Robust Scattered Data Points Approximation Using Finite Element
Biomechanical Model

Yixun Liu, Nikos Chrisochoides

CRTC Lab and Computer Science Department,
Old Dominion University, Norfolk, VA 23529
{yxliuwm, npchris}@gmail.com

Abstract Many enabling technologies like non-rigid registration in medical image computing
rely on the construction of a function by interpolating scattered points; however, the outliers
contained in the data and the approximation error make the robust and accurate estimation
difficult. This paper presents an ITK implementation of a robust Finite Element (FE) solver,
which can effectively deal with the above difficulties. The experiment results of synthetic data
and real cases demonstrate the characteristics of the robust solver and its typical application.

1 Introduction

In this paper, we present an ITK implementation of a robust Finite Element solver [1], which is
characterized by 1) approximation to interpolation, and 2) robust against outliers. The robust
solver uses a parameterized piece-wise linear polynomials to represent the unknown function. In
future, we plant to provide an option for the user to choose different higher order polynomials.
The parameters are estimated by approximating scattered data points. To deal with sparsity of the
data, the parameter estimation is regularized by a biomechanical model, which is capable of
describing the entire behavior of the system based on quite few data, i.e., the boundary condition.
To make the estimation robust again outliers, this solver performs the parameter estimation as a
Least Trimmed Squares (LTS) regression [3]. More specifically, at each iteration, estimate
parameters first without any outliers, then identify the points with larger error as outliers, finally
remove outliers from the data and re-estimate the parameters. To reduce the approximation error,
this solver allows the mesh to iteratively approach the scattered data. An additional external force
is applied to the FE model to reset or counteract the strain energy of the model in order to enable
the model to be further deformed. In this paper, we first describe the principle of the robust
solver. Then, we will present its ITK implementation of two filters: itk::fem::RobustSolver and
itk::fem::FEMScatteredDataPointSetTolmageFilter. RobustSolver undertakes concrete work, and
FEMScatteredDataPointSetTolmageFilter undertakes some “dirty” work to facilitate the use of
the RobustSolver. At last, the experiments on both synthetic and real data are provided along with
corresponding ITK codes.

The reimplementation of the solver not only inherits the coherent characteristics of the original
solver, i.e., approximation to interpolation and robustness, but also enables the original solver to
be easily adapted to different geometry domains and physical problems, owing to the flexible
implementation of the itk::fem library. Currently, except built-in 2D quadrilateral and 3D
hexahedral meshes, the RobustSolver supports 2D triangle and 3D tetrahedral meshes as input in
dealing with the linear elasticity problem. It is easy to extend this RobustSolver to other geometry
domains and physical problems by choosing appropriate FE elements (see itk::fem::Element).

2. Method
Given scattered point set S ={s;}?, € R, D =2,3and the displacement d, associated with's, ,

the scattered data approximation is formalized as a minimization of the following energy
function:



1)
where U is the unknown function. The first term, regularization term, describes the stain energy
of a linear elastic biomechanical model, and the second terms describes the degree of the

matching between the estimated data and the observation. A controls the balance of these two
terms. It is difficult to find the analytical solution of equation (1). Finite Element Method is used

W = La(u)e(u)d§2+lzp:HU(3i) —d

M
to approximate u WichNiUi , where M is the number of the vertices of the finite element,
i=0
N is the shape function associated with nodei, and U, is node displacement vector. As a result,
equation (1) can be discretized as:

W =UTKU + (HU - D)" S(HU - D) @

where U is the vector of the concatenation of U, with a size of 3n for 3D space. nis the number
of vertices of the mesh. D is the vector of the concatenation of d, . K is the mesh stiffness matrix
of size 3nx3n. The building of K has been well documented in [2]. H is the linear
interpolation matrix of size 3p x 3n . Each registration point 0, with number k contained in the
tetrahedron with vertex numberc;, i € [0: 3] has contribution to four 3x3 submatrices:

[H]k, . [Hl, [H], [H], - The diagonal matrix [H],. is defined as:

[H]i, =diag(h;,h;,h). The linear interpolation factor h; can be obtained by

X

X
hO VcO Vcl Vc2

y y y y y
hl — VcO Vcl Vc2 Vc3 0k (3)

z Z

h2 VcO Vc2
h, 1 1 1 1 1

where V, is the vertex with number ¢, . S is the matching stiffness matrix of size 3p x 3p. S'is

an extension to the classical diagonal stiffness matrix, taking into account the matching
confidence and the local structure distribution [1]. These measures are introduced through the

matrix S , whose 3 x 3 sub-matrix S, corresponding to registration pointk is defined as:
n
Sk = lBCka (4)

where T, is tensor structure of the block surrounding the point, which allows us to only
consider the matching direction collinear to the orientation of the intensity gradient in the
block [1]. In ITK implementation, point set of registration point S ={s;}, € R® is a

mandatory input, and point set of correspondence C ={c}", € R® and point set of tensor
T ={t}", €« R®are optional.
The equation (2) can be solved by



Z—\S’:[K+HTSH]U—HTSD=0 (5)

leading to the linear system:
[K+HTSHJU =H'SD (6)

The above approximation formulation performs well in the presence of outliers but suffers from a
systematic error. Alternatively, solving the exact interpolation problem based on noisy data is not
adequate. The robust solve can take advantage of both approximation and interpolation to
iteratively estimate the deformation from the approximation to the interpolation while rejecting
outliers. The gradual convergence to the interpolation solution is achieved through the use of an
external force F added to the approximation formulation of Equation (6), which balances the
internal mesh stress:

[K+H'SHJU =H'SD +F (7

This force F is computed at each iteration i to balance the mesh internal force KU, , which
leads to the iterative scheme:

F < KU,

8
U, <[K+HTSH]'[H'SD+F] ©)

In ITK implementation, the number of the approximation to interpolation steps is specified by the
user. Due to potential outliers, Least Trimmed Squares robust regression is used to reject a
fraction of the total registration points based on an error function,

S = Hsk[(HU)k - Dk]” C))

which measures the error between the estimated displacement and the real displacement. To make
the error independent of the current estimated displacement, error function (9) is normalized as,

S = Hsk[(HU)k - Dk]”
A|(HU),|+1

(10)

The number of rejection steps based on this error function and the fraction of rejection per
iteration are defined by the user.

3. ITK Implementation

FEMScatteredDataPointSetTolmageFilter and RobustSolver implement the solver presented in
[1]. FEMScatteredDataPointSetTolmageFilter is a wrapper of RobustSolver.
FEMScatteredDataPointSetTolmageFilter is used to facilitate the use of RobustSolver by
converting natural inputs such as mesh and feature points into specific FEMObject, providing
built-in 2D and 3D rectilinear meshes, invoking RobustSolver to resolve the solution to produce a
deformed FEMObject, and converting the deformed FEMObject into a deformation field.
FEMRobustSolver takes a FEMObject as input, then iteratively approximates the data



(displacement) associated with the feature points while rejecting outliers, and finally outputs a
deformed FEMObject.

3.1 FEMScatteredDataPointSetTolmageFilter

Figure 1 shows the flow chart and the inheritance diagram of this filter, respectively.
FEMScatteredDataPointSetTolmageFilter provides a built-in 2D quadrilateral and 3D hexahedron
mesh if the input mesh is not available. Otherwise, just simply passes the input mesh to the
converter. The natural inputs of the RobustSolver are mesh and point sets including mandatory
feature points and optional confidence and tensor. itk FEM library requires a FEMODbiject as input.
FEMScatteredDataPointSetTolmageFilter converts the mesh and point sets into a FEMObject,
which is undertaken by a member function:

InitializeFEMObject(FEMODbjectType * femObject)

this->InitializeMaterials(femObject);
this->InitializeNodes(femObject);
this->InitializeElements(femObject);
this->InitializeLoads(femObject);

/I produce DOF
femObject->FinalizeMesh();

}

The material properties of the biomechanical model such as Young modulus and Poisson’s ratio
are specified in InitializeMaterials. InitializeNodes and InitializeElements are used to store the nodes and the
elements of the mesh into containers of the FEMODbject. The displacement assocaited with the
featrue points are stored as loads in the FEMODbject by mitializeLoads, in Which the correspondence
and tensor will be stored too if they are provided by users. After initialization, FinalizeMesh should
be invoked to produce Degree of Freedoms (DOF) for the building of stiffness matrix K. After
converting to FEMObject, FEMRobustSolver is invoked to construct linear system of equations
described by equation (7), resolve U of the linear system, and output a deformed FEMObject,
which is used by DeformationFieldGenerator to produce a deformation field. The following codes
show its typical usage.

Typical usage:

const unsigned int ParametricDimension = 2;
const unsigned int DataDimension = 2;

typedef  short PixelType;

typedef  double RealType;

typedef itk::Image<Pixel Type, ParametricDimension> ImageType;

typedef itk::Vector<Real Type, DataDimension> VectorType;

typedef itk::Matrix<Real Type, DataDimension, DataDimension> MatrixType;

typedef itk::Image<VectorType, ParametricDimension> DeformationFieldType;
typedef itk::PointSet <VectorType, ParametricDimension> PointSetType;

typedef itk::PointSet <MatrixType, ParametricDimension> TensorPointSetType;
typedef itk::PointSet <RealType, ParametricDimension> ConfidencePointSetType;
typedef itk::Mesh< VectorType, ParametricDimension> MeshType;

typedef itk::FEMScatteredDataPointSetTolmageFilter
<PointSetType, MeshType, DeformationFieldType,
ConfidencePointSetType, TensorPointSetType> FilterType;

FilterType::Pointer filter = FilterType::New();

PointSetType::Pointer featurePoints = PointSetType::New(); // feature points associated with displacement
MeshType::Pointer mesh = MeshType::New(); // 2D triangle/rectilinear or 3D tetrahedral/hexahedral mesh
ConfidencePointSetType::Pointer confidence = ConfidencePointSetType::New();
TensorPointSetType::Pointer tensor = TensorPointSetType::New();



filter->SetlInput(featurePoints);
filter->SetConfidencePointSet(confidence); //optional
filter->SetTensorPointSet(tensor); //optional
filter->SetMesh(mesh); // optional

filter->Updata();

DeformationField Type::Pointer field = filter->GetOutput();

Mesh/Null

y
Mesher

PointSetTolmageFilter
y

Confidence

Mesh y

Converter

A 4

Tensor

FEMScatteredDataPointSetTolmageFilter

FeaturePoi FEMObiject ¢

RobustSolve

Deformed FEMODbijet \

DeformationFieldGenerator

v
Deformation Field

Figure 1. The flow chart (left) and the inheritance diagram (right) of
FEMScatteredDataPointSetTolmageFilter. FEMScatteredDataPointSetTolmageFilter takes mesh,
feature points, confidence and structural tensor as inputs. Converter first converts these input into
a FEMObject, and then invokes RobustSolver to produce a deformed FEMODbject. This deformed
Obiject is converted into the deformation filed by DeformationFildGenerator.

3.2 RobustSolver

Given a 2- or 3-D scattered and noisy point set, in which each point is associated with a 2-D or 3-
D displacement, RobustSolver is able to approximate the data while rejecting outliers, advance
toward interpolation, and finally output a deformed FEMObject. The flow chart and inheritance
diagram are described in Figure 2 and Figure 3, respectively.

RobustSolver also takes into account two optional point sets: the confidence and structural tensor.
Confidence point set describes our confidence for each feature point using a value between 0 and
1 (0: not trustful, 1: completely trustful), which will make the solver behavior like a weighted
Least Square. Tensor point set describes the distribution of the edge direction within a small
block surrounding the feature point, which is used to avoid the aperture problem [4, 5]. The
following codes show the typical usage of the RobustSolver.

Typical usage:

typedef itk::fem::FEMObject<2> FEMObjectType;
FEMObjectType::Pointer underformedFEMObject = FEMObjectType::New();

/I initialize underformedFEMODbject here or use FEMScatteredDataPointSetTolmageFilter, which will undertake the initialization.



typedef itk::fem::RobustSolver<2> FEMSolverType;
FEMSolverType::Pointer solver = FEMSolverType::New();

solver->SetInput(underformedFEMObject);
solver->Update( );
FEMObjectType::Pointer deformedFEMODbject = solver->GetOutput( );

F=0 i >
A 4
Assemble K [K+H'SH]U=H'SD+F [¢——3

s —>| Assemble H Resolve LS

| [K+HTSH]JU=H"SD+F |

v

Resolve LS

v

Ouitlier rejection
* Approximation to
AdjustH interpolation
Resolver LS

< Ilter < N1

Y

Outlier rejection

Figure 2. The flow chart of RobustSolver. RobustSolver includes two parts: outlier rejection and
approximation to interpolation. Outlier rejection proceeds as a LTS regression: resolve U first,
then detect outliers based on error function (10), remove outliers and resolve U again. The F is
used to reset the strain energy to enable the mesh to be deformed further. The difference between
the two parts is there is no outlier rejection in the approximation to interpolation part.



Solver
A

RobustSolver

m s
. /

LinearSystemWrapper

/\

LinearSystemWrapperVNL LinearSystemWraperltpack

Figure 3. The inheritance diagram of RobustSolver. RobustSolver supports both VNL solver and
Itpack solver to resolve the linear system of equations. Compared to VNL solver, Itpacks runs
faster, which is the default LS solver in RobustSolver.

4. Experiments

We performed experiments on the synthetic data to evaluate two features of
FEMScatteredDataPointSetTolmageFilter : approximation to interpolation and robustness, and
performed experiments on the real MRI image to show its typical application on interpolating
deformation filed and registration.

4.1 Approximation to interpolation

A 7x7 grid is produced to simulate an image. 14 landmarks (red points in Fig. 4a) are produced.
One landmark is associated with a unit positive displacement and the others are fixed. The mesh
is a 3 x 3 (spacing: 2 x 2) quadrilateral, which is not shown in the figure. After one
approximation (Fig. 4b), there is a large approximation error associated with the left corner
landmark. After two (Fig. 4c) and three approximation steps (Fig. 4d), the approximation error is
reduced, which demonstrates that the solver is able to gradually advance from approximation to
interpolation. The typical codes are:

ScatteredDataPointSetTolmageFilterType::Pointer filter = ScatteredDataPointSetTolmageFilterType::New();
filter->GetFEMSolver()->SetApproximationSteps(3);

/I no outlier rejection
filter->GetFEMSolver()->SetOutlierRejectionSteps(0);

a ".b' 'c‘ d

Figure 4. Approximation to interpolation. a shows the 7 x 7 grid and 14 landmarks. b, ¢ and d
show the deformation fields after one, two and three approxiamtion steps, respecively.



4.2 Robustness (outlier rejection)

To evaluate the robustness of the solver, two landmarks (red color points in Fig. 5a) are selected
from the two fixed boundaries. A negative unit displacement is assigned to these two outliers.
Without outlier rejection, the resulting deformation field is shown as Fig. 5b, where many pixels
have a wrong negative displacement induced by the outliers. With outlier rejection (Fig. 5¢), the
resulting deformation is quite same with the ground truth (Fig. 4d), which demonstrates that the
solver is able to remove outliers. The typical codes are:

1/ setting for outlier rejection. Set OutlierRejectionSteps to 0 to disable outlier
/I rejectioin.

filter->GetFEMSolver()->SetOutlierRejectionSteps(1);
filter->GetFEMSolver()->SetFractionErrorRejected(0.2);

a e " c
Figure 5. QOutlier rejection. a shows two outliers. b is the deformation field without outlier
rejection, and c is the deformation field with outlier rejection.

4.3 Application

A typical application of FEMScatteredDataPointSetTolmageFilter is to estimate the entire
deformation field based on sparse deformation field. The approximated deformation filed can be
further used with itk::WarperFilter to produce an aligned image. To produce a sparse deformation
field, first, we perform deformable registration on the lung images of rat (see Figure 6) using
itk::BSplineDeformableTransform. The resulting deformation field is shown in the left image of
Figure 7. Then, we perform edge detection in the fixed image (left image of Figure 6) to produce
the edge image (right image of Figure 6). At last, for all edge points perform interpolation in the
deformation filed to produce a sparse deformation field, which is represent by itk::PointSet. Since
the edge detection is performed on the fixed image, which has the same origin, spacing and size
with the deformation field. The displacement associated with the edge point can be directly
obtained. The following codes demonstrate how to produce the sparse deformation field from an
edge image and a deformation field. Note that we focus on the assessment of the
FEMScatteredDataPointSetTolmageFilter in estimating the entire deformation field from a sparse
deformation field rather than on how to produce the input sparse deformation field. Users can use
the tools they have to produce the sparse deformation field, no necessary following the
procedures presented in this paper.



Figure 6: Fixed image, moving image and edges detected in the fixed image.

const unsig
const unsig

typedef
typedef
typedef itk:
typedef itk:

typedef itk:
typedef itk:

typedef itk:
typedef itk:
typedef itk:

typedef itk:

ImageType
ImageType
ImageType
ImageType
ImageType
ImageType

ned int ParametricDimension = 2;
ned int DataDimension = 2;

unsigned char PixelType;

double RealType;
:Vector<RealType, DataDimension> VectorType;
:Matrix<Real Type, DataDimension, DataDimension> MatrixType;
:Image<PixelType, ParametricDimension> ImageType;
:Image<VectorType, ParametricDimension> DeformationFieldType;
:ImageFileReader<ImageType> FeatureReaderType;
:ImageFileReader <DeformationFieldType> DeformationFieldReaderType;
:ImageFileWriter <DeformationFieldType> DeformationFieldWriterType

:PointSet<VectorType, ParametricDimension >  FeaturePointSetType ;

::SizeType size;
::SpacingType spacing;
::RegionType region;
::IndexType index;
::PointType origin;
::DirectionType direction;

/I'load edge image

FeatureRea

derType::Pointer featureReader = FeatureReaderType::New();

featureReader->SetFileName(edgelmageFilename);
featureReader->Update();

ImageType

::Pointer featurelmage = edgeReader ->GetOutput();

region = featurelmage ->GetLargestPossibleRegion();

/I 'load defo
Deformatio

rmation field

nFieldReaderType::Pointer deformationFieldReader = DeformationFieldReaderType::New();

deformationFieldReader->SetFileName(inputDeformationFieldFilename);
deformationFieldReader->Update();

Deformatio

/I interpolat

nFieldType::Pointer inputField = deformationFieldReader->GetOutput();

e deformation field for all edge points

itk::lmageRegionlteratorWithIndex <ImageType> itFeaturePoint (featurelmage, region);
itk::ImageRegionlteratorWithIndex <DeformationFieldType> itField (inputField, region);

FeaturePointSetType::Pointer featurePoints = FeaturePointSetType::New();

itFeaturePol

int.GoToBegin();

itField.GoToBegin();

while( litFe

aturePoint.ISAtEnd() )

if(itFeaturePoint.Get() != itk:: NumericTraits <PixelType >::Zero)

{



FeaturePointSetType::PointType point;
featurelmage->TransformindexToPhysicalPoint(itFeaturePoint.GetIndex(), point);
unsigned long i = featurePoints -> GetNumberOfPoints ();
featurePoints->SetPoint(i, point);

FeaturePointSetType::PixelType displacement(DataDimension);
displacement = itField.Get();
featurePoints->SetPointData(i, displacement);

}

++itFeaturePoint;
++itField;
}

Based on the sparse deformation field, FEMScatteredDataPointSetTolmageFilter is able to
interpolate the entire deformation field, represented by an itk::Image. This filter takes a feature
point set, mesh, confidence point set and tensor point set as inputs, and outputs a deformation
field. The feature point set defines the sparse deformation filed. The mesh can be 2D
triangular/quadrilateral or 3D tetrahedral/hexahedral mesh. For convenience, default 2D/3D
rectilinear mesh, confidence and tensor point sets are provided.

Figure 7 shows the comparison between original deformation field and the estimated deformation
field. The estimated field has the same range of the magnitude with the original field as shown in
the scalar bars. Usually, the more edge points we have, the better the estimated deformation field
is. In the data related to this paper, except the binary edge image and the input deformation field,
we also provide a gray edge image. The binary edge image used in this paper is produced by
setting the threshold to [100, 255]. This gray edge image allows users to play with different
thresholds using Slicer4 to produce different binary edge images in order to observe the influence
of the number of the edge points on the estimated deformation field.

The following codes show how to use FEMScatteredDataPointSetTolmageFilter to interpolate the
entire deformation field from the sparse deformation field.

Deformation Deformation
2,79 2.79

Figure 7: Original deformation field and the approximated deformation field. The estimated
deformation field shows the same range of the magnitude of the deformation and quite similar
deformation distribution. The figures are produced by ParaView 3.12 with the following steps: 1)
load deformation field, 2) input “Metalmage_ X*iHat+Metalmage_Y*jHat” in the calculator
filter, and 3) visualize Glyphs for 1000 points.

typedef itk::Mesh< VectorType, ParametricDimension > MeshType;
typedef itk::PointSet<RealType, ParametricDimension> ConfidencePointSetType;



typedef itk::PointSet<MatrixType, ParametricDimension> TensorPointSetType;

typedef itk::fem::FEMScatteredDataPointSetTolmageFilter
<FeaturePointSetType, MeshType, DeformationFieldType, ConfidencePointSetType,
TensorPointSetType> ScatteredDataPointSetTolmageFilterType;

ScatteredDataPointSetTolmageFilterType::Pointer scatteredPointSetTolmage = ScatteredDataPointSetTolmageFilterType::New();
scatteredPointSetTolmage->SetInput(featurePoints);

/1 set the parameters for a rectilinear mesh. Ingore this setting if users provide a mesh
DeformationFieldType::SpacingType elementSpacing;

elementSpacing[0] = 8.0;

elementSpacing[1] = 8.0;
scatteredPointSetTolmage->SetElementSpacing(elementSpacing);

/1 set the confidence of the feature points.
/I not necessary, if all feature points are trustful
/IConfidencePointSetType::Pointer confidence = ConfidencePointSetType::New();

/1 set the tensor of the feature points.

/I not necessary due to no tensor assocaited with the feature point.

/I If the feature points come from itkMaskFeaturePointSelectionFilter,

/I the tensor produced by itkMaskFeaturePointSelectionFilter need to be set here
/[TensorPointSetType::Pointer tensor = TensorPointSetType::New();

size = region.GetSize();
origin = featurelmage->GetOrigin();
spacing = featurelmage->GetSpacing();

/1 set output deformation field, which has the same setting with the feature image,

I 'as well as the fixed image, since the edge detection is performed on the fixed image.
scatteredPointSetTolmage->SetSize(size);
scatteredPointSetTolmage->SetSpacing(spacing);
scatteredPointSetTolmage->SetOrigin(origin);

/I set parameters for FEM solver. Usually, the default setting works well.
/IscatteredPointSetTolmage->GetFEMSolver()->SetTradeOffImageMeshEnergy(1.0);
/IscatteredPointSetTolmage->GetFEMSolver()->SetApproximationSteps(10);
/IscatteredPointSetTolmage->GetFEMSolver()->SetOutlierRejectionSteps(5);

/I no outlier rejection. We trust all edge points
scatteredPointSetTolmage->GetFEMSolver()->SetFractionErrorRejected(0.0);

scatteredPointSetTolmage->Update();
DeformationField Type::Pointer outputDeformationField = scatteredPointSetTolmage->GetOutput();
DeformationFieldWriterType::Pointer deformationFieldWriter = DeformationFieldWriterType::New();

deformationFieldWriter->SetFileName("outputDeformationFieldFilename.mha");
deformationFieldWriter->SetInput(outputDeformationField);

try
deformationFieldWriter->Update();
cgtch( itk::ExceptionObject & err)
std::cerr << "ExceptionObject caught I" << std::endl;

std::cerr << err << std::endl;
return EXIT_FAILURE;

}

The estimated deformation field can be used with itk::WarpImageFilter to produce an aligned
moving image. Figure 8 shows the Checkerboard comparison before and after registration. The
corresponding codes are as follows.



Figure 8: Checkerboard comparison before and after registration.

typedef itk::WarplmageFilter<ImageType, ImageType, DeformationFieldType> WarperType;

typedef itk::LinearInterpolatelmageFunction<imageType, Real Type> Interpolator Type;
typedef itk::ImageFileReader<lmageType> ReaderType;

typedef itk::ImageFileWriter<imageType> WriterType;

typedef itk::CheckerBoardImageFilter< ImageType > CheckerBoardFilterType;

/l'load fixed image

ReaderType::Pointer fixedReader = ReaderType::New();
fixedReader->SetFileName(fixedImageFilename);
fixedReader->Update();

ImageType::Pointer fixedlmage = fixedReader->GetOutput();

//'load moving image

ReaderType::Pointer movingReader = ReaderType::New();
movingReader->SetFileName(movingimageFilename);
movingReader->Update();

ImageType::Pointer movinglmage = movingReader->GetOutput();

// warp image

WarperType::Pointer warper = WarperType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
warper->SetInput( movinglmage );

warper->SetInterpolator( interpolator );
warper->SetOutputSpacing( spacing );
warper->SetOutputOrigin( origin );
warper->SetDeformationField(outputDeformationField);
warper->Update();

CheckerBoardFilterType::Pointer checkerBoardFilter = CheckerBoardFilterType::New();
checkerBoardFilter->SetInput1(fixedlmage);
checkerBoardFilter->SetIlnput2(warper->GetOutput());

checkerBoardFilter->Update();

WriterType::Pointer writer = WriterType::New();
writer->SetFileName("checkerBoardAfterRegistration.mha");
writer->SetInput(checkerBoardFilter->GetOutput());

try

{
writer->Update();
catch( itk::ExceptionObject & err)
std::cerr << "ExceptionObject caught I" << std::endl;

std::cerr << err << std::endl;
return O;

}



5. Conclusion

We present an ITK implementation of a robust FEM solver. This solver can iteratively reject
potential outliers and approaches interpolation. The synthetic experiments demonstrate these two
characteristics, and the real experiments demonstrate its typical application on estimation of the
entire deformation field based on a sparse field. The estimated field can be further used with the
itk::WarplmageFilter to produce an aligned image. In this paper, we produce a sparse
deformation field by interpolating the original field at the edge points. In practice, the sparse
deformation  field can be produced by feature point detection filter:
itkMaskFeaturePointSelectionFilter and block matching filter: itkBlockMatchinglmageFilter.
Combined with these two filters, not limited to these filters,
FEMScatteredDataPointSetTolmageFilter can be used to perform physics-based non-rigid
registration.

6. Acknowledgements

This work is funded mainly by the ARRA funds for the ITK-v4 implementation with grant
number: NLM A2D2 201000586P. In addition, this work is supported in part by NSF grants:
CCF-1139864, CCF-1136538, and CSI-1136536 and by the John Simon Guggenheim Foundation
and the Richard T. Cheng Endowment. We would like to thank Luis Ibanez, Matt McCormick,
Arnaud Gelas and Andinet Enquobahrie for their help on ITK coding style. In addition, Andriy
Fedorov and Andriy Kot, they were instrumental in running the old BioFem code which helped us
to better understand the method in [1]. Of course, Olivier Clatz for insightful discussions on this
method [1] during his week-long 2006 visit in the Center for Real Time Computing at William
and Mary. At last but not least Fotis Drakopoulos for fixing several bugs while he used this filter
for non-rigid registration of brain MRI images.

References

[1] O. Clatz, H. Delingette, I.-F. Talos, A. Golby, R. Kikinis, F. Jolesz, N. Ayache, and S.
Warfield, "Robust non-rigid registration to capture brain shift from intra-operative MRI", IEEE
Trans. Med. Imag., 24(11);1417-27, 2005.

[2] K. Bathe, “Finite Element Procedure”, Prentice-Hall, 1996.

[3] P. J. Rousseeuw and A. M. Leroy, “Robust regression and outlier detection”, John Wiley &
Sons, Inc., New York, NY, USA, 1987.

[4] S. Shimojo, G. H. Silverman, and K. Nakayama, “Occlusion and the solution to the aperture
problem for motion”, Vision Research, 29, 619-626, 1989

[5] T. Poggio, V. Torre, and C. Koch, “Computational vision and regularization theory,” Nature,
vol. 317, pp. 314-319, Oct. 1985.



