
Morphological Opening on a Graph
Release 0.00

David Doria

July 18, 2011

Army Research Laboratory, Aberdeen MD

Abstract

This document presents an implementation of an algorithm to perform a morphological opening on a
graph. The intent is to remove short branches in a graph while preserving the large scale structure. This
implementation is based on the algorithm described in “Efficient Closed Contour Extraction from Range
Image’s Edge Points”. We have used the data structures from Boost Graph Library (BGL).

The code is available here: https://github.com/daviddoria/GraphOpening

Latest version available at the Computational Algorithms Journal Distributed under
Creative Commons Attribution License

Contents

1 Introduction 2

2 Graph Erosion 2

3 Graph Dilation 2

4 Algorithm 2
4.1 Stopping Criteria . 2

Naive Approach . 2
Null Removal Difference . 3

4.2 Speedup . 3
Naive Approach . 3
Speedup . 3

5 Demonstration 3

6 Code Breakdown 4

2

7 Code Snippet 5

1 Introduction

This document presents an implementation of an algorithm to perform a morphological opening on a graph.
This opening consists of a series of erosions, followed by a series of dilations. This is often done as a first
step in contour closure algorithms. This implementation is based on the algorithm described in [1].

2 Graph Erosion

The morphological erosion operation on a graph is defined as removing all edges attached to end points. An
end point is a vertex with only one incident edge (a vertex with degree 1). The effect of performing multiple
iterations of this operation on a graph is that small branches will be ”absorbed” into a larger, parent branch.

3 Graph Dilation

The morphological dilation operation on a graph is only defined on a graph which has previously been
eroded. The dilation adds back edges to current end points that were removed in a previous erosion opera-
tion.

4 Algorithm

Now that we have described the two basic operations of erosion and dilation we can describe the morpho-
logical opening operation. The algorithm proceeds as follow:

• Erode the graph multiple times until a stopping criteria is met

• Dilate the graph the same number of times as the graph was eroded

Note that this typically does not simply re-grow the original graph. If enough erosions were performed to
absorb a branch completely, the branch will not grow back unless the erosion has continued so far that the
root of the branch eventually becomes an end point of a future iteration.

4.1 Stopping Criteria

Naive Approach

The only parameter to be set is how many erosions to perform (as the number of dilations must be the same
number).

Latest version available at the Computational Algorithms Journal Distributed under
Creative Commons Attribution License

4.2 Speedup 3

Null Removal Difference

Recall that our goal is to preserve large structure in a graph. A good indication that we have arrived at
a “stable” large structure is that the number of edges removed in successive erosion operations remains
constant for some specified number of iterations. That is, if we remove 3 edges on the first erosion, then
5 edges on the next erosion (a difference of 2), the graph structure is likely still changing. However, if we
move 3 edges on the first erosion, then 3 edges on the next erosion (a difference of 0), the graph structure
has potentially stabilized, if we proceed with a few more erosions and we continually remove 3 edges, then
we can be rather sure that the large scale structure has been found.

4.2 Speedup

Naive Approach

The most straight forward implementation is to, at each iteration, perform an exhaustive search of the ver-
tices to determine which ones have degree 1. Since finding the end points is the only costly procedure in the
algorithm, this is a bad idea.

Speedup

An exhaustive search for end points must be performed on the original graph at the beginning of the algo-
rithm. However, at both the erosion and dilation steps, we can search a much smaller set of vertices for end
points.

Erosion Speedup After each erosion is performed, the set of candidate vertices for the next step (either
erosion or dilation) consists of the vertices that were attached to the edges that were removed, excluding the
vertices that are now degree 0 (no longer attached to the graph).

Dilation Speedup After each dilation, the set of candidate vertices for the next step consists of the vertices
that were newly re-attached to the graph.

If an edge was removed in the erosion process, as long as it belonged to the child-most branch that was
entirely removed, it will not be regrown in the dilation process.

5 Demonstration

In Figure 1, we show the result of one erosion and one dilation. Note that the branches of length 1 were
completely removed, while the branch of length 2 was only made shorter.

Latest version available at the Computational Algorithms Journal Distributed under
Creative Commons Attribution License

4

(a) Original graph. (b) After 1 erosion. (c) After 1 erosion and 1 dilation.

Figure 1: One iteration of the opening operation.

In Figure 2, we show the result of one erosion and one dilation. Note that all of the short branches were
completely removed, while the large scale structure was preserved. The number of erosions and dilations
are indicated in the captions. For example, #E = 2,#D = 1 indicates 2 erosions and 1 dilation have been
performed.

(a) Original graph. (b) #E = 1,#D = 0. (c) #E = 2,#D = 0. (d) #E = 2,#D = 1. (e) #E = 2,#D = 2.

Figure 2: Two iterations of the opening operation.

6 Code Breakdown

• Types.h - Defines the graph structure used throughout this code.

• Helpers.h/cxx - Defines several functions that are not related to the morphological operations. These
are supporting functions for the algorithm implementations.

• GraphOpeningNaive.*, GraphOpeningNaiveExample.cxx - This is the naive implementation of the
algorithm, where the search for end points is exhaustive.

• GraphOpeningTracking.*, GraphOpeningTrackingExample.cxx - This is the implementation of the
speedup which tracks potential end points during each operation. You should use these functions in a
real application.

• GraphOpeningNullRemovalDifferenceExample.cxx - This example demonstrates the successive null
edge removal difference stopping crition.

• Demo.cxx - There is significant overhead in producing images of graphs with missing edges without
the vertices being repositioned. To do this, after each operation we create a graph with identical
structure to the original graph, but with edges that have been removed marked as “invisible”. The
layout program (’neato’ from ’graphviz’), then positions the vertices identically, but does not draw

Latest version available at the Computational Algorithms Journal Distributed under
Creative Commons Attribution License

5

the edges that should have been removed. This is necessary for easy visualization of each step of the
algorithm, but should not be done in a production application.

7 Code Snippet

The interface to the code is very simple, as shown below:

Graph graph = ReadGraph("input.dot");
unsigned int numberOfIterations = 2;
Graph openedGraph = OpenGraphFixedTracking(graph, numberOfIterations);
WriteGraph(openedGraph, "output.dot");

References

[1] Sappa, A, Efficient Closed Contour Extraction from Range Image’s Edge Points. Proceedings of the
2005 IEEE International Conference on Robotics and Automation 1

Latest version available at the Computational Algorithms Journal Distributed under
Creative Commons Attribution License

