
On the Generation of Ground Truth Data
for Depth Reconstruction

Release 0.00

C. Staub, A. Heider, M. Grimm, A. Knoll

June 20, 2012

{staub | heidera | grimmm | knoll } at in.tum.de
Technische Universität München, Robotics and Embedded Systems

Abstract

Acquiring data sets for stereo or multi-view reconstruction with known ground truth is costly and time
consuming. Freely available data sets mostly focus on specific scene conditions and might not reflect
the intended application scenario. We propose a GPU accelerated ray tracing framework that allows to
generate realistic images with adjustable camera properties and projection geometry. Due to the nature
of ray tracing, ground truth data can easily be obtained. The system also supports projectors as used
e.g. for structured light systems. This facilitates to study interaction effects between different pattern
designs, camera and projector properties, as well as the utilized reconstruction algorithm.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 2

2 GPU Accelerated Ray Tracing 2
2.1 Cameras and Projectors . 3

3 Framework 5

4 Example 6

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

2

1 Introduction

Acquiring data sets with ground truth information is itself already a quite time consuming process, which
usually involves additional hardware. If various reconstruction methods, such as stereo, multi-view, or
structured light systems are to be considered at the same time, complexity increases considerably. Especially
a universal data set for structured light systems is hardly to be realized, since the systems strongly depend
on specific pattern designs. Standard resources, such as the Middlebury stereo data sets [6], provide data
that allows the comparison of different reconstruction algorithms, but might not reflect the actually intended
application domain.

We present a framework that tightly integrates the generation of data sets and ground truth by means of ray
tracing, with different reconstruction methods, and patterns for structured light. The recent acceleration of
ray tracing by GPU’s makes it interesting for interactive applications. For instance, the automotive sector
makes use of ray tracing to simulate a PMD camera within a virtual testbed for advanced driver assistance
systems [5]. Schmalz [7] used the open-source software renderer Povray [2] to generate static images for
structured light. With regard to the medical context, ground truth data is rarely available. The Imperial Col-
lege provides the reconstruction of a beating heart model, captured with a high speed CT [1]. In combination
with images of the original texture such data sets are highly interesting for our ray tracing framework and
can e.g. be used within a structured light simulation.

Our framework provides the following main advantages:

• Scenes can be chosen according to domain specific requirements. A variety of different scene models
is available from CAD drawings and can easily be created on demand. Scenes can be either dynamic
or static.

• Freely adjustable camera and projector properties (intrinsics and extrinsics) and direct comparability
with real world setups.

• Simulation of sensor characteristics and sources of interference (e.g., effects of noise, debayering)

• Investigation of interaction effects of the used projector (e.g., resolution and luminosity) and camera
in structured light settings.

• Simulation of different lightning conditions for both ambient light and material surfaces.

• Ground truth data is directly available.

2 GPU Accelerated Ray Tracing

Ray tracing can be seen as a general approach of simulating camera systems, imitating the behavior of both
sensors and lenses, by following the path that light takes through a virtual scene. Being based on physical
principles, ray tracing is capable of producing realistic and high quality images, which easily outperform
those produced by traditional rasterization renderers. The introduction of GPU-based ray tracing engines,
such as the Nvidia OptiXTM framework [4], allows now the utilization of this computationally expensive
technique in interactive applications. As the OptiX SDK comes as a general purpose raytracing library, it
is not pre-configured for a specific rendering method, but rather allows the user to implement his own ray
tracers.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

2.1 Cameras and Projectors 3

Launch

Traverse Shade

Ray Generation
Program

Miss
Program

Closest Hit
Program

Selector Visit
Program

Intersection
Program

Any Hit
Program

Acceleration
Traversal

Node Graph
Traversal

rtContextLaunch

rtTrace

Exception
Program

Figure 2: A call graph showing the control flow through the ray
tracing pipeline. The yellow boxes represent user-specified pro-
grams and the blue boxes are algorithms internal to OptiX. Execu-
tion is initiated by the API call rtContextLaunch. A built-in func-
tion, rtTrace, can be employed by the ray generation program to
cast rays into the scene. This function may also be called recur-
sively by the closest hit program for shadow and secondary rays.
The exception program is executed when the execution of a partic-
ular ray is terminated by an error such as excessive memory con-
sumption.

bounding box. Procedural geometry can sometimes only estimate
the bounds of a primitive. Such estimates are allowed as long as
they are conservative, but loose bounds may degrade performance.

Closest hit programs are invoked once traversal has found the clos-
est intersection of a ray with the scene geometry. This program
type closely resembles surface shaders in classical rendering sys-
tems. Typically, a closest hit program will perform computations
like shading, potentially casting new rays in the process, and store
result data in the ray payload.

Any hit programs are called during traversal for every ray-object
intersection that is found. The any hit program allows the ma-
terial to participate in object intersection decisions while keep-
ing the shading operations separate from the geometry opera-
tions. It may optionally terminate the ray using the built-in func-
tion rtTerminateRay, which will stop all traversal and unwind the
call stack to the most recent invocation of rtTrace. This is a
lightweight exception mechanism that can be used to implement
early ray termination for shadow rays and ambient occlusion. Al-
ternatively, the any hit program may ignore the intersection us-
ing rtIgnoreIntersection, allowing traversal to continue looking for
other geometric objects. An intersection may be ignored, for in-
stance, based on a texture channel lookup, thus implementing effi-
cient alpha-mapped transparency without restarting traversal. An-
other use case for the any hit program can be found in Section 8.1,
where the application performs visibility attenuation for partial
shadows cast by glass objects. Note that intersections may be pre-
sented out of order. The default any hit program is a no-op, which
is often the desired operation.

Miss programs are executed when the ray does not intersect any
geometry in the interval provided. They can be used to implement
a background color or environment map lookup.

RT_PROGRAM void pinhole_camera() {
Ray ray = PinholeCamera::makeRay(launchIndex);
UserPayload payload;
rtTrace(topObject, ray, payload);
outputBuffer[launchIndex] = payload.result;

}

Figure 3: Example ray generation program (in CUDA C) for a
single sample per pixel. The 2-dimensional grid location of the
program invocation is given by the semantic variable launchIn-
dex, which is used to create a primary ray using a pinhole camera
model. Upon tracing a ray, the invoked material hit programs fill
the result field of the user-defined payload structure. The variable
topObject refers to the location in the scene hierarchy where ray
traversal should start, typically the root of the node graph. At the
location specified by launchIndex, the result is written to the output
buffer to be displayed by the application.

Exception programs are executed when the system encounters an
exceptional condition, e.g., when the recursion stack exceeds the
amount of memory available for each thread, or when a buffer ac-
cess index is out of range. OptiX also supports user-defined excep-
tions that can be thrown from any program. The exception program
can react, for example, by printing diagnostic messages or visualiz-
ing the condition by writing special color values to an output pixel
buffer.

Selector visit programs expose programmability for coarse-level
node graph traversal. For example, an application may choose to
vary the level of geometric detail for parts of the scene on a per-
ray basis. In this case, the visit program would examine the ray
distance or a ray differential stored with the payload and make a
traversal decision based on that data.

3.2 Scene representation

OptiX employs a flexible structure for representing scene informa-
tion and associated programmable operations, collected in a con-
tainer object called the context. This representation is also the
mechanism for binding programmable shaders to the object-specific
data that they require. In conjunction with a special-purpose object
model described in Section 3.3, a compact representation of scene
data is achieved.

3.2.1 Hierarchy nodes

A scene is represented as a graph. This representation is very
lightweight and controls the traversal of rays through the scene. It
can also be used to implement instancing two-level hierarchies for
animations of rigid objects, or other common scene structures. To
support instancing and sharing of common data, the nodes can have
multiple parents.

Four main node types can be used to provide the scene representa-
tion using a directed graph. Any node can be used as the root of
scene traversal. This allows, for example, different representations
to be used for different ray types.

Group nodes contain zero or more (but usually two or more) chil-
dren of any node type. A group node has an acceleration structure
associated with it and can be used to provide the top level of a two-
level traversal structure.

Geometry Group nodes are the leaves of the graph and contain the
primitive and material objects described below. This node type also
has an acceleration structure associated with it. Any non-empty
scene will contain at least one geometry group.

Figure 1: OptiX control flow [4]

To generate realistic images for the purpose of benchmarking depth reconstruction methods with correspond-
ing ground truth data, we are particularly interested in the simulation of camera and projector systems. Ray
tracing inverts the typical imaging process of cameras, where light emitted in the scene enters the camera.
Instead, “lines of light” are traced backwards from the camera through the scene. This approach reduces
the computational cost, since only the parts of the scene which contribute to the image are considered. The
control flow of the Nvidia OptiX ray tracer is illustrated in Figure 1. Overall, ray tracing is divided into
three main parts. As the host program invokes the ray tracer, it has to decide in which direction rays have
to be send into the scene. This step corresponds to the lens of the simulated camera and is further discussed
in the next section. After a ray has been sent into the scene, the next step is tracing it throughout the scene.
The scene is stored as a node graph that consists of the objects in the scene. As this step is common to all
ray tracers it is directly handled by the OptiX framework.

At found intersections the simulation calculates the reflectance of the light ray on basis of the object’s
surface properties. On one hand the object directly reflects light in the direction of the ray, on the other hand
light from the scene is emitted, such as ambient light from different light sources or scattered light from
surrounding objects.

The intersections of rays and scene objects is related to the object’s distance from the camera. Ground truth
depth data is therewith directly available.

2.1 Cameras and Projectors

Our simulation software allows the user to specify an arbitrary number of cameras and projectors. Cameras
allow to take images of the scene from any spatial configuration, while projectors emit light through a
pattern. The pattern can be static or dynamic over time, illuminating the scene objects with the projection of
the pattern. As mentioned above, ray tracing inverts the light transfer process. Thus the used camera model
also has to be inverted and therewith specifies in which direction the outgoing rays are send into the scene.
This also means that the projector can be handled as a regular camera model, with an additional texture

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

2.1 Cameras and Projectors 4

representing the pattern.

The projection characteristics of a camera mainly depend on the lens and the image sensor. We simulate this
hardware by the following groups of parameters:

• Extrinsic parameters determine the position and rotation of the camera in relation to the scene.
More important, the extrinsics also specify the relationship between multiple cameras and optional
projectors.

• Intrinsic parameters define how incoming light is manipulated by the lens system before striking
the sensor

• The sensor model specifies how the sensor reacts to incoming light, e.g. special sensor characteristics
can be simulated, such as noise.

The camera model is implemented as a ray generation program. The code is executed in parallel, for each
pixel in the desired output image. Light can take a multitude of different ways to end up hitting one single
pixel. A ray tracer is limited by computational power and has to approximate the effect using only a small
number of rays (sampling factor). How to combine the results that are obtained by different rays in one pixel
is task of the sensor model.

A suitable model to describe the projective geometry of a lens is the Bouguet model [3]. Its wide use in
camera calibration and the support in many open source vision libraries allows us to directly transfer camera
parameters of real camera systems into our simulation framework. In contrast to the original Bouguet model,
where all camera parameters are expressed in pixel units, we specify the parameters as a ratio with respect to
the sensor size. This is necesarry since measurements given in pixels correspond to a fixed sensor resolution,
the simulation however is intended to support user defined sensors.

Instead of undistorting an image as in image calibration, the Bouguet model is used to generate a distorted
image during ray tracing. Due to the approximation of tangential and radial distortion with higher-order
polynomials in the Bouguet model, the required inversion is not straight forward. Starting from the image
coordinates xn = (xnx ,xny) given by a regular pinhole camera model with camera matrix K, the distorted
coordinates xd of xn are given with

xd =

[
xdx

xdy

]
=
(
1+ kc1r2 + kc2r4 + kc5r6)xn +dx (1)

with dx being the tangential distortion

dx =
[

2kc3xnxxny + kc4(r2 +2x2
nx
)

kc3(r2 +2x2
ny
)+2kc4xnxxny

]
(2)

where (kc1, · · · ,kc5) are the distortion coefficients, and r2 = x2
nx
+x2

ny
. The final projection is then expressed

by xp

yp

1

= K

xdx

xdy

1

 (3)

For inverting the camera model, first the effect of the linear camera calibration matrix is undone by solving
the equation 3 for xd . The second step, the inversion of the terms for radial and tangential distortion is more

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

5

challenging. As the radial distortion is described by a polynomial of 6th grade, there is no analytical solution
for xn. Thus an iterative numerical solution is used to calculate xn. We first solve Eqn. 1 for xn

xn =
(xd−dx)

(1+ kc1r2 + kc2r4 + kc5r6)
(4)

and start an optimization with the initial guess xn = xp on the left side of the equation and xn in the expression
of dx. The evaluation of Eqn. 4 yields to a new x̂n which is then used in the next iteration. The resulting ray
direction is then be given as xnx ·u+ xny · v+w, where (u,v,w) are homogeneous image plane coordinates.

The sensor model specifies how many rays are used to determine the final value of a pixel. The resulting
image quality is thus mainly governed by the chosen sampling rate. Sensor specific characteristics, such as
the noise performance of sensors, non linear pixel responses, or vignetting, can easily be integrated in the
model.

3 Framework

The above-presented ray tracer is integrated into a flexible framework that currently consists of three more
components: (1) a pattern generator, which is used to create the texture consumed by the projectors, (2) a
depth reconstruction module that wraps different reconstruction algorithms and (3) an evaluation module
which compares the achieved reconstruction result with the generated ground truth of the ray tracer.

The functionality of the framework is organized in plugins, which can be loaded dynamically. This reduces
the effort to implement new features, algorithms or pattern generators. The plugin system is based on the Qt
plugin loader. Each module defines its own Qt interface which must be implemented by the plugin.

Each component of the framework offers a user-interface, enabling interactive experimentation with all
system parameters, such as intrinsic and extrinsic camera/projector settings, pattern design, and parameters
of the reconstruction algorithm.

Pattern
generation Ray tracing Depth

reconstruction Evaluation

Figure 2: Data flow inside the framework

Figure 2 illustrates the typical processing pipeline of the framework. First, a pattern is generated and passed
to the ray tracer, which in turn projects it onto the scene. The resulting color images are then forwarded
to the depth reconstruction module. The module processes the incoming images at the highest possible
framerate and emits the corresponding depth map. In the fourth phase all data (the ground truth as well as
the reconstruction results) is passed to the evaluation module, which evaluates the results on the basis of the
metrics proposed by Scharstein and Szeliski [6].

Communication between the modules is realized using the Qt Signals & Slots concept. This reduces depen-
dences between the different phases and enables easy integration of a graphical user interface. Image results
are always handed with a descriptive parameter tree to the next module. Handling this kind of information

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

6

together with the affected images allows e.g. to transfer knowledge about the utilized pattern structure to
the reconstruction module.

4 Example

As a proof of concept, we demonstrate the influence of a projected pattern in a stereoscopic setup. In this
example, we use a typical scene as encountered in many industrial applications, the inspection of a circuit
board. The scene has poorly textured areas on the board as well as sharp edges. Two cameras are used in
conjunction with a projector to capture different views of the object which are then used to reconstruct a
depth image.

The generated pattern realizes a block-wise Hamming-distance, supporting the windowing technique of the
blockmatching method in differentiating different areas. Figure 3 shows the simulation results of the same
view with and without a projected pattern.

Figure 3: Ray tracing results: without a pattern (left/right), the projected pattern, with a pattern (left/right)

OpenCV stereo blockmatching is used as reconstruction algorithm on the images generated by the ray tracer.
Results of the reconstruction together with the obtained ground truth are depicted in Figure 4. As expected,
projecting additional texture onto the scene improves the performance of the blockmatching reconstruction
algorithm. More interestingly, changes of the setup, e.g. modifying the Hamming distance of the pattern or
the used block size, directly affects the output images and can be observed in real-time.

Figure 4: Depth reconstruction results: blockmatching without projector, blockmatching with projector,
ground truth generated by the ray tracer

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

References 7

References

[1] http://hamlyn.doc.ic.ac.uk/vision/. 1

[2] http://www.povray.org/. 1

[3] Janne Heikkila. Accurate camera calibration and feature based 3-D reconstruction, 1997. 2.1

[4] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David Luebke,
David McAllister, Morgan McGuire, Keith Morley, Austin Robison, and Martin Stich. OptiX: A General
Purpose Ray Tracing Engine. ACM Transactions on Graphics, August 2010. 2, 1

[5] Erwin Roth. Advanced Driver Assistance System Testing using OptiX. NVIDIA GTC, 2012. 1

[6] Daniel Scharstein and Richard Szeliski. A Taxonomy and Evaluation of Dense Two-Frame Stereo
Correspondence Algorithms. Int. J. Comput. Vision, 47(1-3):7–42, April 2002. 1, 3

[7] Christoph Schmalz. Robust Single-Shot Structured Light 3D Scanning. PhD thesis, Universität Erlangen
Nürnberg, 2011. 1

Latest version available at the Insight Journal [http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/1338
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	GPU Accelerated Ray Tracing
	Cameras and Projectors

	Framework
	Example

