MUSIIC ToolKit 2.0:

Bidirectional Real-time Software Framework for
Advanced Interventional Ultrasound Research.

Release 1.00
Hyun-Jae Kang®, Alexis Cheng*,Emad M. Boctor'?

August 10, 2012

' Department of Computer Science, Johns Hopkins University, Baltimore, MD/USA
*Department of Radiology, DMIP, Johns Hopkins Medical Institutions, Baltimore, MD/USA

Abstract

Ultrasound (US) imaging is a popular and convenient medical imaging modality thanks to its mobility, non-ionizing radiation,
ease-of-use, and real-time acquisition. Conventional US imaging is frequently integrated with tracking systems and robotic sys-
tems in Image Guided Therapy (IGT) systems. Recently, these systems are also incorporating advanced US imaging such as US
elasticity imaging, photoacoustic imaging, and thermal imaging. Real-time synchronous data from multiple sources and bidirec-
tional data communication are essential for integrating components in advanced US IGT research. We previously proposed the
MUSIiIC ToolKit [1], a modular real-time software toolkit, and OpenlGTLinkMUSIiC [2], a standard communication protocol
extended from the OpenlGTLink library [3, 4]. However, this software framework only supported real-time synchronous data
from at most two sources and unidirectional communication at the software module level and class level.

In this paper, we propose MUSIiC ToolKit 2.0, an upgraded software framework for interventional advanced US research sup-
porting bidirectional communication, real-time US data processing, and real-time data synchronization from multiple sources.
MUSIIC ToolKit 2.0 consists of OpenlGTLink 2.0, OpenlGTlinkMUSIiC 2.0, MUSiiCNotes 2.0, and a collection of executable
programs designed for US research. OpenlGTLink 2.0 is a standard TCP/IP-based protocol for the integration of medical imag-
ing and IGT systems. OpenlGTLinkMUSIiC 2.0 is the upgraded version of OpenlGTLinkMUSIiC with new active multi-task
classes, data interfaces for supporting bidirectional communication and parallel data processing. MUSiiCNotes 2.0 provides US
research-oriented task classes, such as US data acquisition, beamforming, envelope detection, scan conversion, and data synchro-
nization. Graphic User Interface (GUI) units are also available for the executable programs in MUSiiCNotes 2.0. Finally, we
introduce advanced US applications based on this new software framework.

Contents
1 Introduction 2

2 MUSIiC ToolKit 2.0 3

2.1 MUSIIC ToolKit 2.0: Real-time US Data Computation 4
2.2 MUSIIC ToolKit 2.0: Bidirectional Communication Mechanism 7
2.3 MUSIIC ToolKit 2.0: Real-time Multiple Data Synchronization 9
3 Application for Advanced Ultrasound Research using MUSIiC ToolKit 2.0 10
4 Conclusions 11

1 Introduction

Ultrasound (US) imaging has many qualities that make it a popular and convenient medical imaging mo-
dality. These qualities include its mobility, non-ionizing radiation, ease-of-use, and real-time data acquisi-
tion. US imaging systems are often used in the operating room and the emergency room because of these
features. Moreover, conventional US imaging is frequently integrated with other medical imaging modali-
ties such as pre-operative models (CT, MRI), tracking systems and robotic systems for Image Guided
Therapy (IGT) [5-7]. These systems are also exploring the use of advanced US imaging such as US
elastography, photoacoustic imaging, and thermal imaging [5, 8, 9]. Several software frameworks and
toolkits have been developed to integrate US data acquisition, processing and displays with existing IGT
systems [1, 2, 6, 10, 11]. In our previous work [1, 2, 12], we proposed a real-time software framework for
interventional ultrasound research. It consisted of MUSIiC ToolKit, a modular real-time software toolkit,
and OpenlGTLinkMUSIIC, a standard communication protocol extended from the OpenlGTLink library
[3, 4].

RF-Ablation System l_

Thermal Energy Analog Signal

Thermo— ... Thermometry . === ControlSignal (TTL)
System

s |

Thermal Energy: couple
RF Ablator

. Electrica
* Energy

RF-Power Degassed
Generator Water Pump

I === Water Circulation

i—) USMessage
| ====% EIMessage

i = - & ImageMessage

Ultrasound Data

Controller
Box
Monitoring B

Ultrasound Imaging System
I Frame
Chooser

RF-Server Client: RF-DATA Server Client:
Elastography Elastography
Server: RF-DATA

| B-Mode Server ImageViewer

Client: RF-DATA Server: B-Mode Client: B-Mode

- Ultrasound Machine Workstationwith GPU I
(Win XP 32bit) (Win XP 64bit, CUDA)

Figure 1. The System configuration of ultrasound thermal monitoring system based on
MUSIiC ToolKit1.0 and OpenlGTLinkMUSIiC 1.0 [2]

Figure 1 shows the system configuration of a US thermal monitoring system based on MUSIiC ToolKit
1.0 and OpenlGTLinkMUSIIC 1.0. In the figure, all components in the block diagram are connected with a
unidirectional communication mechanism. This means that the data source module, RF-Server, cannot
receive any feedback information from its client modules, EIM or B-Mode server. In this block diagram,
an end user of ImageViewer will not be able to set control parameters of RF-Server that affect ultrasound
data acquisition. As shown in this example, our previous software framework did not support closed-loop
feedback control by not providing bidirectional communication between software modules or task classes.

IGT procedures typically require many sources of information such as surgical instrument tracking infor-
mation, pre-operative medical images, intra-operative medical images, or multiple medical imaging mo-
dalities. This presents a need for an efficient and interactive communication mechanism between the vari-
ous data sources. With continued research on US IGT systems, there is a growing demand for real-time
US data acquisition and processing, and synchronization of data from multiple sources such as tracking
data or temperature data. There is also a demand for a bidirectional communication mechanism between
modules in an IGT system.

To address the requirements above, we propose MUSIiC ToolKit 2.0, an upgraded software framework for
interventional advanced US research in IGT systems. In this paper, we will focus on the following new
features of our upgraded software framework: (1) Bidirectional communication mechanism at application
level and task-class level. (2) Real-time US data acquisition and processing method. (3) Real-time data
synchronization from multiple data sources.

This paper is organized as follows: Section 2 provides an overview of MUSIiC ToolKit 2.0 and a detailed
explanation of the new functionalities in this software framework. In section 3, we introduce an advanced
US research applications based on MUSIiC ToolKit 2.0. We conclude with a discussion on possible future
improvements and directions in section 4.

2 MUSIIC ToolKit 2.0

Figure 2 shows an overview of MUSIiC ToolKit 2.0. Our software framework can be classified into four
categories: OpenlGTLink 2.0 [3, 4], OpenlGTLinkMUSIiC 2.0, MUSIiC Notes 2.0, and MUSIiC Modules,
a collection of executable programs. OpenlGTLink 2.0 is the software library of standard TCP/IP-based
message protocol for the integration of medical IGT system, which is proposed by J. Tokuda [3]. In this
library, multiple data types are defined as TCP/IP messages for real-time communication between subsys-
tems of an IGT system, and there are serialization and deserialization mechanisms for each message.

OpenlIGTLinkMUSIiC is the extended version of OpenlGTLink by adding a special ultrasound data mes-
sage and other message types (GenMessage, ArgMessage, and FileMessage) for advanced ultrasound re-
search [2]. In this research, we upgrade this software library to OpenlGTLinkMUSIiC 2.0 by adding active
task classes that have their own independent task thread. These task threads are based on multithreaded
techniques and thread-safe inter-process communication (IPC) [13] for efficient real-time ultrasound data
computation. We also implemented the Observer design pattern [14] in this library for bidirectional com-
munication between applications or active task class components. Since OpenlGTLinkMUSIiIC 2.0 pro-
vides the basic functionalities such as abstract active-task classes (MUSiiCTaskObject, MUSIiC-
TaskAbstract, and MUSiiCTaskInterfaceAbstract), thread-safe data interfaces (MUSiiCVector and

MUSIiiCVectorSet), and callback interfaces (MUSiiCCallbackinterface, MUSiiCCallbackinterface-
Control), it is therefore considered as the fundamental library in MUSIiC ToolKit 2.0.

® ®

MUSIiC ToolKit 2.0 MUSIiC Modules

Dat: Data-Processing Data-Synchronization Data-Input/output
MUSIiC Modules b | MUSIIC MUSIIC | MUSIiC | MUSIiC |

RF-Server BeamForm Sync Image Viewer
MusiiC

FileManager
MusiiC

StreamWriter

MusiiC MuUsIiC
Pre RF-Server B-Mode

| MUSIiC Notes 2.0 |

MusiiC
Tracking-Server

| OpenIGTLINkMUSIIC 2.0 | —
o || vrc || W
| SDK

.
| OpenlGTLink 2.0

MUSiiC
Scanconversion

Figure 2. Overview of MUSIiC ToolKit 2.0

MUSIiiCNotes 2.0 is the component based library in our software framework. It provides US research-
oriented task classes, such as US data acquisition, beamforming, envelope detection, scan conversion,
data synchronization, and Graphic User Interface (GUI) units for each task class or executable program.
As shown in figure 2, MUSIiC Notes 2.0 depends on OpenlGTLink 2.0 [3, 4], OpenlGTLinkMUSIiC 2.0,
the Qt SDK [15], the Visualization ToolKit (VTK) [16], and hardware-dependent SDKs such as the
Ultrasonix SDK (Ultrasonix Co.) [17] and the 3D Guidance medSAFE/driveBay SDK (Ascension Tech-
nology Co.) [18].

MUSIiC Modules is a collection of executable programs related to US research. All of these programs are
based on a network distributed computing system to improve the performance of US data processing and
the flexibility to reconfigure the US research system. To support these features, all programs have their
own network classes (MUSiiCTCPServer and MUSiiCTCPClient) and file input/output (I/O) classes
(MUSIICFilelO). Figure 2 also shows that there are four types of executable modules: Data acquisition
modules, Data Processing modules, Data synchronization module, and Data I/0 modules. Different data
acquisition modules support collecting US pre-beamformed and post-beamformed RF data, tracking in-
formation of a medical device, or temperature information in real-time. The data synchronization module
can combine different data from multiple data sources using the timestamps of each data. We can also add
extra information such as ultrasound calibration information [11] to the synchronized data at this module.
The data I/0O modules allow us to efficiently display the data in various formats on the computer monitor.
It also gives us the capability to read and write the data to files on the local hard disk in real-time.

2.1 MUSIiC ToolKit 2.0: Real-time US Data-Computation

A significant advantage of US in IGT systems is its ability to provide intra-operative data such as B-mode
images, US strain images, or photoacoustic images [1, 9, 12, 19]. However, in general, US data pro-
cessing is computationally expensive [20]. Therefore, a well-defined task abstract class that supports mul-
tithreaded programming is an essential part of a software framework for US research.

To fulfill these requirements, we built an active task object class, MUSIiiCTaskObject, to run a task func-
tion with an independent thread, and two task abstract classes, MUSiiCTaskAbstract and MUSiiCTask-
InterfaceAbstract, to manage multiple task objects efficiently. Also, we made a thread-safe data interface,
MUSiiCVector, for transferring data between task objects or task abstract classes and a data interface
manager, MUSIiiCVectorSet. Both of these classes define “concurrent_pushback ”, “concurrent_pop ”, and

“concurrent_get” functions that allow the data to be safely written, deleted, or read by multiple threads.
Figure 3 represents the Unified Modeling Language (UML) class diagrams for MUSiiCTaskObject,
MUSIiiCTaskAbstract, MUSIiiCTaskInterfaceAbstract, MUSiiCVector, and MUSiiCVectorSet.

MUSIiCTaskObjects

m_pThread: igtl::MultiTreader::Pointer

m_pPreSelfCallbackFunction: MUSiiCCallbackInterface::Pointer

m_pPostSelfCallbackFunction: MUSiiCCallbacklnterface::Pointer

m_pPreCallbacklInterfaceControl: MUSiiCCallbacklInterfaceControl::Pointer
m_pPostCallbackInterfaceControl: MUSiiCCallbackinterfaceControl::Pointer

MUSIiiCTaskAbstract

m_pSelfTaskObject: MUSIiiCTaskObject::Pointer
m_pTaskList: std::vector<MUSiiCTaskObject::Pointer>

+ (virtual) RunTask(int, int, void*, igtlMessageBase::Pointer, void*, void*): int
+ (virtual) StopTask(): void

+ AddLocalTaskFunction(ObjType, funType): int

+ RemoveLocalTaskFunction(int): int

+ AddGlobalTaskFunction(MUSiiCTaskFtn*):int

+ RemoveGlobalTaskFunction(int): int

+ AddPreCallbackInterface(MUSiiCCallbacklnterface::Pointer): int

+ AddPostCallbackInterface(MUSiiCCallbackInterface::Pointer): int

+ RemovePreCallbackInterface(MUSiiCCallbackinterface::Pointer): int

+ RemovePostCallbackInterface(MUSiiCCallbacklInterface::Pointer): int

+ GetPreCallbacklInterface(): MUSiiCCallbackInterface::Pointer

+ GetPostCallbackInterface(): MUSiiCCallbackinterface::Pointer

(virtual) TaskFunction(int, int, void*, igtIMessageBase::Pointer, void*, void*): int

+ (virtual) RunTask(int, int, void*, igtIMessageBase::Pointer, void*, void*): int
+ (virtual) StopTask(): void

+ AddLocalTaskFunction(ObjType, funType): int

+ RemoveLocalTaskFunction(int): int

+ AddGlobalTaskFunction(MUSiiCTaskFtn*):int

+ RemoveGlobal TaskFunction(int): int

+ AddPreCallbackinterface(MUSiiCCallbackInterface::Pointer): int

+ AddPostCallbackInterface(MUSiiCCallbackInterface::Pointer): int

+ RemovePreCallbackInterface(MUSiiCCallbacklnterface::Pointer, int): int
+ RemovePostCallbackInterface(MUSiiCCallbackInterface::Pointer, int): int
+ GetPreCallbackInterface(int): MUSiiCCallbacklInterface::Pointer

+ GetPostCallbackInterface(int): MUSiiCCallbackInterface::Pointer

+ AddTaskObject(MUSiiCTaskObject::Pointer): int

+ RemoveTaskObject(MUSiiCTaskObject::Pointer): int

MUSiiCTasklInterfaceAbstract<Input, Output>
Template Class

m_pPreTaskInputDataSet: MUSiiCVectorSet<Input>::Pointer
m_pPreTaskOutputDataSet: MUSIiCVectorSet<Input>::Pointer

_ | # m_pPostTaskInputDataSet: MUSiiCVectorSet<Output>::Pointer
| # m_pPostTaskOutputDataSet: MUSiiCVectorSet<Output>::Pointer

m_pSelfPreTaskInputDatalnterface: MUSIiiCVector<Input>::Pointer
m_pSelfPreTaskOutputDatalnterface: MUSiiCVector<Output>::Pointer

MUSiiCVectorSet<DataType>
Template Class

+ (virtual) RunTask(int, int, void*, igtiIMessageBase::Pointer, void*, void*): int
+ (virtual) StopTask(): void

+ AddPrelnputDatalnterface(MUSiiCVector <Input>::Pointer): int

+ AddPreOutputDatalnterface(MUSiiCVector <Input>::Pointer): int

+ AddPostInputDatalnterface(MUSiiCVector <Output>::Pointer): int

+ AddPostOutputDatalnterface(MUSiiCVector <Output>::Pointer): int

#m_MUSIiCVectorList: MUSIiiCVector<MUSiiCVector<DataType>::Pointer>::Pointer

+ ADDMUSIiCVector(MUSIiCVector<DataType>::Pointer):int

+ RemoveMUSiiCVector(MUSiiCVector<DataType>::Pointer):int
+ concurrent_pushback(DataType&): int

+ concurrent_pop(DataType&): int

+ concurrent_get(DataType&): int

4
MUSiiCVector<DataType>
Template Class

m_Data: std::Vector<DataType>

+ concurrent_pushback(DataType&): int
+ concurrent_pop(DataType&): int

+ concurrent_get(DataType&): int

Figure 3. UML class diagram of MUSiiCTaskObjects, MUSiiCTaskAbstract,
MUSiiCTasklInterfaceAbstract, MUSiiCVector, and MUSIiiCVectorSet.

The MUSIiCTaskObject class has a MultiThreader class pointer from the OpenlGTLink library that sup-
ports independent threads on multiple operating systems. In this class, the main task function is declared
as a virtual function. This means that we can implement our own specific task function in any subclasses
of this class. The task function of MUSiiCTaskObject follows the function type of MUSiiCTaskFunction/
MUSiiCCallbackFunction as shown in Table 1. Multiple input parameters are defined in these function
types, allowing us to delicately control a task function. Moreover, we can build a task sequence by adding
local or global functions of MUSiiCTaskFunction type to MUSiiCTaskObject.

/Il The function type of MUSIiiCTaskFunction/MUSiiCCallbackFunction

/Il Input arguments:

n -command : Represents a changed status or any command

n -taskInfo: Describes the information of task

n - ptr: The pointer of caller

n -msg: Message type of OpenlGTLink and OpenlGTLinkMUSIiC
n -datal: User-defined data

n - data2: User-defined data

/Il Output arguments:

n return value is integer-type

n -1 : failed

n >0 :successes.

typedef int (*MUSIiCTaskFtn) (int command, int taskInfo, void™ ptr, igtl::MessageBase::Pointer msg, void* datal, void* data2)

Table 1. The function type of MUSiiCTaskFunction/MUSiiCCallbackFunction

Although we can run a task thread independently using an instance of MUSiiCTaskObject, multiple task
threads are needed to improve the performance of US data processing. MUSIiiCTaskAbstract was designed
to address this requirement. In figure 3, MUSIiiCTaskAbstract has a container variable and several task
control functions to control multiple MUSIiiCTaskObject instances and their own task-functions.
MUSiiCTaskInterfaceAbstract is a subclass of MUSIiiCTaskAbstract, which is designed for thread-safe
data communication between MUSiiCTasklInterfaceAbstract objects. We designed MUSiiCVector, a con-
current data interface, based on the mutual exclusion method and MUSIiiCVectorSet, a management class
for this data interface. Both of these classes are based on the template design pattern and will allow any
kind of data type to be transferred efficiently in our data interface.

Figure 4 shows the flexibility in our software framework to support a number of different multitasking
patterns. The combination of MUSIiiCTaskObject, MUSiiCTaskAbstract and MUSiiCTasknterfaceAbstract
allow us to implement the cases shown in Figure 4(a), 4(b), 4(c), and 4(d) respectively. These cases are
the combinations of single or multiple threads and a single task or a sequence of tasks.

/ I Y™ /A
@ b © @
MUSiiCTasklInterfaceAbstract MUSiiCTasklInterfaceAbstract MUSiiCTasklInterfaceAbstract MUSiiCTasklInterfaceAbstract
MUSIiCTaskObject MUSiiCTaskObject
Task-Thread Task-Thread |
MUSiiCTaskObject MUSiiCTaskObject
. Y)
Task-Thread | Task-Thread) L H)
— —
Task Function MUSIiCTaskObject MUSIiiCTaskObject
§ " Task-Thread " Task-Thread |
H
\ L) J
: :
. -
Task #5
—~
‘\@ Task #3 MUSiiCTaskInterfaceAbstract
Outside >— |:l‘> <Input, Output>
Task Function MUSiiCTaskObject ':\‘> —
— Cj MUSiiCTaskObject
: —C
Task #1 Task #2 Task #4
MUSiiCTasklInterfaceAbstract MUSiiCTasklInterfaceAbstract MUSiiCTasklInterfaceAbstract
)— IZ:> <Input, Output>)— [:> <Input, Output>)— I::> <Input, Output>
O— MUSiiCTaskObject |j> —O— MUSiiCTaskObject |j> —©O MUSiiCTaskObject |j> —C
>— <3 MUSiiCTaskObject —O)— Qj MUSiiCTaskObject >— <3 MUSiiCTaskObject
O : E0— : ¢ro : @<
Task #6
MUSiiCTasklInterfaceAbstract
|::> The direction of Data-flow D |:“> <Input, Output>
_ _) MUSiiCTaskObject | =) —C
O— Required Data-interface (MUSiiCVector)
>— MUSiiCTaskObject
)_ Provided Data-interface (MUSiiCVectorSet) Qj o Qj C
.
.

Figure 4. Examples of Multitasking pattern using MUSiiCTaskObject and MUSiiCTasklInterfaceAbstract .
(a) Single thread of single task, (b) Single thread of task sequence, (c) Multiple threads of single task, (d)
Multiple threads of task sequence, and (e) Network diagram of task classes based on MUSIiiCTask-
InterfaceAbstract.

Moreover, MUSiiCTasklInterfaceAbstract has instances of MUSiiCVectorSet, the required data interface,
and MUSiiCVector, the provided data interface, for data communication between task class objects. As
seen in figure 3, since MUSIiiCVectorSet can control multiple MUSIiiCVector objects concurrently, each
task class can receive multiple data from different data providers. The result of a task class can also be
broadcasted to multiple data consumers in parallel. Figure 4(e) shows the network of task classes that are
based on MUSiiCTaskInterfaceAbstract. As shown in the figure, tasks 1 and 2 form a serial connection,
while tasks 4, 5, and 6 are connected to task 2 in parallel. Task 2 and 3 demonstrate a serial connection
between MUSiiCTaskInterfaceAbstract and any data provider or consumer that is not based on
MUSiiCTasklInterfaceAbstract. This example shows that MUSiiCTaskInterfaceAbstract provides high
flexibility in the connectivity and data communication between task classes.

2.2 MUSIIC ToolKit 2.0: Bidirectional Communication Mechanism

An interactive communication mechanism between the application level and task class component level is
necessary to integrate US systems and IGT systems. Figure 4 shows that asynchronous bidirectional
communication between the task classes using the instances of MUSiiCVector and MUSiiCVectorSet is
possible. We describe a synchronous bidirectional communication mechanism between task classes and
an asynchronous communication method between applications.

2.2.1 Bidirectional Communication Mechanism at software class level.

We apply the observer software design pattern in OpenlGTLinkMUSIiC2.0 by adding instances of the
MuUSiiCallbackinterface and MUSiiCCallbackinterfaceControl classes in the MUSiiCTaskObject and
MUSiiCTaskAbstract classes.

MuUSiiCCallbackInterface MuUSiiCCallbackInterfaceControl
m_CallbackInterfaceList: std::vector<MUSiiCCallbackInterface::Pointer>
+ Notify(int, int, void*, igtlMessageBase::Pointer, void*, void*): int +AddCallbackInterface (MUSIiCCallbackInterface:Pointer) : int
/\ +RemoveCallbacklnterface (MUSiiCCallbacklnterface:Pointer) : int
+CallAllExternalCallbackInterfaces(int, int, void*, igtlMessageBase::Pointer, void*, void*): int

MUSiiCLocalCallbackInterface<ObjType, funType>

MUSiiCGlobalCallbacklInterface
Template Class

CallAllExternalCallbackInterfaces()
: Call all callback functions that registered by
MuUSiiCCallbacklnterface

+ SetLocalFunction(ObjType, funType) : int + SetGlobalFunction(MUSIiCTaskFtn) : int

Figure 5. UML class diagram of MUSiiCCallbackInterface and MUSiiCCallbackInterfaceControl

Figure 5 represents the UML class diagram of MUSiiCCallbackInterface, MUSiiCLocalCallbackInterface,
MUSiiCGlobalCallbackinterface and MUSiiCCallbacklInterfaceControl. The MUSiiCCallbackinterface
class provides basic observer functions: “Notify ” that sends notifications or messages to a pre-registered
callback function, “IsCallbackFunction” that checks whether any callback function has been registered in
this interface. As shown in figure 5, this class has two child classes. MUSiiCLocalCallbacklnterface is
based on the template class design pattern and MUSIiiCGlobalCallbackinterface can register any local or
global function as a callback function of this interface class as long as it is of type MUSIiiCTaskFunction
or MUSiiCCallbackFunction. Moreover, MUSiiCCallbacklInterfaceControl is designed to control multi-
ple MUSiiCCallbackinterface objects efficiently. It has dedicated functions to add or remove a pre-
defined instance of MUSiiCCallbackInterface to or from this class. All predefined callback functions reg-
istered in this class are notified or updated by “CallAllExternalCallbacklInterface .

As in figure 3, MUSIiCTaskObject has instances of MUSiiCCallbackinterface and MUSiiCCallback-
InterfaceControl, and MUSiiCTaskAbstract provides several functions allowing access to these instances.
With this design, we can realize a synchronous bidirectional communication based on the observer design
pattern between the MUSIiiCTaskObject instances in MUSiiCTaskAbstract or MUSiiCTaskAbstract clas-
ses. A network diagram of callback interfaces between task classes based on this software design is
shown in figure 6. Although this network diagram is very similar to the network diagram in figure 4(e), it
demonstrates synchronous bidirectional communication using callback interfaces as opposed to asynchro-
nous bidirectional communication using concurrent data interfaces. This shows that our software frame-
work is capable of providing asynchronous and synchronous bidirectional communication at the software
task class level.

Task #4
MUSiiCTaskAbstract
Task #1 MUSIiCTaskObject
MUSiiCTaskAbstract O) Qj l:Tastlf Qj O
unction
MUSIiCTaskObject [:> |::> C
> w |0
=) Function 2 Task #2 Task #3
MUSiiCTaskAbstract MUSiiCTaskAbstract
MUSIiiCTaskObject MUSIiiCTaskObject MUSIiiCTaskObject
) Qj Task Qj O) <\]:| Task <):| O) <):| Task <):| :
Function Function Function
o = —© = = —© = =
Task #5
MUSiiCTaskAbstract
|f‘> The direction of Command/Data-flow MUSIiCTaskObject
O— Required Callback Interface (MUSiiCCallbacklInterface) O) Qj F‘La;‘;m Qj O
)— Provided Callback Interface (MUSiiCCallbacklInterfaceControl) Ij> Ij> :

Figure 6. Network diagram callback interfaces between task classes based on MUSiiCTaskAbstract.
2.2.2 Bidirectional Communication Mechanism at application level.

Since US IGT subsystems are often connected at the application level, software frameworks for these sys-
tems must support bidirectional communication. With the increasing availability of Ethernet in IGT sys-
tems, TCP/IP is a common communication mechanism [3]. However, the TCP/IP socket provided by
OpenlGTLink2.0 only supports synchronous communication. There is a need to improve this method and
the performance of TCP/IP data transmission.

We built custom TCP/IP network I/O classes (MUSiiCTCPServer and MUSIiiCTCPClient) based on 1/O
completion ports [21] for Windows operating system. We intend to implement asynchronous TCP/IP
network 1/O classes using epoll [22] and Kqueue [23] for Linux and Mac OS X operating systems respec-
tively in the near future. They provide an efficient threading model for handling multiple asynchronous
I/0 requests in a program and for supporting bidirectional communication between multiple clients at the
application level. The block diagram for our network classes is shown in figure 7. Each of these classes
has three instances of MUSIiiCTaskObject to run independent tasks. The MUSIiiCTCPServer class has Lis-
tening-Task, Data-Sending, and Data-Receiving MUSiiCTaskObject instances. The MUSiiCTCPClient
class has Creating-client socket, Data-Sending, and Data-Receiving MUSiiCTaskObject instances. The
task thread of Listening-Task in MUSiiCTCPServer provides multi-client connections and the Creating-
client socket task thread in MUSIICTCPClient can create multiple client sockets in a single
MUSIiCTCPClient instance. The data communication of these classes is based on the igtiIMessageBase
data type, which is also the parent of all message data types in OpenlGTLink2.0 [2, 4]. This allows our
network classes to send or receive any kind of message type defined in OpenlGTLink2.0. As shown in
figure 7, required (MUSiiCCallbackInterface or MUSiiCVector) and provided (MUSiiCCallbacklnter-
faceControl or MUSIiiCVectorSet) interfaces allow us to send and receive data asynchronously with these
network classes. In addition, executable modules with these network classes are capable of asynchronous
bidirectional TCP/IP data communication with subsystems that use message types supported in
OpenlGTLink2.0, such as 3D Slicer or other tracking devices [4, 24].

10

MUSIiiCTCPServer TCP/IP I MUSIiCTCPClient
Network

Listening-Task Creating-client socket
(MUSIiCTaskObject) (MUSIiiCTaskObject)

|::> DATA Qj

Data-Sending Data-Sending
O (MUSIiCTaskObject) (MUSIiCTaskObject) O

(igtiMessageBase)

Data-Receiving |:‘\>

~ Qj Data-Receiving
J (MUSIiCTaskObject)

(MUSIiCTaskObject)

)

|::> The direction of Command/Data-flow
O— Required Interface (MUSiiCCallbackInterface/ MUSIiiCVector)

)— Provided Interface (MUSiiCCallbacklInterfaceControl/ MUSiiCVectorSet)
Figure 7. Block diagram of MUSIiiCTCPServer and MUSIiiCTCPClient.
2.3 MUSIIC ToolKit 2.0: Real-time Multiple Data Synchronization

US IGT systems can be composed of many subsystems including a robotic system, tracking devices, and
medical imaging systems. Real-time synchronization between multiple data sources is therefore necessary
to integrate the US system with other IGT subsystems.

We built a specific task class, MUSiiCSync, to solve this requirement. Our synchronization method is
closest data combining based on the timestamp of each data. The block diagram of MUSIiCSync is shown
in figure 8(a). There are two task objects, Data-Collect and Data-Combine, in this class. The Data-Collect
task thread receives multiple data from different data sources through the TCP/IP network and generates a
MUSIiiCSyncData instance designed to contain a reference data and multiple data of other types during
the time of data collection, Tc (see figure 8(b)). Generally, Tc is two divided by the frame rate of the ref-
erence data in seconds. The Data-Combine task thread finds the data from each data group with the clos-
est timestamp to the timestamp of the reference data. If TrackingDataMessage and ImageMessage data of
OpenlGTLink2.0 are present in the instance of MUSIiiCSyncData, this task thread updates the tracking
information of ImageMessage with the information from TrackingDataMessage. At this time, we can ap-
ply extra information such as calibration data from the US transducer.

There is a latency time (TI) in MUSIiiCSync to generate the first set of synchronized data. The set of syn-
chronized data from MUSIiCSync will be delayed by at most Tc. In general, US data is the reference data
in MUSIiCSync, and the frame rate is 30 frames per second. In this case, Tc will be 60 ms and Tl will be
less than 60 ms. We feel that this delay is acceptable in US IGT systems. The set of synchronized data
from MUSIiCSync can be sent to another task class through an instance of MUSiiCCallbackinterface or
MUSiiCVector. In this case, the data can be saved to the local hard disk using the MUSIiiCFilelO class or
sent to the TCP/IP network with MUSIiCTCPClient.

11

MUSIiCSync
& -
Data-Collect |:<> The direction of Command/Data-flow
o—] (MUSIiCTaskObject) . . .
O— Required Interface (MUSiiCCallbacklInterface/ MUSiiCVector)
Data-Combine E‘\> Synchronized ; i i
(MUSIICTaskObject) C >— Provided Interface (MUSiiCCallbackInterfaceControl/ MUSiiCVectorSet)
Incoming Data MUSIiCSync Data Synchronized Data Set
* A
_)
i B et > Tc: Time of Data-Collection
-
. Data 01 - — TI: Latency time
g
| T ata_Ref_ Reference Data
i Data type 1
| Data type 2
‘ i Data2 01 Data2 02
- Bl 01 Daa 02 Daial 03 Datal 02 Daiaz 01
i
i Data2_02 Data2_03 Data2_04
] Daai_iZ Detal 03 Detal 04 Datar 03 Datez 03
¥
A
Time

Figure 8. Block diagram of (a) MUSIiiCSync, and (b) Timeline of MUSIiiCSync.

3 Application for Advanced Ultrasound Research using MUSIiC ToolKit 2.0

We built an upgraded US thermal monitoring system using MUSIiC ToolKit 2.0. A block diagram of this
system is presented in figure 9. There are two US elastography modules based on thermal strain imaging
for monitoring the change of tissue temperature: MUSIiC_NCC_Elastrography [20] and MUSIiC_TrUE_
Elastography. Since MUSIiC_TrUE_Elastography requires synchronized US RF data and US transducer
tracking information to generate a tracked elastography [7], a MUSIiiCSync module is added to the system.

The block diagram in figure 9 is very similar to the one shown in figure 1. Our previous software frame-
work only supported unidirectional communication making it difficult to realize interactive communica-
tion between subsystems. In contrast, our new system based on MUSIiC ToolKit2.0 provides bidirectional
communication methods between software modules and task class levels. This communication mecha-
nism allows us to change control parameters in MUSIiC RF-Server 2.5, MUSIiC B-Mode or MUSIiIC_-
NCC_Elastography from the MUSIiC ImageViewer and check the results immediately on a screen.

Instances of MUSIiiCTCPServer, MUSIiCTCPClient, and MUSIiCFilelO are implemented in all software
modules. This means that we can send out the results of each module to real-time US IGT system or save
the data to the local hard disk.

12

MUSIIC EM Tracker Server
MUSIiC MUSIIC Sync MUSIIC B-Mode =
e - - -
- - ¥
- MUSIIC Image Viewer

MUSIiC
FILEIO

MUsiiC
FILEIO

MUSiiC
FILEIO

MUSIiC E ”
MUSIiC Musiic MUSiiC

TCPServer TCPClient FILEIO

MusiiC
Data Manager

MUSiiC MUSiiC

g .
o -
TCPServer FILEIO

X

UltraSonix Ultrasound Machine

28

[musiic Modute
Task-class of OpenlGTLink2.0 Workstation with GPU
Task

(Win 7 64bit, CUDA)

Task-class of MUSIIC Notes 2.0

Figure 9. Block diagram of upgraded version of ultrasound thermal monitoring system.

4 Conclusions

In this work, we presented MUSIiC ToolKit 2.0 as a software framework for advanced US IGT systems.
We describe the infrastructure to enable three main features: real-time data processing, bidirectional data
communication, and real-time data synchronization. We also present an upgraded application using this
new software framework and describe its advantages over the previous version. Future work will focus on
developing new modules in MUSIiC Notes 2.0 and extending MUSIiC ToolKit 2.0 to support applications
such as photoacoustic imaging. In the future, we plan to release our software framework as open source
software under the New BSD license [25].

Acknowledgements

The authors would like to thank Pezhman Foroughi and Nishikant Deshmukh from Johns Hopkins Uni-
versity for their cooperation. The authors also thank Dr. Russell H. Talyor of NSF ERC-CISST at the
Johns Hopkins University for his valuable advice and discussion. This work was supported by NIH NCI
SBIR funding R44CA1341609.

References

[1] P. J. Stolka, H. J. Kang, and E. M. Boctor, "The MUSIiC Toolkit: Modular Real-Time Toolkit for
Advanced Ultrasound Research,” presented at the MICCAI 2010, International Workshop on
System and Architectures for Computer Assisted Interventions, 2010.

[2] H. J. Kang, P. J. Stolka, and E. M. Boctor, "OpenlTGLinkMUSIiC: A Standard Communications
Protocol for Advanced Ultrasound Research,” presented at the MICCAI 2011, International
Workshop on System and Architectures for Computer Assisted Interventions, 2011.

[3] J. Tokuda, G. S. Fischer, X. Papademetris, Z. Yaniv, L. Ibanez, P. Cheng, H. Liu, J. Blevins, J. Arata,
and A. J. Golby, "OpenlGTLink: an open network protocol for image-guided therapy environment,"
The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 5, pp. 423-434,
20009.

[4] Open IGT Link Protocol (Ver. 2) , http://www.na-mic.org/Wiki/index.php/OpenlGTL ink/ProtocolV2.

http://www.na-mic.org/Wiki/index.php/OpenIGTLink/ProtocolV2

13

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]

[20]

[21]

E. M. Boctor, P. Stolka, H. J. Kang, C. Clarke, C. Rucker, J. Croom, E. C. Burdette, and R. J.
Webster 111, "Precisely shaped acoustic ablation of tumors utilizing steerable needle and 3D
ultrasound image guidance," in SPIE Medical Imaging 2010, San Diego, CA/USA, 2010.

J. Boisvert, D. Gobbi, S. Vikal, R. Rohling, G. Fichtinger, and P. Abolmaesumi, "An open-source
solution for interactive acquisition, processing and transfer of interventional ultrasound images,"
presented at the MICCAI 2008, International Workshop on System and Architectures for Computer
Assisted Interventions, 2008.

P. Foroughi, C. Csoma, H. Rivaz, G. Fichtinger, R. Zellars, G. Hager, and E. Boctor, ""Multi-
modality fusion of CT, 3D ultrasound, and tracked strain images for breast irradiation planning,” in
SPIE Medical Imaging 2009, Lake Buena Vista, FL/USA, 2009, p. 72651B.

S. Billings, N. Deshmukh, H. J. Kang, R. Taylor, and E. M. Boctor, **System for robot-assisted real-
time laparoscopic ultrasound elastography,” in SPIE Medical Imaging 2012, San Diego, CA/USA,
2012, p. 83161W.

H. Sen, N. Deshmukh, R. Goldman, P. Kazanzides, R. H. Taylor, E. Boctor, and N. Simaan,
"Enabling technologies for natural orifice transluminal endoscopic surgery (NOTES) using
robotically guided elasticity imaging," in SPIE Medical Imaging 2012, San Diego, CA/USA, 2012, p.
83161Y.

E. M. Boctor, A. Viswanathan, S. Pieper, M. A. Choti, R. H. Taylor, R. Kikinis, and G. Fichtinger,
"CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API," 2004, p. 27.

Z. Yaniv, P. Foroughi, H. J. Kang, and E. Boctor, "Ultrasound calibration framework for the image-
guided surgery toolkit (IGSTK)," 2011, p. 79641N.

H. J. Kang, N. P. Deshmukh, P. Stolka, E. C. Burdette, and E. M. Boctor, "Ultrasound imaging
software framework for real-time monitoring of acoustic ablation therapy," in SPIE Medical Imaging
2012, San Diego, CA/USA, 2012, p. 83201E.

W. R. Stevens, UNIX Network Programming: Interprocess Communications vol. Volume 2, 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, 1994.

Qt SDK, http://gt.nokia.com/products/qt-sdk/.

The Visualization ToolKit (VTK), www.vtk.org.

Ultrasonix Wiki, http://www.ultrasonix.com/wikisonix/index.php/Main_Page.

Ascension Technology Copoeration. http://www.ascension-tech.com/technical/index.php.

H. J. Kang, N. Kuo, X. Guo, D. Song, J. U. Kang, and E. M. Boctor, "'Software framework of a real-
time pre-beamformed RF data acquisition of an ultrasound research scanner,” in SPIE Medical
Imaging 2012, San Diego, CA/USA, 2012, p. 83201F.

N. Deshmukh, H. Rivaz, and E. Boctor, "GPU-based elasticity imaging algorithms," in MICCAI-
GRID 2009 - International Conference on Medical Image Computing and Computer Assisted
Intervention, London/UK, 2009.

1/0 Completion Port, http://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx.

http://qt.nokia.com/products/qt-sdk/
http://www.vtk.org/
http://www.ultrasonix.com/wikisonix/index.php/Main_Page
http://www.ascension-tech.com/technical/index.php
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx

14

[22]
[23]
[24]

[25]

epoll, http://en.wikipedia.org/wiki/Epoll.

Kqueue, http://en.wikipedia.org/wiki/Kgueue.

3D Slicer, http://www.slicer.org/.

New BSD license, http://opensource.org/licenses/bsd-license.php.

http://en.wikipedia.org/wiki/Epoll
http://en.wikipedia.org/wiki/Kqueue
http://www.slicer.org/
http://opensource.org/licenses/bsd-license.php

