenlGTLink protocol. There is no definition of any protocol inside
the message body part of GenMessage. This means that we can put and get any user-defined contents.

ArgMessage has the specific goal of communicating text-based argument message or control parameters.
ArgMessage is a subclass of the GenMessage class (see Figure 2). That is, the arguments of ArgMessage
will be in the message-body part of GenMessage. ArgMessage has only serialization and deserialization
methods for its text-based arguments or control parameters. A relevant code snippet using ArgMessage
might look like the following:

ArgMessage Packing — Simply add arguments using the function AddArgument():

igtl::ArgMessage: :Pointer argMsg = igtl::ArgMessage: :New();
argMsg->AddArgument(char* argumentl);
argMsg->AddArgument(char* argument2);
argMsg->AddArgument(char* argument3);
argMsg->AllocateArguments();

araMsa->Pack():

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx
Distributed under Creative Commons Attribution License

http://www.insight-journal.org/
http://hdl.handle.net/10380/xxxx
http://creativecommons.org/licenses/by/3.0/us/

ArgMessage Unpacking — Extract arguments using the function GetArgument():

argMsg->Unpack(1);

int sz = argMsg->GetNumOfArguments();
char* argl = argMsg->GetArgument(0);
char* arg2 = argMsg->GetArgument(l);
char* arg3 = argMsg->GetArgument(2);

@ ‘ <<OpeniGTLink>> ‘ @ Gen Arg File
. Message Message Message
ff B

<<0penlGTLINKMUSIC >>
GenMessage

+: igtiNewMacro

#m_DataSize: int ir_
#m_DataBody: unsigned char

-ighiTypeMacro(: ighl: gt :M Base)
+nlocate0al:.a(m wvoid, s2: ink): md
+GetDataSize(): int

+GetDataPointer(): void

-GenMessage()

<<destroy>>-GenMessage()

#GetBodyPackSize(): int

#PackBody(): int
#UnpackBody(): int

AR

< <OpenlGTLINKMUSIHC > > <<Open]GTLINKMUSIHC > >
ArgMessage FileMessage

)

+: igtiNewiacro +: igtiNewMacro
#m_Arguments: std::string #m_FileName: char
#m_Argumentlist: std::vector <std::string> #m_FileSize: int
#m_NumOFf Arg: int #m_FileBody: unsigned char

"Oﬂl‘weMacra(igtl::ArgMessage, : GenMessage) -igtiTypeMacro(: ighl::FileMessage, : igtl::GenMessage)
(MJ void + : char); ink

Message
Body

—
.
.
.
.
=
.
.
-
.

S—

ArgMessage
FileMessage
(File-Name, File-Size, File-Data)

(Argument1, Argument2,..

)
o
P
3
=
=
[
o

Y

Figure 2 New message types GenMessage, ArgMessage and FileMessage: (a) class diagram, (b) message
structure.

FileMessage is used for communicating any file “as itself” in binary form between modules. Apart from
FileMessage’s information about file name and file size, it is similar to ArgMessage; this message is also
derived from GenMessage and has its own serialization and deserialization functions for files (see Figure
2).

Example codes of packing and unpacking for FileMessage might look as follows:

FileMessage Packing — Simply add a file using the function ReadFile():

igtl::FileMessage::Pointer fMsg = igtl::FileMessage::New();
fMsg->ReadFile(const char* path);
fMsg->Pack();

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx
Distributed under Creative Commons Attribution License

http://www.insight-journal.org/
http://hdl.handle.net/10380/xxxx
http://creativecommons.org/licenses/by/3.0/us/

FileMessage Unpacking — Extract a file using the functions WriteFile() and GetFileName():

TtMsg->Unpack(1);
fMsg->WriteFile(fMsg->GetFileName());

2.2 Network classes of OpenlGTLinkMUSIiC

OpenlIGTLink provides two network sockets classes (Serversocket and Clientsocket) for TCP/IP
networking. However, there are no independent network threads and buffers for communication in the
network classes. Because of this, the TCP/IP networking functionality of the existing OpenlGTLink can
be affected by the main thread of a module, or itself affect the performance of a module program.

To improve the networking performance, we implemented our network classes using a multithreaded
architecture. That is, our server and client classes have their own independent network thread and data
buffer for TCP/IP networking.

2.2.1 Concurrent queue for multithreading program: MUSIiiCQueue

—— N Thread1
@ @Da‘apm\,m,) { MUSIiCQueue] (Data Consumer)

LDl Push(Data)

MUSIiCQueue

-MQueue: std::queve<Data>
-m_Cond: igtl::ConditionVariable: :Pointer A
-m_Lock: igtl::SimpleMutexLock

“CMusicQueue() A
-CMusicQueue{Cond: igtl::ConditionV ariable::Pointer, Lock: igtl::SimpleMutexLock)
<<destroy>>-CMusicQueue()

+push{data: Data): void

+IsEmpty(): bool

+try_pop(value: Data): bool

+wait_pop(value: Data): void

=

+Empty(): void
<<0penlGTLink>> <<OpenlGTLink>>
ConditionYariable SimpleMutexLock

—em.o.GondoSignal 3

" o

Figure 3 MUSIiCQueue: (a) class diagram, (b) flowchart of its Push() and Wait_Pop() functions

In communication between threads in multithread architectures, possible data corruption should be
considered. The traditional method for this job is to use mutexes, critical sections, and locks. To ensure
data integrity, we built the concurrent queue class MUSIiiCQueue using simple mutex and condition
variables of OpenlIGTLink.

Figure 3 represents the class diagram of the MUSIiiCQueue and the flowchart of its Push() and
Wait_Pop() functions. Our MUSIiiCQueue has its own mutex and condition variables of OpenlGTLink as
shown. MUSIiCQueue can protect its data from access by another thread when a thread reads or writes
data to the queue. Also, if the queue is empty, the condition variable of the MUSiiCQueue holds a thread

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx
Distributed under Creative Commons Attribution License

http://www.insight-journal.org/
http://hdl.handle.net/10380/xxxx
http://creativecommons.org/licenses/by/3.0/us/

that requested data from the queue. The condition variable sends a signal to wake up the holding thread
when new data arrives in the queue.

2.2.2 Client class of OpenlGTLinkMUSIiC: MUSIICClientT

@ @ / Server: /
iTidass ! IP, port
i | P

<<0penlGTLinkMUSIC>>
MusiicClient T I

Connect to Server I

+m_bMNetworkThreadRx: bool

+m_Calbackfunction: MusicCALLBACK 5 No
+m_blsCalbackfunction: bool -’-—Connected :

#m_Client: ClientSocket::Pointer Yes
Pl [start Network thread |

#m_MsgQueue: CMusicQueue<P>

<<create>>-CMusicClentT()
<<destroy>>-CMusiicClient T()
+ConnectToServer(hostname: char, port: int, times: int): int Is Data
+CloseChientSocket(): void

+ReConnectToServer(hostname: char, port: int): int

+Receive{data: void, size: int): int

4+ kThr xipr: void): vob

+ReceiveMessage({socket: ClientSocket::Pointer, header: MessageHeader::Pointer): int
+GetMessageData(msg: P): void

+GetCountMessageData(): int

+GetSocket(): ClientSocket::Pointer

+SetCalbackfunction{cbFunc: MusicCALLBACK): void

#InitishzeQueuves(): void

<<OpenlGTLink>> «MGI'M';;"[' <<OpenlGTLink>> I Stop Network Thread I

ClientSocket MUSICQueue MultiThreader v
(ClientStop)e—

Figure 4 MUSIiCClientT: (a) class diagram, (b) flowchart

Receive Message

Put Message on
MUSIiCQueue

Network Thread

The class diagram and a flowchart of the client class MUSIiiCClientT are shown in Figure 4. The
MUSIiCClientT class has an instance of the ClientSocket class and a pointer to an instance of the
MultiThreader class of OpenlGTLink for TCP/IP networking and for its networking thread, respectively.
Also, MUSIiCClientT has an interface of MUSIiiCQueue for its own network data buffer and data sharing
with other threads. As shown in the class diagram (Figure 4 (a)), MUSIiCClientT is implemented as a
template class. Thus, any message type of OpenlGTLinkMUSIiC can be received via TCP/IP network
using this class.

The network thread checks independently whether there is an OpenlGTLinkMUSIiC message in the
TCP/IP buffer or not. If there is a message, MUSIiCClient gets the data and puts it in its data buffer to
provide the data to other threads. To simplify its usage, only one message type is available using an
instance of this class.

2.2.3 Server class of OpenlGTLinkMUSIiC: MUSIiiCServerT

Although the existing OpenlGTLink protocol has its own server socket implementation (ServerSocket
class) for TCP/IP communication, the server socket cannot support multi-client connections by itself. So
we built a network server class, named MUSiiCServerT, implementing a multithreaded architecture.
Figure 5 shows the class diagram and flowchart of our MUSIiiCServerT class.

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx
Distributed under Creative Commons Attribution License

http://www.insight-journal.org/
http://hdl.handle.net/10380/xxxx
http://creativecommons.org/licenses/by/3.0/us/

In the same way as the MUSIiCClientT class, MUSiiCServerT has its own independent networking thread
for listening to requests of client modules and carries its own network buffer. Moreover, MUSIiiCServerT
has a container of pointers to MUSIiCClientT to allow sending data to each client. As seen in Figure 5,
MUSIiCServerT copies data to the network buffer of its instances of MUSIiCClientT when new data
arrives in its data buffer. As mentioned in the previous section, MUSIiCClientT has its own network
thread and data buffer. Due to this feature, each instance of MUSIiiCClienT which is stored in the
container of MUSIiCServerT will send the data to the connected client module independently.

@ __________ @ / Server: /
[Pidess | port
<<OpenlGTLinkMUSIC>> v

MUSiCServerT [Create Server Socket |

#m_sockets: std::vector <ClientSocket::Pointer > -
#m_bNetworkThreadTx: bool | start Network thread, i=0_|

#m_Server: ServerSocket::Pointer
#m_timeout: unsigned long .
#m_Thread: MultiThreader::Pointer Is Client?
#m_iNetworkThreadTx: int

#m_MsgQueue: CMusiicQueue <P>

Accept &
-CN;.m::SewerTc(IL — Create Client Socket &
<<destroy > >-CMusiicServer i =
+CreateServer(port: int): int BUUSCCKEHLE] SIEoCKH!
+CloseServer(): int

+5etTimeout{msec: unsigned long): void
+WaitForConnection(): ClientSocket: :Pointer
+SendMessageData(): void
+PutMessageData(msg: P): void
+GetCountMessageData(): int
+NetworkThreadTx(ptr: void): void
+GetNumOFClient(): int

+1sConnected(): bool

#lnitializeQueue(): void

Network Thread

<<OpenIGILik>> oxa typensne. | [<<opentaTinioS
ServerSocket <<OpenlGTLINKMUSIC>> | MultiThreader
MUSIiCQueue Stop Network Thread

[
C serverstop
Figure 5 MUSIiCServerT: (a) class diagram, (b) flowchart

The MUSIiICServerT class is also based on the template class technique, so any kind of message type of
OpenlGTLinkMUSIiC can be sent.

3 Applications for advanced ultrasound research using OpenIGTLinkMUSIIC

For our advanced ultrasound research, we built two applications using the OpenlGTLinkMUSIiC protocol.
One is for ultrasound thermal monitoring in real time; another is related to the ultrasound photoacoustic
imaging technique.

3.1 Ultrasound thermal monitoring system with real-time

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx
Distributed under Creative Commons Attribution License

http://www.insight-journal.org/
http://hdl.handle.net/10380/xxxx
http://creativecommons.org/licenses/by/3.0/us/

10

Thermal monitoring imaging provides information about the temperature distribution in the tissue treated
by ablative therapy. Due to the advantages of ultrasound imaging systems such as mobility and real-time
data acquisition, ultrasound thermal monitoring systems can be utilized and applied intra-operatively.

RF-Ablation System l _

I Thermal Energy Analog Signal .
US Probe E Thermo- | Thermometry l Control Signal (TTL)
|, couple | Systemn > Water Circ

2 * w3 USMessage
§ RF P. D e l ====3 ElMessage

E -Power egasse T

g | Generator | Water Pump | | = ImageMessage
£ .

5

Controller -
Box I

| : ' Frame
| 3 Chooser

it

I B-Mode Server ImageViewer
i
. Ultrasound Machine Workstation with GPU |

l (Win XP 32bit) (Win XP 64bit, CUDA)

Figure 6 Block diagram of an ultrasound thermal monitoring system

Figure 6 shows the block diagram of our ultrasound thermal monitoring system. Our system can be
divided into two groups: the Ultrasound Imaging and the RF-Ablation part. These two groups are
synchronized by a Transistor—Transistor Logic (TTL) control signal of Controller box. As far as the
purpose of this paper is concerned, the RF-Ablation part is outside the scope of discussion.

In the Ultrasound Imaging part, RF-Server [6] collects ultrasound radio-frequency (RF) data from the
ultrasound machine (Sonix CEP, Ultrasonix Co.) and then provides a stream of USMessage that contains
RF data to client modules, the Elasticity Imaging Module (EIM) and the B-Mode computation module
(BMM) [6], via the MUSIiCServerT class. The EIM that receives the USMessages computes an elasticity
image from sequential USMessages, and then sends the elasticity image to a FrameChooser module [6],
encapsulated in an EIMessage. Simultaneously, the BMM module generates a B-Mode image from a
USMessage, and transfers the image to the ImageViewer module using an ImageMessage of
OpenIGTLink. Because the result of BMM module is an ImageMessage, the ImageViewer module can be
exchanged with e.g. the 3DSlicer [11] program.

Regarding the performance of our MUSIiiCServerT and MUSIiiCClientT classes implementations, the
following behavior could be observed between the RF-Server and BMM modules. Real-time ultrasound
RF data was acquired from the RF-Server module on the Sonix CEP (Windows XP 32bit, Intel Core 2
Quad) and transmitted via TCP/IP network into the BMM module on the workstation (Windows XP 64bit,
Intel i7) using USMessages in real time, resulting in a frame rate of around 22 fps. For our test, each
USMessage contained 1024x256x16bit data for raw RF data, US_Tag, and its transformation information.

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx
Distributed under Creative Commons Attribution License

http://www.insight-journal.org/
http://hdl.handle.net/10380/xxxx
http://creativecommons.org/licenses/by/3.0/us/

11

3.2 Ultrasound photoacoustic imaging system with real-time

Research in ultrasound photoacoustic imaging techniques for prostate brachytherapy has been growing
[12, 13]. This imaging technique is based on the principle of the photoacoustic effect, the physical
phenomenon of conversion of light waves to sound waves. Figure 7 represents the block diagram of our
application for such an imaging system. As seen in the figure, there are two parts in our application: the
Ultrasound Imaging and the Laser System component.

.. — LaserSystem | .-— .. —..—..—. .
I I =———> Control Signal (TTL)

US Probe . m— USMessage

=« =% |mageMessage

Ultrasound Data

| baqoevice _ |
 (SonixDAQ) | k

| B-Mode Server ImageViewer | I

Server: B-Mode Client: B-Mode I

Ultrasound Machine Workstation with GPU I
L (Win XP 32bit) (Win XP é4bit, CUDA} d

Figure 6 Block diagram of an ultrasound photoacoustic imaging system

The overall system configuration is similar to our previous work [12], except that the ultrasound imaging
part supports real-time photoacoustic imaging.

Pre-beamformed RF-data from the ultrasound transducer is necessary for photoacoustic imaging. The
DAQ-Server acquires pre-beamformed RF-data form Sonix-DAQ (Ultrasonix Co.) and then sends the
data to the Beam-Forming module using USMessage. The Beam-Forming module converts pre-
beamformed to beamformed RF-data, and then transfers its result to the BMM. A photoacoustic image is
generated in the BMM module and displayed by the ImageViewer module. As the output of the BMM
module is of type ImageMessage, 3D-Slicer can be used instead of the more specific ImageViewer.

4 Conclusions

In this paper, we presented our extension version of OpenlGTLink, OpenlGTLinkMUSiIiC, for advanced
ultrasound research. Our USMessage and EIMessage data types are useful to communicate ultrasound
data or a result of advanced ultrasound imaging such like elasticity images over TCP/IP networks.
Moreover, these two message types backwards-compatible with the ImageMessage from OpenlGTLink.
Our other new message types — GenMessage, ArgMessage, FileMessage — enhance the flexibility of
OpenIGTLink by allowing sending and receiving user-defined memory contents. To improve the

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx
Distributed under Creative Commons Attribution License

http://www.insight-journal.org/
http://hdl.handle.net/10380/xxxx
http://creativecommons.org/licenses/by/3.0/us/

12

performance of network classes of OpenlGTLink, we developed two network classes — MUSIiiCServerT
and MUSIiCClientT — by implementing an independent network thread and associated network buffers. In
particular, the MUSIiiCServerT class is designed for multiple-client connections.

Using OpenlGTLinkMUSIiC, we built two applications for our advanced ultrasound research. For real-
time ultrasound thermal monitoring, ultrasound RF-data, B-Mode images, and elasticity images are
communicated by USMessage, ImageMessage, and EIMessage, respectively. In another application, using
an ultrasound photoacoustic imaging system, pre-beamformed RF-data and RF-data are sent and received
through USMessage data.

Our OpenlGTLinkMUSIiC communications protocol is compatible with the existing OpenlGTLink. We
are looking forward to integrate the OpenlGTLinkMUSIiC with a wider variety of Image Guided Therapy
systems. In the near future, we will make an open-source implementation of the protocol and the socket
classes publicly available.

Acknowledgment

The authors would like to thank Nathanael Kuo and Nishikant Deshmukh for their valuable input and
support. Equipment support was generously provided by Ultrasonix.

Reference

[1] N. Deshmukh, H. Rivaz, and E. Boctor, "GPU-Based Elasticity Imaging Algorithms." pp. 45-54.

[2] N. P. Deshmukh, H. Rivaz, P. J. Stolka et al., "Real-time GPU-based Analytic Minimization/
Dynamic Programming Elastography.”

[3] P. J. Stolka, M. Keil, G. Sakas et al., "A 3D-elastography-guided system for laparoscopic partial
nephrectomies." pp. 762511-1.

[4] J. L. S. Su, B. Wang, and S. Y. Emelianov, “Photoacoustic imaging of coronary artery stents,”
Optics Expr ess, vol. 17, no. 22, pp. 19894-19901, 2009.

[5] E. M. Boctor, N. Deshmukh, M. S. Ayad et al., "Three-dimensional heat-induced echo-strain
imaging for monitoring high-intensity acoustic ablation." p. 24.

[6] P. J. Stolka, H.-J. Kang, and M. B. Emad, “The MUSIiC toolkit: Modular Real-Time Toolkit for
Advanced Ultrasound Research,” MIDAS Journal, 2010.

[7] J. Boisvert, D. Gobbi, S. Vikal et al., "An Open-Source Solution for Interactive Acquisition,
Processing and Transfer of Interventional Ultrasound Images.”

[8] K. Chinzei, and J. Tokuda, “Extension to OpenlGTLink; Smart Socket Connection, XML as
Message, Logging, and One-to-multi Relaying,” The MIDAS Journal, no. Systems and
Architectures for Computer Assisted Interventions, Aug 15, 2009, 2009.

[9] J. Tokuda, G. S. Fischer, X. Papademetris et al., “OpenlGTLink: an open network protocol for
image guided therapy environment,” The International Journal of Medical Robotics and
Computer Assisted Surgery, vol. 5, no. 4, pp. 423-434, 20009.

[10] "OpenIGTLink," http://www.na-mic.org/Wiki/index.php/OpenlGTLink.

[11] "3D Slicer," http://www.slicer.org/.

[12] N. Kuo, H. J. Kang, T. DeJournett et al., “Photoacoustic imaging of prostate brachytherapy seeds
in ex vivo prostate (Proceedings Paper),” 2011.

[13] M. Xu, and L. V. Wang, “Photoacoustic imaging in biomedicine,” Review of scientific
instruments, vol. 77, pp. 041101, 2006.

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx
Distributed under Creative Commons Attribution License

http://www.insight-journal.org/
http://hdl.handle.net/10380/xxxx
http://creativecommons.org/licenses/by/3.0/us/
http://www.na-mic.org/Wiki/index.php/OpenIGTLink
http://www.slicer.org/

	1 Introduction
	2 OpenIGTLinkMUSiiC
	3 Applications for advanced ultrasound research using OpenIGTLinkMUSiiC
	4 Conclusions

