
Why do walks with Hilbert seem to take so long?

Release 0.00

Nicholas J. Tustison

November 8, 2011

Department of Radiology and Medical Imaging, University of Virginia

Abstract

Hilbert curves look pretty sweet which is why I wrote this class. Take a look at the pictures and see for yourself.

Latest version available at the [Insight Journal](#) [<http://hdl.handle.net/10380/xxx>]
Distributed under [Creative Commons Attribution License](#)

Contents

1 Introduction	1
2 Gallery	2

1 Introduction

Various space filling curves exist to map n -dimensional data to 1-D. One such curve, the Hilbert curve, has nice properties such as locality preservation.¹

This class, `itkHilbertPath.h`, is used to construct a Hilbert spacing-filling curve (derived from `itkPath.h`). The path is defined by its dimensionality and order ($>= 1$) with its starting point at $[0]^{\text{Dimension}}$. The size of the path in each dimension is 2^{order} where each discrete location is visited by that path. For example, a 2-D Hilbert path of order 8 can map each pixel of a 256x256 image onto the 1-D path. More properties and visualizations can be found in various places on the web.

The implementation is based on [1] and is a direct porting of Aldo Cortesi's python code.²

¹http://en.wikipedia.org/wiki/Hilbert_curve

²<https://github.com/cortesi/scurve>

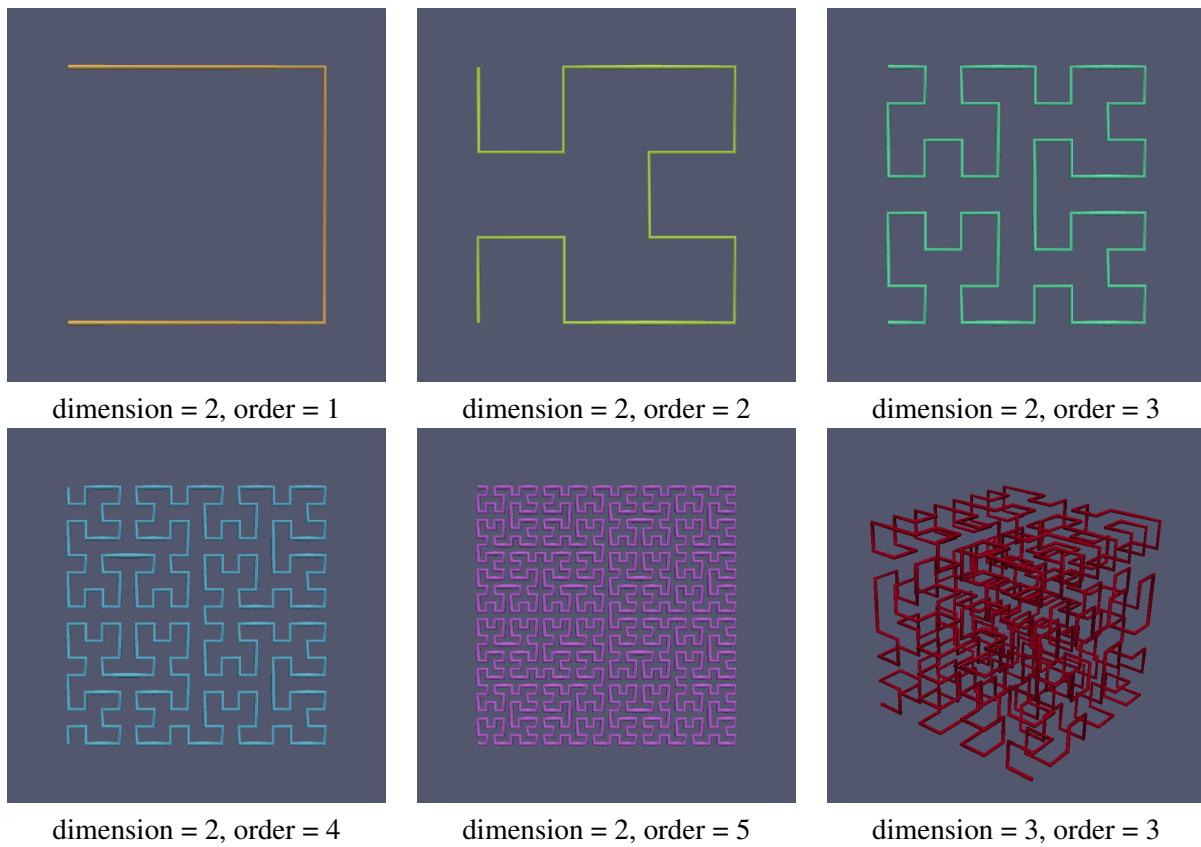


Figure 1: 2- and 3-D hilbert curves for different orders.

The code is fairly simple to use and is demonstrated in the accompanying file `MakeHilbertPath.cxx` which was used to create the images in Figure 1.

References

[1] Chris Hamilton. Compact hilbert indices. Technical report, Dalhousie University, 2006. [1](#)