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Abstract

Various metrics have been proposed in the literature for performing intrinsic automatic image to image
registration. Among these measures, mutual information is a very popular one because of its robustness
and accuracy for a wide variety of applications. In this paper, we propose a filter for performing non-rigid
registration by estimating a dense deformation field derived from the mutual information metric. This
filter takes place in the ITK PDE deformable registration design like the Demons algorithm of Thirion.
We also show how the concept of metric flow is conceptually linked to the concept of metric derivative for
a prior transformation model by the transformation jacobian. We also suggest a sparse implementation
of the GetJacobian() method for reducing the computation time of a metric derivative for local
transformations models.
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1 Introduction

Intrinsic registration[8] refers to automatic registration techniques using the images signal intensities to
compute the best alignment. In this paper, we will focus the case ofglobal similarity metricsconsidering
the mapping of the entire fixed image to moving image domains.

For maximizing these kind of metrics, the optimization strategy varies from the representation of the trans-
formation, either parametric or non-parametric. In the case of a parametric representation, a finite number
of parameters allows to represent rigid as well as non-rigid transformations with reasonable complexity. In
this context, a broad range of numerical optimization schemes can be used (gradient based, stochastic search
(SPSA[11], One Plus One[12], Powell[7], . . . ).

When it comes to estimate a dense deformation field where the displacement vectors at each voxel are
considered separately, the dimension of the optimization space tends to be so big that a variational method
is often the privileged approach in the literature. The most popular variational registration technique is
the optical flow[14] algorithm and has been widely used for intra-subject and atlas to patient registration.
More recently, Hermosillo[5] has described a generalization of the optical flow algorithm for different well
know metrics in medical images registration (including mean squared difference, mutual information and
normalized correlation). In this paper, we first recall in Section2 the main concepts required for computing
the flow of a general metric. Section3 explains how the concept of flow and the concept of derivative for
a given transformation model are related. Section4 proposes to include the concepts seen in the previous
sections in ITK using helper classes to avoid copies of the same code in the toolkit. Finally, Section5
illustrate the use of mutual information flow with or without prior regularization on clinical some clinical
cases.

2 Metric flow

If no specific model is chosen for the transformation maximizing the global similarity between the two
images to align, a common requirement is to search for a displacement fieldu making the cost functionI
stationary [5]. The problem is then reformulated as finding the displacement fieldu such that

∂I(u + εh)
∂ε

∣∣∣∣
ε=0

= 0, ∀h (1)
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Equation (1) means that foru optimal, adding any continuous functionh scaled by anε ∈ R parameter has
an optimal solution forε = 0.

For simplification purposes, we will consider in this paper the simple case of a cost function which does not
contain a regularization term. The cost function can thus be written in a general way as

I(u) =
1
|Ω|

∫
Ω

φ(x,u(x)dx (2)

A regularization term would include in Equation (2) a dependency regarding the spatial derivatives of the
displacement field.

The derivative in Equation (1) can be written like a scalar product between the perturbation functionh and
the partial derivative ofφ regardingu [5]

∂I(u + εh)
∂ε

∣∣∣∣
ε=0

=
1
|Ω|

∫
Ω

h(x) · φ,u(x)dx = 0 ∀h (3)

Since Equation (3) must hold∀h, the displacement fieldu making the cost functional stationary must satisfy
the following condition onΩ

Metric flow
def= φ,u(x) = 0 ∀x ∈ Ω (4)

The most common way of solving Equation (4) is a gradient descent scheme computing at each iteration an
incremental displacement field that is then added to the current displacement field :ut+1 = ut + ∆ut with

∆ut = −η · ∇uI (5)

whereη is a learning rate also referred to astime stepin the ITK [6] implementation.

2.1 Application to the mean square error metric

The simple case of a mean square error metric can be considered in a first time for applying the concepts of
Section2. In this case the metric can written as

MSE(u) =
1
|Ω|

∫
Ω

(m(x + u(x))− f(x))2 dx (6)

wherem (f ) stands for the moving (fixed) image intensity function andu(x) is the displacement field inx

The derivative in Equation (1) is equal to

∂MSE(u + εh)
∂ε

∣∣∣∣
ε=0

=
1
|Ω|

∫
Ω

2 · (m(x + u(x))− f(x)) · ∇m(x + u(x)) · h(x) · dx (7)

By identifying Equation (7) with Equation (3), the metric flow for the MSE metric appears as

φMSE
,u (x) =

1
|Ω|

2 · (m(x + u(x))− f(x)) · ∇m(x + u(x)) (8)

This equation reminds from an optical flow equation except that the denominator has been omitted. Cachier
[1] has shown that the denominator of Thiron’s evolution equation can be obtained by a second order ana-
lyze.
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2.2 Application to the mutual information metric

The same approach can be applied to the mutual information metric. Mutual information is computed from
the jointpfm and marginal (pf andpm) histograms of the fixed and moving images using

MI =
∑
i1,i2

pfm(i1, i2) log(pfm(i1, i2))

−
∑
i2

pm(i2) log(pm(i2))−
∑
i1

pf (i1) log(pf (i1))
(9)

From (9), the derivative of (1) can be computed as [13] (Eq. 23)

∂MIu+εh

∂ε

∣∣∣∣∣
ε=0

=
∑
i1,i2

∂pf,m
u+εh(i1, i2)

∂ε

∣∣∣∣∣
ε=0

· log

(
pf,m
u+εh(i1, i2)
pm
u+εh(i2)

)
(10)

Mattes [9] has proposed the following estimator of the joint probability density function (PDF) between the
fixed and moving image.

pf,m
u (i1, i2) =

1
|Ω|

∫
Ω

β1(f(x)− i1)β3(m(x + u)− i2)dx (11)

Using the estimator of Equation (11), the derivative regardingε can be expanded as

∂MIu+εh

∂ε

∣∣∣∣∣
ε=0

=
1
|Ω|

∫
Ω
∇m(x + u)κf,m

u (x)︸ ︷︷ ︸
φMI

,u (x)

h(x)dx (12)

whereκf,m
u (x) is defined by

κf,m
u (x) =

1
|Ω|

∑
i1,i2

log

(
pf,m
u (i1, i2)
pm
u (i2)

)
β1(f(x)− i1)β3′

(m(x + u)− i2) (13)

Equations12 and13 show that the mutual information flow is the product between the moving image gra-
dient (as in the case of the MSE metric) multiplying a weighted sum over all bins of the joint PDF variation
generated by theεh variation in the displacement field.

3 Projecting the metric flow for prior transformation models with the trans-
formation jacobian

In this section, a connection is established between the metric flow and the derivative for a given transfor-
mation model which uses theGetJacobian() of the itk::Transform base class.

In the following, we assume that the transformationT (x, {pk}) can be developed at a coordinatex using a
first order development

∆T(x) ∼=
K∑
k

∂T(x)
∂pk︸ ︷︷ ︸

Transformation jacobiank
def
= Jk(x)

∆pk (14)
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where the{pk} designate the transformation parameters. Equation (14) brings also forward the concept of
transformation jacobian as it is described in the ITK Software Guide [6] (Section 8.8.2).

The total displacement at a given iteration of the optimization procedure is the sum of the current displace-
ment field and the variation of the transformed coordinate

utot(x) = (T(x) + ∆T(x))− x = u(x) + ∆T(x) (15)

Instead of looking for a dense deformation field, classical numerical optimization schemes look at each
iteration for the gradient of the metric2 regarding the transformation parameters. Using the approximation
of Equation (14), this gradient can be computed by

∂I(u(x) + ∆T(x))
∂pk

=
1
|Ω|

∫
Ω

φ,u(x) · ∂u(x)
∂pk

dx

=
1
|Ω|

∫
Ω

φ,u(x) · Jk(x)dx
(16)

Equation (16) show that the derivative of the metricI is simply equal to the scalar product between the
metric flow and the transformation jacobian. This result confirms the intuition that both approaches should
be linked since they both result from a first order analysis of the metric variations. In the metric flow case,
the variation of the metric is prompted by a continuous perturbation functionh. In the parametric case, the
variation is prompted by discrete perturbation of the vector of transformation parameters.

For speeding up the computation of Equation (16), the continuous integral can be approximated by random
samples scattered uniformly over the fixed image domain

∂I(u(x) + ∆T(x))
∂pk

=
1

Ns

∑
i

φ,u(xi) · Jk(xi) (17)

3.1 Example : translation transformation

In the case of a translation transform, the jacobian of the transformation is the identity matrix.

dy(x)
dt

= (dy(x)/dtx, dy(x)/dty, dy(x)/dtx) = I3 (18)

Injecting this expression of the transformation jacobian in Equation (16) leads to

∂I(u(x) + ∆T(x))
∂tk

=
1
|Ω|

∫
Ω

φ,u(x) · êkdx (19)

wheretk stands for the translation parameter inxyz andêk(x) designates thekth basis vector. This shows
that in the case of a translation transform, the metric gradient as implemented currently in ITK can be seen
as an average of the flow vectors (8) over the entire image domain.

3.2 Local transformations

A simple distinction can be made among the large number of transformation models : one the one hand,
global transformationscan be defined as transformations whose each parameter acts on the entire image
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domain, on the other handlocal transformationsare transformations whose each parameter acts only on a
region of the fixed image domain.

On an implementation point of view, the main difference for computing the metric derivative as described
in Section3 is the sparse appearance of the transformation jacobian. Indeed, in the case of a local transfor-
mation, only a few subset of parameters acts on a given coordinate of the fixed image domain. Therefore,
including in ITK a support for dealing with a sparse representation of the transformation jacobian could
provide a speed-up in non-rigid registration where this derivative is explicitly computed.

BSpline transformation

Using the notation of Mattes [9], a BSpline transformation is characterized by the following expression of
the displacement field

u(x) =
∑

k

pk · β(3)

(
x− λj

∆ρ

)
(20)

where the subset ofk indices covers the 64 control points nearest to thex coordinate andβ is the product of
three separate kernels inxyz.

The 64 non-zero columns of the transformation jacobian at a given pointx have the following aspect [9]

∂u(x)
∂pk,x

=
[
β(3)

(
x− λj

∆ρ

)
, 0, 0

]T

(21)

for thex component ofpk (they andz components follow similarly).

In our implementation, instead of returning a full transformation jacobian, a method called
GetSparseJacobian() returns each non-null column of the jacobian among with the column indice in
the full matrix. The advantage of this representation is to speed up the computation of the metric derivative
when projecting the metric flow on the vector of transformation parameters.

Volumetric mesh transformation

Volumetric meshes are an alternative way of generating a local transformation model.In this approach, the
domain of interest is divided into a mesh of elements.Numerous techniques have been proposed for design-
ing elements which follow accurately the borders of the different structures. These techniques generally
allow to find a compromise between two conflicting requirements : faithful surfaces representation and well
shaped elements (see for instance [10, 4, 3, 2]).

Inside each element of the volumetric mesh, the displacement fieldu is estimated by

ul(x) =
∑

n∈Nodes

un
l Nn

el(x) (22)

whereun
l is the lth component of the displacement for thenth node. Nn

el represents the shape function
associated with thenth node. Shape functions are non-null in the element volume only. The shape functions
of a node tends to zero around the other node of the same element. In the case of tetrahedral meshes, the
shape functions are often chosen as linear functions.
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4 Helper classes and programming design

The code attached to this submission attempts to integrate the concepts described in this paper into the
current ITK design. The following of this section describes the main features of our implementation.

4.1 Volumetric mesher and Elastic transformation

The itkElasticTransform class implements a generic elastic transformation using the existing
FEM design of the toolkit. The transformation is parametrized by the displacements at the nodes
of a volumetric mesh. The mesh is generated by another object deriving of an abstract class called
itkMesher . As an example two mesh generation schemes are proposed in this paper. A first one (
itkMesherTetrahedrons ) generates a regular grid of tetrahedrons by splitting a lattice of cubes in a
five tetrahedrons pattern[4] . The second (itkMesherTetrahedronsBCC ) starts from two interleaved
regular grids and connects them with tetrahedrons in a red-green pattern [10].

The mesher object is templated over the image dimension and the type of element used in the volumetric
mesh (tetrahedral elements in the examples in this paper). The elastic transformation is also templated over
the element type (in addition to the coordinate type and the input/output space dimensions like any other
transformation). In the ITK-FEM design, each element is associated with a material property (e.g. linear
elasticity). Such a material property intervenes for including a regularization strategy in the registration
pipeline.

This can be for instance achieved by adding the deformation energy to the cost function passed to
the optimizer. For this purpose, the elastic transformations returns the deformation energy using the
GetDeformationEnergy method. Another possibility is to use a gradient descent approach adding
at each iteration the energy derivative by use of theGetDerivativeDeformationEnergy method.

4.2 Hermosillo mutual information flow

The itkHermosilloMutualInformationFilter and itkHermosilloMutual-
InformationFunction objects implements the mutual information flow concepts into the ITK
PDE deformable registration design.

At each iteration, the joint probability densities are estimated like in the Mattes implementation by sampling
the fixed image domain and updating the probability densities for the current displacement field.

When theComputeUpdate method is called at each coordinate of the dense deformation field, the varia-
tion of the joint regarding the displacement at this point is computed by deriving Equation (11). The metric
flow is then computed from the PDF derivative using Equation (10). As explained in the next subsection, our
implementation uses an helper class for sharing functionalities with the existing Mattes mutual information
class.

4.3 Mattes mutual information class and helper

Since the computation of this flow is really similar to the computation of the derivative in the itkMattes-
MutualInformationImageToImageMetric, we moved some of the code into an helper class which is used in
common by the Mattes mutual information metric class and the Hermosillo mutual information flow class.



8

The concept of local jacobian transformation has been added in the new Mattes mutual informa-
tion class for speeding up the computation of the metric derivative. This information is used in the
ComputePDFDerivatives class : only the slices in the joint PDF derivative corresponding to non-
null columns in the jacobian are updated. However, the resulting improvement in computation time does not
yet match the performances reached by a B-Spline transformation, since for this transformation, all jacobian
values are computed only once and stored in memory. This assumes that the jacobian will always return the
same value at a given coordinate for any set of transformation parameters. Even if it is true for B-Spline
transformation and transformation based on volumetric meshes, this property can not be generalized to any
local jacobian transformation.

In the ideal case, the helper class should implement aGetFlow(PointType&) which would be used by
the mutual information flow filter and the mutual information metric when computing the derivative using
Equation (17). However, in the case of the mutual information metric, this would require two iterations over
the random fixed image samples : a first one for updating the probability densities and a second one for
computing the metric derivative. If this is not the problem for the case of the mutual information flow (the
update of probability densities approximated using random samples if far less time consuming that visiting
all the displacement field voxels), it would decrease the performances of theGetValueAndDerivative
method in the mutual information metric class. For this reason, only the random sampling of the fixed
image domain, the computation of the moving image derivative at a mapped coordinate and the mapping of
a moving or fixed image intensity to an histogram bin index have been moved to the Helper class.

5 Experiments

This section describes some experiments comparing three algorithms

• The non-rigid B-Spline deformation model with LBFGSB optimizer and Mattes mutual infor-
mation metric (the code is taken from the fileDeformableRegistration8.cxx in the
Examples/Registration/ ITK directory

• The non-rigid FEM deformation model with LBFGSB optimizer and Mattes mutual information

• The mutual information flow algorithm.

The parameters for each of these algorithms are described in theREADME.txt file inside theBuild/
directory of this submission.

5.1 Sphere to ellipsoid matching

For synthetic experiments, a matching of a sphere to an ellipsoid is proposed. The background-foreground
intensities in the ellipsoid are switched compared to the sphere for simulating a multi-modal registration
experiment. Figure1 shows the two images to matched in the first row. The sphere is taken as moving
image and must be deformed to an ellipsoid. The second row of Figure1 plots the sphere deformed by
the three transformation model (B-Spline, volumetric mesh and mutual information flow). For the B-Spline
deformation, we use a grid of5 on the fixed image region (which means a total grid of8). For the volumetric
mesh, we used the BCC regular tetrahedral mesher with a resolution of10 pixels in each dimension for the
two interleaved grids. The three versions of the deformed sphere are stored in theBuild/results
directory of this submission. Three tests have been added to theCMakeLists.txt for ensuring that the
three algorithms always produce identical results on this testing data-set.
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Synthetic fixed image Synthetic moving image

B-Spline deformed sphere Vol. mesh deformed sphere Mi flow deformed sphere

Figure 1: Sphere to ellipsoid matching for testing the three different deformation models (B-Spline, volu-
metric model and dense deformation flow). The upper row shows the images to be matched, the bottom row
show the deformed sphere using each algorithm with the target contour in blue.

The code for running this experiment can be found in the filesregistrationFEM.cxx ,
registrationBS.cxx andregistrationMIFLOW.cxx in theSource directory.

Figure2 shows the three dimensional displacement field produced by the mutual information flow algorithm.
An important observation from practical experiments is the importance of the number of bins chosen in the

joint PDF estimation. A closer look to Equation (10) shows potential numerical issues due to thepf,m

pm ratio,

amplified by thelog(·) function. Empty bins wherepf,m tends to zero can require the multiplication between
small and large numbers. This problem is not specifically related to mutual information flow but also appears
for computing the derivative mutual information regarding transformation parameters. However in this case,
the effect is attenuated by the averaging of all flow vectors on the support of each basis function.

Since the optimizer for the B-Spline and the volumetric mesh is the same (LBFGSB optimizer), we can plot
the value of the cost function at each iteration to compare the convergence of these two algorithms as shown
in Figure3. Even if the number of parameters is more or less equivalent for both transformation models
(1536 for B-Spline and 1473 for the volumetric mesh), the convergence is faster in this case with a B-Spline
deformation model.

5.2 Lung CT images matching

We also ran the three algorithms on a data-set of CT lung images (512 voxels).1 For the B-Spline deforma-
tion, we use a grid of8 on the fixed image region (which means a total grid of8). For the volumetric mesh,
we used the BCC regular tetrahedral mesher with a resolution of90 pixels two interleaved grids. All com-

1These images can be donwloaded at this URL : http://euterpe.tele.ucl.ac.be/Waleo2/insight
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Figure 2: Dense deformation field obtained by mutual information flow matching for a time step of 500 and
250 iterations. The color codes the relative magnitude of the component normal to the slicing plane.

Figure 3: Mutual information plotted at each iteration of the LBFGSB optimizer for a B-Spline deformation
model (lower curve,�) and a volumetric mesh deformation model (upper curve,�). The final cost function
value is the same with both deformation models but the B-Spline deformation model converges faster.
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Fixed image Moving image

B-Spline deformed mov. image Vol. mesh deformed mov. image Mi flow deformed mov. image

Figure 4: Mutual information based matching of two CT respiratory phases using three deformation models
(B-Spline, volumetric model and dense deformation flow). The upper row shows one coronal slice of the
fixed and moving images. The bottom row shows the deformed moving image using each algorithms. Lung
contours in the fixed image are overlaid over the original and deformed versions of the moving image. No
significant difference is observed in coronal views between the three algorithms.

mand lines for generating the results are stored in theregistration-XX.sh (where XX designates the
algorithm) scripts in theBuild directory. All other parameters are contained in thecxx files and identical
to those used for the previous experiment.

Figures4 and5 show for one sagittal and one coronal slice the results of the three algorithms. The lung
contours in the fixed image are overlaid over the original and deformed moving images. The transformation
to recover is mainly a vertical shift in the bottom slices of the image. The three algorithm are able to provide
a good estimation of the deformation. Some differences appear in areas where the deformation is non-linear
(B-Splines perform slightly better than a tetrahedral elements of a BCC mesh with linear shape functions).
A dense deformation is the most flexible representation of the deformation and mutual information flow
therefore gives a better image-contours match. However, mutual information flow is more sensitive to local
artifacts in the image (like at the bottom right of the slice shown in Figure5).

6 Conclusion

This paper has introduced two possible algorithmic contributions for the ITK toolkit.

The first one is to introduce in ITK a new deformation model based on a volumetric mesh with shape
functions like in a finite element approach. The mesh is used as a transformation model and can be plugged
with any similarity metric or optimization method available in the toolkit. Elastic transformation models
raise the possibility to associate mechanical properties with each element of the mesh. Such property is
potentially very useful in the design of regularization strategy : different materials could be used for meshing
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Fixed image Moving image

B-Spline deformed mov. image Vol. mesh deformed mov. image Mi flow deformed mov. image

Figure 5: Mutual information based matching of two CT respiratory phases using three deformation models
(B-Spline, volumetric model and dense deformation flow). The upper row shows one sagittal slice of the
fixed and moving images. The bottom row shows the deformed moving image using each algorithms. Lung
contours in the fixed image are overlaid over the original and deformed versions of the moving image. In
regions where the deformation is non-linear, B-Splines perform slightly better than a BCC mesh with linear
shape functions. Mutual information flow has the best flexibility in its transformation representation and
can render pretty well non-linear deformations. However, mutual information flow is more sensitive to local
artefact’s in the image (see the bottom right of this slice for instance).
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the fixed image region and allow this way an heterogeneous regularization.

The other contribution of this paper is the implementation of a dense deformation field estimation scheme
optimizing mutual information. Since a significant part of this implementation is inspired from the Mat-
tes implementation of mutual information, we propose to use an helper class for avoiding undesired code
duplications.
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