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Abstract

This paper describes the software integration of a treatment planning system (TPS), based on the
open-source 3D Slicer package, with the Small Animal Radiation Research Platform (SARRP). The
TPS is designed to enable researchers to replicate their clinical techniques, allow for image fusion with
other imaging modalities, and provide dose computation and graphical visualization of treatment plans
consisting of multiple x-ray beams and conformable arcs. The dose computation is implemented on a
GPU to achieve high performance; the dose volume for a typical treatment plan can be computed in less
than a minute.
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1 Introduction

SARRP is a system for mirco irradiation with on-board cone-beam computed tomography (CBCT)
guidance[4]. The SARRP incorporates CT imaging with precise radiation delivery to enable researchers to
identify an anatomical target and deliver radiation to that point, using one or more beams with diameters as
low as 0.5 mm. The SARRP research platform has been designed to minimize the gap between the current
human clinical systems and systems for small animal research. Cancer research with small animals allows
researchers to study the details of biological processes and facilitate describing disease progression and
identifying response to therapy.

It is not enough to precisely locate an anatomical target, however; it is also necessary to control the amount
of radiation deposited on that target. For beams of a given energy, this can be achieved by specifying
the exposure time, i.e., the amount of time that the beam is turned on. The SARRP software provides a
Dose Calculator that uses machine-specific commissioning data to compute the exposure time given the
source-to-surface distance (distance from x-ray source to surface of animal), the target depth, and the desired
dose. While this may be adequate for determining the exposure time, it does not allow the researcher to
visualize the dose distribution within the animal. This is a significant limitation because it is often necessary
to limit the amount of radiation delivered to other parts of the animal (i.e., outside the target region). These
considerations motivated the development of a treatment planning system (TPS) that enables the researcher to
specify a treatment plan, consisting of one or more beams, compute the dose distribution, and then visualize
the resulting dose volume. Thus, the TPS enables researchers to replicate clinical techniques and validate the
dose distribution with multiple targets and plans before delivering the radiation exposure. Image fusion with
other imaging modalities is also provided to facilitate planning.

The SARRP TPS is based on 3D Slicer (Version 3.6), which is an open source application for medical image
visualization and analysis [2]. 3D Slicer is available on multiple operating systems, including Windows,
Linux, and Mac OS X. Thus, although the SARRP software is currently restricted to the Windows operating
system due to hardware constraints, it is possible to run the SARRP TPS on any platform. 3D Slicer is based
on the Model-ViewController (MVC) design pattern and the Medical Reality Modeling Language (MRML).
It provides the ability for researchers to develop custom modules to extend its functionality. We chose to
write the custom module in Python because it was easy to implement, maintain, and distribute. We did not
even need to recompile 3D Slicer.

Integration with 3D Slicer was further facilitated by its OpenlGTLink interface. OpenlGTLink is a network
communication protocol that is designed especially for image-guided therapy (IGT) applications to transfer
data, such as image volumes and transformations, between devices [3].

The dose computation is implemented in CUDA and is performed on a graphical processing unit (GPU) to
achieve fast computation times [1]. It uses the superposition-convolution method to compute dose, rather
than Monte Carlo.

2 System Overview

Although it is technically possible to integrate all functionality within 3D Slicer, one design constraint was
that users should still be able to run the SARRP using the simple graphical user interface (GUI) provided by
the SARRP software (see left side of Fig. 1). This is intended for users with simple experimental setups;
for example, when it is sufficient to align the targeting lasers with skin markers instead of acquiring a
CBCT image and creating a plan. Thus, it was decided to maintain two separate programs: (1) the SARRP
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Figure 1: Communications between SARRP software (left) and TPS on 3D Slicer (right)
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Figure 4: SARRP with Remote TPS

software, and (2) the TPS implemented on 3D Slicer. The design of the overall system is to make the SARRP
software and TPS run as server and client, respectively. Figure 2 shows one possible configuration where
both programs run on the SARRP computer (Windows operating system).

It was also desirable to create a standalone treatment planning system. The SARRP software, however, intro-
duces many hardware dependencies because it contains interfaces to the robotic system (animal positioning
system and gantry rotation), and to the many image sources (x-ray flat panel detector and several video
sources). Presently, some of these hardware drivers restrict the software to run on the Windows operating
system (Windows XP or Windows 7). For this reason, a SARRP Server program was created to provide
the services required by the TPS module, without the hardware dependencies, as illustrated in Fig. 3. The
SARRP and Server software are based on the open source cisst package and use wxWidgets for the GUI,
and are therefore portable between operating systems. Because 3D Slicer is available on multiple operating
systems, and the TPS module is written in Python, the Standalone TPS can run on any operating system.
Finally, the client/server design also allows the TPS to run remotely from the SARRP, as shown in Figure 4.
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Figure 5: SARRP TPS with 1 isocenter and 3 beams

As shown in Fig. 1, there are two TCP/IP socket connections between the TPS and SARRP software. One is
the OpenlGTLink socket, which is used for image transfers (i.e., responses to IMAGE and DOSE requests)
and for sending the current beam position (transform) to 3D Slicer. To simplify the implementation, rather
than developing custom extensions to OpenlGTLink, we chose to use another TCP/IP socket, with our own
protocol, for commands not currently supported by OpenlGTLink. The general strategy is for the client (TPS
module in 3D Slicer) to send a string request, possibly with parameters, to the server (SARRP or Server
software) via the general TCP/IP socket (see Fig. 1). The server responds with the requested data (if any) and
with an acknowledgment. For the IMAGE or DOSE commands, the desired volume is sent via OpenlGTLink.
The SARRP software also sends the current beam position (as a transform) via OpenlGTLink whenever it
differs from the previously transmitted beam position by a specified threshold.

3 TPS User Interface

The TPS module is shown in Fig. 5. It consists

of four frames (in addition to Help & Acknowledge-
ment): Experiment Info, Target Selection, Treatment
Planning, and Treatment Plan Execution (Fig. 6).
This GUI is designed to support the workflow of
radiation oncologists.

In the Experiment Info frame (Fig. 7), two tabs are
provided. In the first tab, CT volumes stored on the
SARRP computer (whether local or remote) can be
retrieved via OpenlGTLink. It is also possible to
load volumes acquired from other imaging modali-
ties for image fusion, using the volume loading func-
tionality provided by 3D Slicer (for convenience, a
“Load Volume” button is provided). The CBCT ac-

%1 2D Slicer Version 3.6.3

File Edit View Window Help Feedback

lﬂ lE‘ — — - lz‘ E R @ |
@ 3DSlicer

¥ Help & Acknowledgement
~ Experiment Info
¥ Target Selection

¥ Treatment Planning

¥ Treatment Plan Execution

Figure 6: 4 Frames of SARRP TPS
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quisition for a new specimen and/or a new scan and reconstruction with several options are provided in the
Create New Experiment/Scan tab (this tab is not present for a Standalone TPS).

The coordinates of isocenters are displayed on the second frame, Target Selection (Fig. 8), where any of
the selected isocenters can be sent to the SARRP software. This feature uses the fiducial list provided by
3D Slicer (i.e., the isocenters are actually Slicer fiducials). A checkbox is also provided to toggle on/off the
display of the SARRP beam on the CBCT image. The SARRP beam relies on the SARRP software to send
the beam position (as a transform matrix) via OpenlGTLink. Essentially, this is a navigation system, where
the “tracked instrument” (locator) is actually the x-ray beam. The ball tip of the locator denotes the isocenter
and the shaft of the locator corresponds to the beam axis. In the future, a custom locator should be defined
because the x-ray beam should continue past the isocenter.

The Treatment Planning frame (Fig. 9) contains

buttons to create, load, and save a plan. JavaScript = Teatment Fian Exeeution

Object Notation (JSON) format is used to facilitate STOP REPORT
the implementation of enconding/decoding a plan
and allow users to read a saved plan without running
a TPS. Users are allowed to determine a prescribed
dose for each target and a type of dose computation.
Researchers can create a number of entries (e.g. beams and/or arcs) for each plan, specify properties such
as the isocenter, collimator type, couch and gantry angles, and switch a mode between beam (default) and
arc. Once a valid plan is created, it can be sent to the dose engine in the SARRP software for execution;
in this case, we serialize the plan using the dumps method of the Python json package and transmit it via
the general TCP/IP socket. Checkboxes are provided for the color visualization of dose distribution and the
beam’s nominal outline (i.e., not including the minor effects of beam divergence).

Figure 10: Frame4: Treatment Plan Execution

Currently, users can stop the SARRP system and generate a report in the bottom frame, Treatment Plan
Execution (Fig. 10). In the future, users will be able to directly execute plans from here.



4 TPS Implementation

The SARRP software maintains a directory structure of CT scans, which is organized by experiment name
(analogous to patient name in a clinical system) and scan name. To load a CT volume in 3D Slicer, a user
must specify the experiment and scan information; the list of experiments is obtained from the SARRP
software by sending the GET_PATIENTLIST command via the socket, and the list of scans for a particular
experiment is obtained via the GET_SCANLIST command. This implementation is somewhat inefficient when
Slicer and SARRP are running on the same computer, since Slicer could directly scan the hard drive for
the list of patients and scans, but allows us to easily support a networked configuration, as shown in Fig. 4.
Once the experiment and scan are selected, the TPS sends the IMAGE request, with the experiment and
scan names as parameters, via the socket and SARRP sends the corresponding volume to the TPS through
OpenlGTLink. When the volume is received, the TPS locates it on the background to allow users to easily
adjust the window/level.

Once a planning volume is loaded, the next step is to set isocenters (targets). After one or more isocenters are
created, the coordinates of a selected isocenter can be sent to the SARRP software through the socket. This
can be used to move the SARRP so that it positions the selected point at the machine isocenter. The location
of the X-ray beam can be represented and updated in real time by the locator of the OpenlGTLink IF module.

In the Treatment Planning frame, multiple plans can be created using the isocenters defined in the previous
frame. First, the amount of prescribed dose (in centigray, cGy) for each isocenter must be entered, followed
by selecting a type of dose computation (i.e., either “dose to water” or “dose to medium”). As shown in
Fig. 9, we provide icons for adding, deleting, and moving entries up or down in the list. The ability to move
the entry is useful to sort based on collimator, thereby minimizing the amount of time needed to switch
collimators.

When the user clicks on the icon to add a new entry, the TPS software automatically sets some default values
for user convenience. For example, all new entries are set as beams (rather than arcs). Also, if only one
isocenter was defined, that isocenter is automatically selected for the new entry. If, however, the user identified
more than one possible isocenter, the TPS leaves that field empty so that the user can later select it from
the “Isocenter” drop-down menu. Once the isocenter is known, the TPS software creates a measurements
node, which is represented by red-colored lines on the viewers. For beams, the node is an instance of
vtkMRMLMeasurement sRulerNode, whereas for arcs it is an instance of vt kMRMLMeasurement sAngleNode.
To prevent confusion, only the node corresponding to the current (selected) plan entry is shown in red; the
others are depicted as white-colored lines (see Fig. 5). The TPS also provides a toggle button in the first
column of the plan table to allow users to turn on/off the visualization of its node.

For the initialization, we had to make one of the two (in the case of beam) or three (in the case of arc) points
fixed to, and placed on, its selected isocenter. We provide several options to change the beam: moving the
slider bar, typing a new value in the text box, or grabbing a point of the node on the viewers and moving
it. The visualization of the beam’s nominal outline, depending on the shape of collimator, is achieved
using MRML nodes such as vt kMRMLMode1DisplayNode and vtkMRMLModelNode and VTK objects such as
vtkTransformPolyDataFilter, vtkCylinderSource (for round collimators), and vtkCubeSource (for
rectangular collimators).

Figure 11 shows an example of a JSON file consisting of prescribed doses and target coordinates for each
isocenter, the type of dose computation, a file version and several entries (beams or arcs) with their associated
properties. Each plan entry has a name, type (i.e., either beam or arc), isocenter name, dose weight in
percentage, and collimator name. Beams have just a single gantry and couch angle, whereas arcs have starting
and ending angles for the gantry and couch. Once all the properties of plans are properly set, the dose can
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Figure 11: Example of JSON

be computed by clicking the “Compute Dose” button, which sends the DOSE command, with the dose plan
(JSON string) as a parameter, to the SARRP software. The SARRP software parses the JSON string and
invokes the dose engine on the GPU. After the computation is completed, the SARRP software returns the
dose volume to 3D Slicer throught the OpenlGTLink connection. It also returns an updated dose plan (JSON
string) that includes the computed exposure time for each beam and the measured source-to-surface distance
(SSD).

Once the output volume is received, one of the event handlers from vtkMRMLVolumeNode,
ImageDataModifiedEvent, detects the incoming image data and the TPS moves the existing planning
volume from the background to the foregroud layer and locates the dose volume on the background layer
in the three 2D viewers with the fade scale set to 50 percent. Placing it on the background layer en-
ables users to adjust the color visualization by using vertical and/or horizontal mouse motions (e.g., to
change the window/level). Those adjustments are caught by the DisplayModifiedEvent handler of the
vtkMRMLDisplayableNode class, which reads the new window/level values and updates the range of the
scalar bar in the 3D viewer so that the correct dose value is shown for each color.

5 TPS Validation
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Figure 12: Five Phantom Setups

We validated the TPS dose computation with 5 different phantom setups. For each setup, a stack of up to
4 different materials (e.g., cork, water, graphite, and aluminum, with densities of 0.25, 1.0, 1.7, and 2.69,
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Figure 13: Validation of the TPS with SET1 Figure 14: Validation Result of SET1

respectively) were used. These materials encompass the range of densities of mouse organs (e.g., lung,
fat, and bone, which have densities of 0.25, 0.95, and 1.92, respectively). As shown in Fig 12, for SET1,
4 radiation sensitive GAFCHROMIC EBT films whose density is close to water were used between each
heterogeneous material of 5 mm layers. Slabs of water, cork, aluminum, and cork were stacked from top to
bottom. In SET2, each material with the same order of SET1 was double-stacked and 5 films were placed in
between. The other sets consist of a stack of aluminum (SET 3), cork (SET 4), and graphite (SET 5), with a
film placed between each layer. For all the phantoms, the remaining volume was filled with water equivalent
plastic slabs. The films in the phantoms were exposed to radiation with different settings of source to surface
distance (SSD), exposure time (i.e., either 1.5 or 3 minutes), and collimator type (i.e., either 5x9 or 5x5 mm).

For the planning volumes, we created synthetic CBCT images in nrrd format, based on the known density
values of each material. We loaded each image into the TPS and specified the isocenter, prescribed dose,
and collimator to match the experimental values, as shown in Fig. 13 for SET1. We then computed the dose
and compared it to the dose measured from the films. Figure 14 shows a comparison of the depth dose (i.e.,
dose measured along the central beam axis) produced by the dose engine to the actual film measurements for
SET1. The results for the other phantoms were similar.

6 Conclusions and Future Work

We have successfully implemented and validated the TPS for the SARRP system based on 3D Slicer, using
the OpenlGTLink protocol to transfer image and transform data between the two programs. We chose to
create a separate socket for exchanging other data objects, rather than extending the OpenlGTLink protocol,
for simplicity of implementation. Overall, we had a positive experience using Python to create a custom
module for 3D Slicer, even though we used Slicer 3.6, which does not natively use Python (rather, it has a
Python “wrapper” over the native TCL code). We expect that it will be even easier to use Python with Slicer
4, though it will be necessary for us to replace the KWWidgets GUI elements with their Qt counterparts.

Our future work includes the integration of a segmentation module, so that the user can segment the different
types of tissue, including lung, soft tissue, fat, and bone, and assign known density values, rather than relying
on the CBCT pixel values to determine density.
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