
GPU Volume Ray Casting of two Volumes
within VTK

Release 0.00

Karl Krissian, Carlos Falcón-Torres

April 16, 2012

Universidad de Las Palmas de Gran Canaria
departamento de Informática y Sistemas, Spain. 1

Abstract

We have modified the current VTK volume rendering on GPU to allow simultaneous rendering of two
volumes, each of them with its own color and opacity transfer functions. These changes have led to the
creation of two new C++ classes and several GLSL shaders. We explain the modifications made to the
original classes and shaders and we discuss possible additional improvements. A C++ demo code shows
how to use the new classes.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/xxx]
Distributed under Creative Commons Attribution License

Contents

1 Design of the C++ classes 3

2 Main Changes in the code 3
2.1 C++ classes . 3

vtkGPUMultiVolumeRayCastMapper . 4
vtkOpenGLGPUMultiVolumeRayCastMapper . 4

2.2 Shaders . 5
vtkGPUMultiVolumeRayCastMapper ShadeFS.glsl . 5
vtkGPUMultiVolumeRayCastMapper CompositeFS.glsl 5

2.3 Applying a transformation matrix . 6

3 Example 6
1This work has been supported by the project TIN2009-10770 (Spanish Ministry of Science and Innovation).

Contents 2

Figure 1: Main C++ classes for VTK volume rendering.

4 Conclusion and Discussion 6

Volume rendering is a technique to project three-dimensional datasets on a plane, allowing a visualization
of the whole information of the volumes at once. The volumetric datasets contain one (or several in case of
RGB color) scalar component(s) per voxel, and are projected using two transfer functions for color and for
opacity mapping, usually defined as functions of the image intensity. The Visualization ToolKit [2] offers
several versions of Volume Rendering, within different classes and a common framework, defined by the
vtkVolumeMapper abstract class. The two main volume rendering techniques, Ray Casting and Texture
Mapping are implemented within different classes:

• Ray casting classes: vtkFixedPointVolumeRayCastMapper, vtkOpenGLGPUVolumeRayCastMapper,
vtkVolumeProVP1000Mapper and vtkVolumeRayCastMapper.

• Texture mapping classes: vtkVolumeTextureMapper2D (with MesaGL or OpenGL) and
vtkOpenGLVolumeTextureMapper3D.

Additionally, the class vtkSmartVolumeMapper is able to switch between different volume rendering tech-
nique based on the hardware configuration and on the required frame rate and user task: for example, it may
use texture mapping during mouse events like scene rotation and ray casting when the interaction ends. As a
general rule, ray casting can provide better resolution at a higher computational cost as compared to texture
mapping techniques.

One of the most attractive of these classes is vtkOpenGLGPUVolumeRayCastMapper since it combines
speed and accuracy by taking advantage of the power of the Graphics Processing Unit (GPU) of the
graphic card. The difference between, for example, the use of vtkFixedPointVolumeRayCastMapper and
vtkOpenGLGPUVolumeRayCastMapper is that the latter enables high resolution of the rendering during
interactive tasks like the rotation of the scene or camera.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/xxx]
Distributed under Creative Commons Attribution License

3

Algorithm 1 Main VTK volume rendering scheme.

1: Create renderer . as a vtkRenderer
2: Create volume . as a vtkVolume
3: Create mapper . as a vtkOpenGLGPUVolumeMapper
4: Create colorFun . as a vtkColorTransferFunction
5: Create opacityFun . as a vtkPiecewiseFunction
6: Create property . as a vtkVolumeProperty
7: property.SetColor(colorFun)
8: property.SetScalarOpacity(opacityFun)
9: volume.SetProperty(property)

10: mapper.SetInputData(input)
11: volume.SetMapper(mapper)
12: renderer.AddVolume(volume)

It can be convenient for different purposes like registration of datasets (multi-modal or mono-modal) to
include and visualize several volumes in the same scene. Unfortunately, the current classes of VTK don’t
allow the correct combination of various volumes in the same scene with GPU volume rendering. We
propose to modify the current VTK code to enable this feature for two volumes.

1 Design of the C++ classes

The current framework to display a volume with volume rendering in VTK is summarized in algorithm
1.The volume object contains on one side the properties, including the color and opacity transfer functions,
and on the other side the volume mapper, which contains the input dataset. We renamed vtkGPUVolumeR-
ayCastMapper and vtkOpenGPUVolumeRayCastMapper classes to vtkGPUMultiVolumeRayCastMapper
and vtkOpenGPUMultiVolumeRayCastMapper and proposed the modifications showed in figure 2. Since
the combination of the different volumes of the scene has to be processed at the GPU level, they need to
be accessible from the same vtkVolumeMapper. Concerning the transfer functions, each volume needs its
own vtkVolumeProperty instance. The vtkVolumeProperty of the first volume is passed to the mapper by
passing the instance of the vtkVolume as a parameter. We decided to include directly in the new mapper
all the necessary parameters to render the second volume: the vtkDataSet instance and the vtkVolumeProp-
erty instance. Another option would have been to follow the scheme of figure 3, however it requires two
additional classes: vtkMultiVolume that would inherit from vtkVolume and vtkMultipleVolumeMapper that
would inherit from vtkVolumeMapper. This option may be implemented in future releases. The usage of
the new class vtkOpenGLGPUMultiVolumeMapper is summarized in algorithm 2.

2 Main Changes in the code

2.1 C++ classes

The two new classes that we created are vtkGPUMultiVolumeRayCastMapper and vtkOpenGLGPUMulti-
VolumeMapper, based on the original VTK classes vtkGPUVolumeRayCastMapper and vtkOpenGLGPU-
VolumeMapper. In this section, we review the main changes that have been applied to these classes.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/xxx]
Distributed under Creative Commons Attribution License

2.1 C++ classes 4

Figure 2: Proposed new classes.

Figure 3: Other possible design of the classes.

vtkGPUMultiVolumeRayCastMapper

We added functions members to set and get several input datasets, and to set and get the volume property of
the second dataset.

// Define the Input for both datasets
void SetInput(int port, vtkImageData *input);
void SetInput(int port, vtkDataSet *genericInput);
vtkImageData * GetInput(int port=0);

// set/get the properties of the second volume
void SetProperty2(vtkVolumeProperty *property);
vtkVolumeProperty *GetProperty2();

Additionally, a member TransformedInput2 is created in the same way as TransformedInput, which,
according to the code comments, allows to deal with the limitation of GPUVolumeRayCastMap-
per in handling extents starting from non zero values. The corresponding changes are included in
vtkGPUMultiVolumeRayCastMapper::ValidateRender(...).

vtkOpenGLGPUMultiVolumeRayCastMapper

In the proposed implementation, this class will deal with two required input datasets, and the feature of
vtkOpenGLGPUVolumeRayCastMapper to allow a mask dataset has been disabled. Each dataset will
be sent as a 3D texture to the graphic card, with its own texture coordinates. We have added a class
member TextureCoord 1to2, of type vtkTransform, that computes the transform matrix needed to con-
vert texture coordinates of the first volume to texture coordinates of the second volume. This matrix
and its inverse are passed to the shaders. The structure of vtkOpenGLGPUMultiVolumeRayCastMap-
per is the same as the previous vtkOpenGLGPUVolumeRayCastMapper class with main implementation

Latest version available at the Insight Journal [http://hdl.handle.net/10380/xxx]
Distributed under Creative Commons Attribution License

2.2 Shaders 5

Algorithm 2 VTK volume rendering with two volumes.

1: Create renderer . as a vtkRenderer
2: Create volume . as a vtkVolume
3: Create mapper . as a vtkOpenGLGPUMultiVolumeMapper
4: for n = 0 to 1 do
5: Create colorFun[n] . as a vtkColorTransferFunction
6: Create opacityFun[n] . as a vtkPiecewiseFunction
7: Create property[n] . as a vtkVolumeProperty
8: property[n].SetColor(colorFun[n])
9: property[n].SetScalarOpacity(opacityFun[n])

10: end for
11: mapper.SetInput(0, input1) . set the first dataset
12: mapper.SetInput(1, input2) . set the second dataset
13: mapper.SetProperty2(property[1]) . set the properties of the second dataset
14: volume.SetProperty(property[0])
15: volume.SetMapper(mapper)
16: renderer.AddVolume(volume)

changes in the following methods: LoadScalarFields(...), UpdateOpacityTransferFunction(...),
RenderClippedBoundingBox(...), RenderSubVolume(...) and BuildProgram(...).

The OpenGL texture indexes relative to the datasets and their transfer functions are:
TEXTURE 0 1 2 · · · 7 8 9

1st dataset 1st Color 1st Opacity · · · 2nd dataset 2nd Color 2nd Opacity

2.2 Shaders

Based on the original shaders, we create the following ones: vtkGPUMultiVolumeRayCastMap-
per {Shade,Composite,FourComponents,NoShade,OneComponent}FS.glsl

vtkGPUMultiVolumeRayCastMapper ShadeFS.glsl

In InitShade(), the increments in directions x,y,z are computed for the second volume using the P1toP2
matrix, that transform texture coordinates of the first volume to texture coordinates of the second volume.

A new function vec4 Shade2(vec4 value) is created similar to Shade(), that computes the gradient of
the second volume intensity at the current 3D position of the ray, in the space coordinates of the first volume
(it uses {x,y,z}vec2 computed in InitShade()). The same lighting parameters are used for both volumes.

vtkGPUMultiVolumeRayCastMapper CompositeFS.glsl

In this shader, we use the two input 3D textures from the two input datasets. The position of the ray in the
texture coordinates of the first dataset: pos is transformed to the coordinates of the second dataset: pos2. If
pos2 falls within the limits of the second dataset given by the variables lowBounds2 and highBounds2, then
voxel of the second volume is added to the ray using its computed color and opacity, as if it was just behind
the corresponding voxel of the first volume, as described by the following code:

Latest version available at the Insight Journal [http://hdl.handle.net/10380/xxx]
Distributed under Creative Commons Attribution License

2.3 Applying a transformation matrix 6

if (all(greaterThanEqual(pos2,lowBounds2))
&& all(lessThanEqual(pos2,highBounds2)))

{
vec4 value2=texture3D(dataSetTexture2,pos2);
float scalar2=scalarFromValue(value2);
// opacity is the sampled texture value in the 1D opacity texture at
// scalarValue
opacity2=texture1D(opacityTexture2,scalar2);
if(opacity2.a>0.0)
{

text2=true;
color2=shade2(value2);
color2=color2*opacity2.a;
destColor=destColor+color2*remainOpacity;
remainOpacity=remainOpacity*(1.0-opacity2.a);

}
}

Additional minor changes have been applied to the FourComponents, NoShade and OneComponent shaders.

2.3 Applying a transformation matrix

We have included the possibility to apply a user supplied transformation matrix to the second volume.
This transformation can be set and get using the two following methods of the vtkGPUMultiVolumeR-
ayCastMapper class: void SetSecondInputUserTransform(vtkTransform *t); and vtkTransform
*GetSecondInputUserTransform();.

The given transformation, denoted T2 is then included in the matrix TextureCoord 1to2, denoted TC12, that
converts texture coordinates from the first dataset to the second dataset, using the following equation:

TC12 = M2.T−1
2 .M−1

1 , (1)

where M1 denotes the transformation from the world coordinates to the first texture coordinates, and M2
denotes the transformation from the world coordinates to the second texture coordinates. This matrix is
computed in the RenderClippedBoundingBox method and is passed to the shaders with the name ”P1toP2”,
its inverse is passed to the shaders as ”P2toP1”.

3 Example

We include a modified version of the vtkGPUVolumeRenderDemo.cxx, named vtkGPUMultiVolumeRen-
derDemo.cxx where we show how to use the proposed class with two volumes. A vtkBoxWidget is used
to control in real-time the transformation of the second volume. The code is also included as a module of
AMILab [1] as show in figure 4. A video is also available at http://youtu.be/izaabm1Qq2o.

4 Conclusion and Discussion

We have proposed a modified version of the current GPU volume rendering available in VTK to allow the
simultaneous rendering of two input datasets. Changes in the code include changes in the VTK classes and

Latest version available at the Insight Journal [http://hdl.handle.net/10380/xxx]
Distributed under Creative Commons Attribution License

7

Figure 4: Example of Rendering from two Computed Tomography datasets using the proposed VTK class within
AMILab.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/xxx]
Distributed under Creative Commons Attribution License

References 8

in some of the GLSL shaders. The current VTK class design is not well suited to include several volumes
with the same mapper since the vtkVolume class, which includes both the mapper and the properties, is
designed to contain one dataset. Thus, we decided to duplicate the current GPU volume mapper and to
allow it to have a second dataset and a second vtkProperty instance, minimizing the changes that we apply
to the initial VTK classes and design. However, this choice is still open to improvements and another class
design is suggested in figure 3. The proposed implementation is limited to two input datasets, using more
inputs would require implementing additional shaders that can deal with the given number of inputs, and the
generalization to any number of input datasets would require sending several arrays of 3D and 2D textures
to the graphic card for the input datasets and their associated transfer functions, and further work is needed
to check if the shader language allows it and if it is a interesting extension to the proposed implementation.
Another limitation is that we currently limit the 3D scene to the extents of the first volume. This limitation
could be overcome by projecting the bounding boxes of each volume and with additional changes in the
shaders.

References

[1] K. Krissian, F. Santana, D. Santana-Cedrés, C. Falcón-Torres, S. Arencibia, S. Illera, A. Trujillo,
C. Chalopin, and L. Alvarez León. Amilab software: Medical image analysis, processing and visualiza-
tion. In MMVR NextMed Medicine Meets Virtual Reality, volume 173 of Studies in Health Technology
and Informatics, pages 233–237, February 2012. 3

[2] William J. Schroeder, Kenneth M. Martin, and William E. Lorensen. The Visualization Toolkit. Kitware,
Inc., fourth edition, 2006. (document)

Latest version available at the Insight Journal [http://hdl.handle.net/10380/xxx]
Distributed under Creative Commons Attribution License

