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Abstract

This paper describes the implementation of the LDFFD and TDFFD algorithms. Both quantify motion
and deformation from an input image sequence by taking profit of the temporal dimension of velocity
fields in the diffeomorphic registration framework to process the input image sequence as a single 3D+t
object. The rationale behind these approaches is to formulate motion estimation in an image sequence as
a multi-channel registration problem. This paper describes our implementation, currently following the
original ITK registration framework without multi-threading and diffeomorphic registration framework.
Migration to ITKv4 will be addressed in future work. We also provide code for computing strain on a
segmentation represented as a VTK polydata mesh. Program usages for LDFFD and TDFFD as well
as strain quantification results are given for one 3D ultrasound image sequence acquired on a healthy
volunteer.
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1 Introduction

Diffeomorphic registration algorithms were originally designed to solve for large invertible deformations
between a pair of images. They solved this problem by evolving from a displacement-based representation
of the transformation to a velocity-based representation. In this framework, the mapping between the two
images is obtained by following the flow of a velocity field over time. The composition of - theoretically - in-
finitesimal time steps guarantees to generate invertible transforms, provided that the velocity is a continuous
function.

Since diffeomorphic registration algorithms introduced a temporal component to the transformation, several
researches have studied the implications of extending such framework to problems that naturally involve
time. Khan e al. [8] extended the Large Deformation Diffeomorphic Metric Mapping (LDDMM) [1] reg-
istration framework to quantify longitudinal shape changes in a sequence of images. They used a dense
representation of the velocity field and smoothed at every iteration, the velocity field by a Gaussian kernel
in the spatial dimensions. Qui et al. [9] used time sequence diffeomorphic mappings to track anatomical
shape changes in serial images for a collection of subjects. They then map the trajectories using parallel
transport to a reference space to compare different subjects. Durrleman et al. [7] followed a similar concept
for analyzing the anatomical variability of a set of longitudinal data.

In this paper, we provided the implementation and some basic examples of applications for the Large Dif-
feomorphic Free Form Deformation (LDFFD) and Time Diffeomorphic Free Form Deformation (TDFFD)
algorithms [2, 5, 4, 6]. The key idea of the two algorithms is to represent the temporal transformation from
a reference frame to all frames of an image sequence using the composition of small time steps, represented
using a velocity field.

The two approaches differ in the representation of the velocity field. In the LDFFD approach, the transfor-
mation is encoded as a vector of FFD transformations. In this setup, the time dimension is only represented
through the concatenation of small transformations. Invertibility of the transformation is guaranteed by im-
posing an upper bound [10] on the magnitude of each step. If this bound is reached during the optimization
process, the time step exceeding the upper bound is split by finding the closest approximation to its square
root [3].

In the TDFFD framework, the velocity is represented as a continuous function over space and time by using
kernels in the 4D space. Our implementation uses a fixed time step and checks the positivity of Jacobians
over each trajectory to ensure that the transformation is indeed invertible. The temporal smoothness in time
of the velocity field guarantees to recover temporally smooth transformation. Another advantage is that the
trajectories can be evaluated for any continuous time and are not restricted to the discrete set of imaging
time points.

In both approaches, some coupling appears in the expression of the metric derivatives. By coupling, we
mean that the optimization of the velocity field at one time step evaluates image intensities not only at the
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Figure 1: Coupling: the optimization of velocity at one time step involves not only the images adjacent
to this time step but potentially all pairs of images in the sequence. Each pair of images can be seen as a
channel for optimizing velocity.

adjacent frames but through all the sequence. An analogy to this is the estimation of the slope of a linear
function from noisy input data. If two adjacent point are considered for estimating the slope, this estimate
will amplify the noise and give an inaccurate slope value. If instead, all points of the dataset are used,
the noise can be compensated in a more robust way. This is illustrated in Fig. 1. A variation of velocity
at time fy has influence on the transported coordinate at any frame of the sequence. The comparison of
intensities between the closest frame to 7y and any frame in the sequence can be seen as one observation
channel for optimizing the velocity field. This inter-dependance is expected to increase the robustness of
motion quantification algorithms. This was shown for synthetic 3D ultrasound sequences in [4].

2 Implementation

2.1 TDFFD

In the TDFFD approach, time is represented as the last coordinate in the pixel stack of the input image.
Since the velocity field is continuous in time in this approach, both velocity and input images are expressed
in a 4D space for 3D image sequences. The input sequence is represented as a single object rather than the
concatenation of spatial images.

We reimplemented metrics and transform objects, copying the existing ITK registration framework and ex-
tending it to handle temporal image sequences as single objects. It is currently detached from the existing
ITK framework and does not take advantage of all sampling and multi-threading strategies implemented in
ITKv4. Fig. 2 gives the main classes, instances and inheritances that are used in our implementation. Taking
the BSplineDeformableTransform as starting point, we created a class called BSplineField that inter-
polates control point velocities to compute the velocity value at any spatiotemporal location. We could
not use BSplineDeformableTransform as it is because it does not allow for different input and out-
put dimensions (for a 3D image sequence, velocities are three dimensional vectors in a four dimensional
space). The basic functionalities of a temporal diffeomorphic transformation were then implemented in the
TimeDiffeomorphicTransform class. This leaves the possibility to work with other representations of the
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2.2 LDFFD 4
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Figure 2: Diagram of classes for the TDFFD registration framework.

velocity field or with another composition strategy for generating diffeomorphic mappings.

Regarding the image similarity metric, we implemented mean squared errors with fixed or floating ref-
erence. A fixed reference frame, as implemented in the MeanSquaresTemporalImageMetric class,
has the advantage of being more robust to drift since all trajectories are integrated over time and in-
tensities are compared to the reference frame. Although this accumulation avoids that the composi-
tion of small errors generates important drift, it is expected to be less accurate to detect small frame-
to-frame deformations than quantifying similarity in a sequential way [11], as implemented in the
MeanSquaresTemporalImageMetricSequential class. To get the best of these two choices, we built an
hybrid metric summing both fixed reference and sequential terms. This “hybrid” metric was implemented
in the HybridSegNonSegMetric. The weight between the two terms is adjusted by default so that the two
terms have an equal contribution to the metric for the initial set of parameters. Alternative ways of com-
bining sequential and fixed reference similarity terms for the TDFFD framework have been proposed by
Zhang et al.[12].

Tables 1 and 2 give a list of the main functions and members implemented in each class.

2.2 LDFFD

In the case of LDFFD, an image sequence is represented as a vector of 3D images. Unlike TDFFD, there
is no temporal continuity embedded in this approach. Hence, each 3D image is associate to a time index.
At initialization, all images in the sequence are incrementally indexed from O to N — 1, where N is the
number of images in the sequence. Each time index is associated to the corresponding index in a vector
of 3D transformations. When one of these transformations exceeds in magnitude a threshold that ensures
invertibility, the corresponding transformation is split in two and all subsequent time indexes in the image
sequence are incremented.

The diffeomorphic transformation object is called DiffeomorphicBSplineTransform. It contains a
vector of parameters as any ITK transform. Internally, this vector of parameters is the concatena-
tion of internal transforms parameters. Every internal transformation is a BSpline deformable trans-
formation, as implemented by the BSplineDeformableTransformOpt. The only additional method in
BSplineDeformableTransformOpt with respect to the ITK class, is GetClassicalJacobian that com-
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2.2 LDFFD

Table 1: Main methods of the TDFFD implementation.

BSplineField

SetGridRegion

Specify the B-Spline region defining the 3D+t (or 2D+t) velocity
field. Regions are specified in the standard ITK way and contain
an index and a size. The region type is defined in RegionType.

SetGridSpacing

Specify the B-Spline grid spacing between control points. Ex-
pected type defined in SpacingType.

SetGridOrigin

Specify the B-Spline grid origin. Expected type defined in
OriginType.

GetPointVelocity

Compute the velocity field at a given spatiotemporal location.
Takes as input a 3D+t or 2D+t point. Besides returning the ve-
locity, this function also outputs the interpolation weights, the af-
fected indexes in the coefficient images and a flag specifying if the
points were inside the region. These concepts are implemented in
a similar way as in the BSplineDeformableTransform class.

GetClassicalJacobian

Computes the spatial derivative of the velocity field. This is re-
lated to strain rate when quantifying cardiac deformation.

GetVelocityJacobian

Computes the derivative of the output velocity field with respect
to the parameters. In our case, this function returns the interpo-
lation weights as the output velocity is a linear combination of
these and the parameters.

TimeDiffeomorphicTransform

SetParameters

Set parameters (passing a reference).

SetParametersByValue

Set parameters (by value).

GetJacobian Get the derivative of the transformed point coordinates with re-
spect to transformation parameters in the standard ITK way.
GetSparseJacobian Returns the same derivative as GetJacobian but using a sparse

representation for the Jacobian. We use as SparseJacobianType
an std: :map containing vnl_vector. Each vnl_vector repre-
sents one column of the full Jacobian matrix.

GetIncrementalSparsedJacobian

In the case of a temporal diffeomorphic transformation, there is an
accumulation mechanism that propagates the derivative at further
time points. Therefore, one can use computations performed at
earlier time steps when moving along the sequence in time. This
function does not “reset” the Jacobian for avoiding to redo the
same computations.

DiffeomorphicContinuousBSplineTransform
Set/GetTimeStep Set/Get the time step used for following the flow of the velocity
field over time.
Set/GetVelocity Set/Get the velocity field (implemented in the BSplineField ob-

ject).
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2.2 LDFFD

Table 2: Main methods of the TDFFD implementation (continued).

TemporalImageMetric
Set/GetTransform Set/Get the transform (of type TimeDiffeomorphicTransform).
Set/GetTransform Set/Get the input image sequence.
Set/GetInterpolator Set/Get the interpolator. It will be used for computing image
derivative if it is B-Spline based (similarly to Mattes Metric).
Set/GetImageRegion Set/Get the fixed image region (including the temporal dimen-

sion).

Set/GetSpacelImageMask

Set/Get the spatial mask for randomly taking samples. The di-
mension of the mask is the one of the input image minus 1.

Set/GetSpaceMovingImageMask

Set/Get the moving mask. Samples falling outside of this mask
will be ignored.

SetTransformParameters

Pass parameters to the transform.

Initialize

Check all components and sample image domain.

SampleReferenceImageDomain

Sample the reference domain. In cases of image metrics with a
fixed reference, samples will be taken at the corresponding time
index only. In case of reference free metrics, samples will be
taken in the entire sequence.

Set/GetNumberOfSamples

Set/Get the number of samples.

] Mea

nSquaresTemporalImageMetric

GetValueAndDerivative

Compute the metric value and derivative. This method must be
reimplemented for each metric variant.

HybridSegNonSegMetric

Set/GetMetricNonSequential

Set Non sequential term of the metric.

Set/GetMetricSequential

Set sequential term of the metric.

Set/GetWeight

Set weight between sequential and non sequential terms.

ComputeWeight

Compute weight to give the same contribution to sequential and

non sequential terms at the initialization.
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putes at a given spatial location the linear approximation of the transformation. This volume change propa-
gates the Jacobian of one transformation to further time steps in a similar way as illustrated in Figure 1, as
detailed in [4].
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Figure 3: Diagram of classes for the LDFFD registration framework.

3 Experiments

3.1 Launching TDFFD
When launching the tdffd command with no arguments, the following help is provided

Problem encountered while parsing arguments.
Usage : inputImage outputImageFilePrefix outputTransformFile
Optional arguments

-inputTransformation transformFile

-splitTransformation

-timeMultiRes

-regionSize SizeX SizeY SizeZ SizeT

—inputMask MaskFileName

-inputMovingMask MaskMovingFileName

-imageRegion indexX indexY indexZ indexT sizeX sizeY sizeZ sizeT

-MetricSequential

-MetricDense

-weightSequential weight

-referenceTime refTime

-numSamples numberOfSamples

-maxv maxVelocityValueInsideMask

-maxvx maxVelocityValueInsideMaskX

-maxvy maxVelocityValueInsideMaskY

-maxvz maxVelocityValueInsideMaskZ

-timeStep timeStep

-minTimeStep minTimeStep

-padding numberOfVoxels

-paddingx numberOfVoxelsInX

-paddingy numberOfVoxelsInY

-paddingz numberOfVoxelsInZ
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3.1

Launching TDFFD

Table 3: Main methods of the LDFFD implementation.

BSplineDeformableTransformOpt

GetClassicalJacobian

Computes the spatial derivative of one
BSpline  transformation in the chain using the
BSplinelInterpolationWeightFunctionDerivative meth-
ods.

DiffeomorphicBSplineTransform

SetNumberOfTimeSteps Set the number of transforms in the chain.
Set/GetGridSpacing Set/Get the BSpline grid spacing of all transformations.
Set/GetGridSpacing Set/Get the BSpline grid origin of all transformations.
Set/GetGridRegion Set/Get the BSpline region of all transformations.
Set/GetGridRegion Set/Get the BSpline region of all transformations.

GetJacobian Compute the derivatives of the transformed spatial coordinates
with respect to the transformation parameters. This method takes
as parameters the input point, and a flag accumulate indicating
if the physical jacobians at anterior times have to be recomputed
or not. The last parameter, passed by reference, stores the indexes
of the non-null columns in the Jacobian matrices.

AccumulatePhysical Accumulates physical Jacobians between two time steps (passed

JacobiansInTimeInterval

as parameters). This accumulation multiplies physical jacobian
downstream in time as described in [2] (Equation 4).

MattesMutualInformationMultipleImages

SetNumberOfMovingImages

Set the number of moving images in the sequence.

SetMovingImage

Insert a moving image at position pos in the vector. The time
stamp of the moving images is the last parameters (t ime).
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3.2 Launching LDFFD 9

-dispFileName outputDispFilePrefix

The first three options are useful for multi resolution or to perform a second run of the algorithm from a pre-
vious transformation result. The first option (inputTransformation) permits to specify a transformation
as input. The second (splitTransformation) refines the resolution of the input transformation by a factor
2. Note that by default, this refinement is performed in all spatial dimensions. In case the ~timeMultiRes
option is specified, the refinement is performed in the temporal dimension as well.

The regionSize option permits to specify the number of control points in each dimension. For 4D images,
it should be followed by 4 numbers indicating the number of control points in each dimension.

The three next options are related to specifying image regions for computing the metric. Argument
inputMask permits to specify a fixed image mask specifying the domain on which the similarity metric is
computed. Argument inputMovingMask specifies a moving image mask, i.e. all samples falling outside of
the mask after applying the transformation will be ignored in the metric computation. Finally, imageRegion
is equivalent to inputMask but specified as an image region.

The next set of parameters is related to the metric. The most important parameter is numberOfSamples that
sets the number of samples for the metric computation. By default, the algorithm uses a fixed reference
metric. The reference frame will be the first frame by default, but can be adjusted using referenceTime.
With the option MetricSequential, the algorithm optimizes a sequential metric without any reference.
This generates a lot of drift effect in our experience. The combined metric weighting fixed reference and
sequential metric is obtained by using the MetricDense option. By default, the two terms are weighted to
have an equal contribution at the initialization, but the weight can be modified using weightSequential.

The last set of parameters can be used to parametrize the transformation. Argument maxv bounds the ampli-
tude of velocity in all dimensions while maxvx |y | z does the same in a specific dimension. The time step for
forward eulerian integration can be adjusted using t imeStep and minTimeStep. We use the padding option
when the image domain is very adjusted on the object of interest. By padding, we mean that the bounds of
the velocity control points go beyond the image bounds by a certain amount of voxels. One can specify this
amount for all spatial dimensions using padding or in a specific spatial dimension using padding x|y|z.

Finally, the dispFileName option permits to save the output displacement fields towards the first frame as
vector images. This can be useful for visualizing the displacement field using glyphs, for example using
Paraview.

3.2 Launching LDFFD

The LDFFD program takes a single argument indicating the name of a configuration file. If no argument is
given, the program returns the following error:

could not open file: --help
Error while reading configuration file

A minimalist configuration file contains the following lines
-fixedImageFileName fixedImage.mhd

-movingImageFileName movingImagel.mhd
-movingImageFileName movingImageZ.mhd
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3.3 Strain quantification 10

-movingImageFileName movingImage3.mhd
-outputImageFileNamePrefix Prefix

All moving images have to be specified in the order of the sequence. The first image of the se-
quence (-fixedImageFileName) is defined as fixed image. All other images are passed with the
-movingImageFileName argument. By default, each image receives as time index equal to its position
in the sequence. In the case one time step is split, as described in [3], the time indexes of all subsequent
images will be shifted.

3.3 Strain quantification

The strain is estimated from the spatial derivative of the resulting diffeomorphic transformation. We provide
the functions tdffd_strain and 1dffd_strain to compute the strain.

When launching the tdffd_strain command with no arguments, the following help is provided

Usage: tddfd_strain inputPolyData.vtk inputTransform.dof numberOfTimeSteps
outputMeshPrefix [-1la 0 0 1]

The fourth first arguments are required and the last one takes default value 0 0 1. The argument
inputPolyData corresponds to the mesh in the space of coordinates of the first time point. The second
argument inputTransform is the output transform obtained from launching tdffd program. The argu-
ment numberOfTimeSteps is the number of time points on which the strain is going to be computed and
outputMeshPrefix the name of the output deformed meshed. Last argument —/a specifies the long axis
direction of the mesh and has by default value 0 0 1 (i.e., long axis lies on the z-axis). Note that for the
TDFFD strain computation, we allow to pass to the tdffd_strain executable a volumetric mesh using the
-ug option. In that case, the transformation is applied to every node of the volumetric mesh. The surface
mesh specified as first argument will then provide the reference surface for computing the normal direc-
tion. For every, point of the volumetric mesh, the normal of the closest point on the surface mesh will be
considered as radial direction.

Once strain has been computed for each node of the mesh (either surfacic, either volumetric), temporal strain
curves can be reconstructed for each point or each segment, if a node array defines them for the mesh.

The computation of strain for 1dffdd_strain used an approximation for computing the strain spatial
derivatives. Instead of using the analytical derivatives of the transformation, we used the linear shape func-
tion defined on the VTK mesh. This is equivalent to approximating the transformation to a linear mapping
at each time step and for each triangle of the mesh. The option of the 1df fdd_strain executable are similar
to the TDFFD one: the first argument specifies the input mesh (only surface mesh i.e. vtkPolyData can
be specified as input in this this case), the second argument gives the transformation file name and the last
argument gives the prefix for saving output meshes.

4 Processing a 3D ultrasound image sequence

In this Section, we compare the strain quantification obtained by TDFFD and LDFFD on the dataset images
given in the Data/ folder. This folder contains one 3D ultrasound image sequence. The original data is
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4.1 LDFFD 11

stored in VTK format in the Image3D/ subfolder. The data was smoothed with a Gaussian filter (¢ = 1.5)
and written as a single 4D image file in the Image4D/ subfolder. We also provide fixed and moving image
masks in the Masks/ subfolder. The fixed image mask follows the myocardial boundaries while the moving
image mask is set to the conical field of view of the 3D ultrasound image. A mesh of the left ventricular
geometry can be found in the Mesh/ subfolder and will be used for strain computation.

41 LDFFD

All parameters for the TDFFD processing are given in the config.txt configuration file. As output, the
algorithm provides two sets of files: the output transformation and output images. The output images contain
the image sequence resampled to the space of coordinates of the first frame, as shown in Fig. 4. The output
transformation can then be used to propagate the mesh and compute strain.

0% 30% 60% 90%
I I I Cardiacltime >

Figure 4: Resampling of one input image sequence to the reference frame using the LDFFD algorithm.
The top row shows the image sequence before resampling. The bottom row show the same sequence after
resampling to the first image. The contour overlaid on the image is the myocardial border segmented from
the first frame.

4.2 TDFFD

The command line for launching the TDFFD code can be found in the tdffd.pl script. In this example,
the resolution grid had a resolution of 5 control points in the short axis plane and 5 in the longitudinal
direction. For the temporal dimension, we typically take a number of control points equal to the number
of frames in the sequence. The result of the TDFFD algorithm is a 4D transformation that can be used
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Figure 5: Visualization of longitudinal strain as a color map.

to compute trajectories between any pair of frames from the input sequence. Traditionally, since strain is
computed with respect to the end of diastole, we are interested to propagate points from the first frame
to any other time point in the cardiac cycle. Strain can then be obtained by computing the volume change
associate to this trajectory. The resulting strain tensor can further be projected onto a local cardiac coordinate
system to compute the deformation in the radial, circumferential and longitudinal directions. An example
of the strain computation is given in the tdffd_strain script. After running this script, a collection of
polydatas files is generated in VTK format. The meshes correspond to the propagation of the input surface
mesh to each frame of the sequence. Additionally, each mesh contains point scalar arrays corresponding to
radial, circumferential and longitudinal strains. Strain can easily be visualized using Paraview by applying
a colormap, as shown in Fig. 5. The same information can also be saved to a text file and plotted as function
of time per AHA segment. For this example, the AHA segmentscan further be projected onto a local cardiac
coordinate system to compute the deformation in the radial, circumferential and longitudinal directions are
available as another point array in the input mesh. The resulting strain curves are plotted in Fig. 6.

5 Conclusions

In this paper, we presented an implementation of LDFFD and TDFFD algorithms. Both methods attempt to
extend current image registration algorithms to handle temporal sequences by integrating a non-stationary
velocity field. They differ by the representation of the velocity field: sequential in LDFFD and continuous in
TDFFD. We hope that these implementations will help interested researchers in the community to develop
diffeomorphic temporal registration algorithms.
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