Incremental Delaunay Triangulation

Release 0.01
Stéphane Rigaud! and Alexandre Gouaillard?

July 26, 2012

'Image & Pervasive Access Lab, National Centre for Scientific Research (CNRS), Fusionopolis, Singapore
2Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis,
Singapore

Abstract

This document describes the implementation in ITK of the Incremental Delaunay Triangulation algo-
rithm [1]. Using the Straight Walk in Triangulation function [4], the exact discrete geometrical orien-
tation predicate [3], and the itk::QuadEdgeMesh API [2] of ITK , we propose a geometrically exact
and robust implementation that, from a given 2-dimensional itk::PointSet, incrementally constructs the
corresponding 2-dimensional Delaunay Triangulation as an itk::QuadEdgeMesh.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3372]
Distributed under Creative Commons Attribution License

Contents
1 Principle of Incremental Delaunay Triangulation 2
2 Implementation 2
2.1 Input & Output e e e e e e 2
22 Inheritance e e e e 2
2.3 Initialisation Lo e e e e e e e 2
24 Mainalgorithm L 3
Adding apoint e e e e e e e 3
Delaunay Criterion Check e 3
3 Usage 4

4 Validation 4

http://www.insight-journal.org
http://hdl.handle.net/10380/3372
http://creativecommons.org/licenses/by/3.0/us/

1 Principle of Incremental Delaunay Triangulation

Taking a planar set of points P of n points embedded into a n-dimensions space, we construct a triangulation
DT(P), that respects the Delaunay criterion stating that no point of 2 should be inside of the circumference
circle of any triangle of DT(P).

Several algorithms exist to compute a Delaunay triangulation and, arguably, the most straightforward way
of computing it is the Incremental Delaunay triangulation algorithm [1]. Let 2 a point set and DT(%;) the
Delaunay triangulation of %, C P. We construct DT(,;) by adding a point p, randomly taken from P\ 7,
into the DT(‘,). Then, the triangle ¢ of DT (‘%) that embed the point p; is located and subdivided into three
new triangle ¢#;, t, and ¢3, which share the same vertex p;.

2 Implementation

2.1 Input & Output

This algorithm will generate a 2-manifold planar mesh of 1 component and 1 boundary, embedded into
a n-dimensional space, but that will be parallel to the plan (0,x,y). This output mesh will respect the
Delaunay criterion. The filter is templated over 2-dimensions itk::PointSet and itk::QuadEdgeMesh, if a
higher dimensional mesh or set of points is given, only the two first dimensions will be used in the process.

2.2 Inheritance

The algorithm is implemented as a filter class that takes an itk::PointSet, or any type that inherits from it,
as input and generates an itk::QuadEdgeMesh as output. The current ITK classes do not allow PointSet
to Mesh process (Figla). The closest existing class is itk::MeshToMeshFilter which manage the copy of
the points, point data, cell, cell links and cell data that define an itk::Mesh object. But our algorithm
only use the points and point data information to generate a triangulation. Therefore, in order to re-
spect the ITK template implementation, we have extracted the points and point data copy process that
was in itk::MeshToMeshFilter and added in intermediate new class itk::PointSetToMeshFilter and made
itk::MeshToMeshFilter inherits from this new class (Fig. 1b). The points and point data copy from input to
output that was implemented in itk::MeshToMeshFilter is now done in itk::PointSetToMeshFilter, while the
cell, cell links and cell data copy from input to output is left to itk::MeshToMeshFilter to handle. Our filter,
itk:: PointSetToDelaunayTriangulationFilter will inherits from itk:: PointSetToMeshFilter.

2.3 Initialisation

The Incremental algorithm is a step case algorithm which needs an initialisation step. We initialise DT (%)
by creating a four points mesh which encloses all the points of . Those four points g, Q;, Q> and Q3 are
at the extremity of the coordinates space of P (Fig. 2a). This is to make sure that their edges will always
respect the criterion and will not influence the triangulation. Once the algorithm will have converged, the
points will be removed along with all edges connected to them (Fig. 2f).

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3372]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3372
http://creativecommons.org/licenses/by/3.0/us/

2.4 Main algorithm 3

‘ itk::ProcessObject ‘4—{ itk::MeshSource }d—{ itk::MeshToMeshFilter ‘4—{ itk::Q ToQ ilter ‘

()

‘ itk::ProcessObject ‘4—{ itk::MeshSource }-—: itk::PointSetToMeshFitter \+r—: itk::MeshToMeshFilter u—{ itk ToQ

— e —

(b)

Figure 1: Inheritance diagram. (a) Current inheritance branch in ITK. (b) Modified inheritance branch for our imple-
mentation, with the modified classes in dash. The data structure of itk::PointSet (points and point data) copy process
that was managed in itk::MeshToMeshFilter has been extracted and put into a new class itk::PointSetToMeshFilter
from which our filter itk::PointSetToDelaunay Triangulation inherits. The new itk::MeshToMeshFilter, that inherits from
itk::PointSetToMeshFilter, now managed the copy of the rest of the itk::Mesh data structure (cells, cell links and cell
data).

(a) (b) (© (@ (e) ®

Figure 2: Incremental algorithm iteration. (a) Initialisation step. (b) DT(%). (c) Add a point p; to DT(®;). (d) Create
three new triangles Ty, T» and T3. (d) Flip illegal edge in order to obtain DT (%2, ;). (e) When all point are processed,
remove temporary points from the initialisation step. (f) Final DT(P).

2.4 Main algorithm
Adding a point

At each step of the algorithm, we add a new point p, to the triangulation (Fig. 2c). First we locate the
triangle T'(p;,p;j,px) of the current triangulation DT (‘%;) the point p; is going to affect. This is done using
the itk::WalkinTriangulationFunction [4]. The triangle T is removed and replaced by the three triangles

Tl (Phpjvpt), TZ(pj7pk7pl) and T3(kapi7pz) (Flg 2d)

Delaunay Criterion Check

The Delaunay criterion is then checked for the newly created triangle 7T, 7> and 73 (Fig. 2e). It uses
the itk::PointInCircleGeometricalPredicateFunctor [3] and verifies, for the given triangle and point, the
emptiness of the circumference circle for the adjacent face and opposite to the given point. If the face is
not Delaunay conform, we flip the diagonal edge of the quadrilater formed by the triangle and its adjacent
triangle using the itk::QuadEdgeMeshFlipEdgeEulerOperator. Because the flip can affect the validity of
other local edge, the verification is recursively called on the two new triangles created from the edge flipping.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3372]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3372
http://creativecommons.org/licenses/by/3.0/us/

3 Usage

An example DelaunayIncremental.cxx is provided with the sources and is used for the tests. Some points
set generator are provided for testing.

typedef itk::PointSet< PixelType, Dimension > TPointSet;
typedef itk::QuadEdgeMesh< PixelType, Dimension > TQuadEdgeMesh;
typedef itk::PointSetToQuadEdgeMeshFilter< TPointSet, TQuadEdgeMesh > MyFilter;

TPointSet::Pointer pointset = TPointSet::New();
TQuadEdgeMesh: :Pointer triangulation = TQuadEdgeMesh: :New();

MyFilter::Pointer myFilter = MyFilter::New();
myFilter->SetInput (pointset);

triangulation = myFilter->GetOutput();
myFilter->Update();

4 Validation

The validation of the filter output is made using the itk::DelaunayConformingQuadEdgeMeshFilter, by
quantifying how many edge flip was necessary to make the filter output mesh Delaunay conform. The
number of edge flip done by the itk::DelaunayConformingQuadEdgeMeshFilter is expected to be equal to
Zero.

References
[1] O. Devillers. Improved incremental randomized delaunay triangulation. In Proceedings of the fourteenth
annual symposium on Computational geometry, pages 106—-115. ACM, 1998. (document), 1

[2] A. Gouaillard, L. Florez-Valencia, and E. Boix. Itkquadedgemesh: A discrete orientable 2-manifold
data structure for image processing. Insight Journal, Sep 2006. (document)

[3] B. Moreau and A. Gouaillard. Exact geometrical predicate: Point in circle. Insight Journal, Nov 2011.
(document), 2.4

[4] S. Rigaud and A. Gouaillard. Walking in a triangulation: Straight walk. [Insight Journal, Feb 2012.
(document), 2.4

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3372]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3372
http://creativecommons.org/licenses/by/3.0/us/

References S

—— Z

,,_gm
3

AF
-

(©) ()

Figure 3: Paraview displays of results. (a) Regular pointset. (b) Randomly generated pointset. (c) Corresponding
Delaunay Triangulation of pointset (a). (d) Corresponding Delaunay Triangulation of pointset (b).

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3372]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3372
http://creativecommons.org/licenses/by/3.0/us/

	Principle of Incremental Delaunay Triangulation
	Implementation
	Input & Output
	Inheritance
	Initialisation
	Main algorithm
	Adding a point
	Delaunay Criterion Check

	Usage
	Validation

