

MUSiiC ToolKit 2.0:

Bidirectional Real-time Software Framework for
Advanced Interventional Ultrasound Research.

Release 1.00

Hyun-Jae Kang1, Alexis Cheng1,Emad M. Boctor1,2

August 10, 2012

1
 Department of Computer Science, Johns Hopkins University, Baltimore, MD/USA

2
Department of Radiology, DMIP, Johns Hopkins Medical Institutions, Baltimore, MD/USA

Abstract

Ultrasound (US) imaging is a popular and convenient medical imaging modality thanks to its mobility, non-ionizing radiation,

ease-of-use, and real-time acquisition. Conventional US imaging is frequently integrated with tracking systems and robotic sys-

tems in Image Guided Therapy (IGT) systems. Recently, these systems are also incorporating advanced US imaging such as US

elasticity imaging, photoacoustic imaging, and thermal imaging. Real-time synchronous data from multiple sources and bidirec-

tional data communication are essential for integrating components in advanced US IGT research. We previously proposed the

MUSiiC ToolKit [1], a modular real-time software toolkit, and OpenIGTLinkMUSiiC [2], a standard communication protocol

extended from the OpenIGTLink library [3, 4]. However, this software framework only supported real-time synchronous data

from at most two sources and unidirectional communication at the software module level and class level.

In this paper, we propose MUSiiC ToolKit 2.0, an upgraded software framework for interventional advanced US research sup-

porting bidirectional communication, real-time US data processing, and real-time data synchronization from multiple sources.

MUSiiC ToolKit 2.0 consists of OpenIGTLink 2.0, OpenIGTlinkMUSiiC 2.0, MUSiiCNotes 2.0, and a collection of executable

programs designed for US research. OpenIGTLink 2.0 is a standard TCP/IP-based protocol for the integration of medical imag-

ing and IGT systems. OpenIGTLinkMUSiiC 2.0 is the upgraded version of OpenIGTLinkMUSiiC with new active multi-task

classes, data interfaces for supporting bidirectional communication and parallel data processing. MUSiiCNotes 2.0 provides US

research-oriented task classes, such as US data acquisition, beamforming, envelope detection, scan conversion, and data synchro-

nization. Graphic User Interface (GUI) units are also available for the executable programs in MUSiiCNotes 2.0. Finally, we

introduce advanced US applications based on this new software framework.

Contents

1 Introduction 2

2 MUSiiC ToolKit 2.0 3

 2

 2.1 MUSiiC ToolKit 2.0: Real-time US Data Computation 4

 2.2 MUSiiC ToolKit 2.0: Bidirectional Communication Mechanism 7

 2.3 MUSiiC ToolKit 2.0: Real-time Multiple Data Synchronization 9

3 Application for Advanced Ultrasound Research using MUSiiC ToolKit 2.0 10

4 Conclusions 11

1 Introduction

Ultrasound (US) imaging has many qualities that make it a popular and convenient medical imaging mo-

dality. These qualities include its mobility, non-ionizing radiation, ease-of-use, and real-time data acquisi-

tion. US imaging systems are often used in the operating room and the emergency room because of these

features. Moreover, conventional US imaging is frequently integrated with other medical imaging modali-

ties such as pre-operative models (CT, MRI), tracking systems and robotic systems for Image Guided

Therapy (IGT) [5-7]. These systems are also exploring the use of advanced US imaging such as US

elastography, photoacoustic imaging, and thermal imaging [5, 8, 9]. Several software frameworks and

toolkits have been developed to integrate US data acquisition, processing and displays with existing IGT

systems [1, 2, 6, 10, 11]. In our previous work [1, 2, 12], we proposed a real-time software framework for

interventional ultrasound research. It consisted of MUSiiC ToolKit, a modular real-time software toolkit,

and OpenIGTLinkMUSiiC, a standard communication protocol extended from the OpenIGTLink library

[3, 4].

Figure 1. The System configuration of ultrasound thermal monitoring system based on

MUSiiC ToolKit1.0 and OpenIGTLinkMUSiiC 1.0 [2]

RF-Server

Server: RF-DATA

B-Mode Server

Client: RF-DATA Server: B-Mode

EIM

Client: RF-DATA Server:

Elastography

Frame

Chooser
Client:

Elastography

ImageViewer

Client: B-Mode

Controller

Box

RF-Power
Generator

RF Ablator

PhantomUS Probe Thermo-
couple

Thermometry
System

Monitoring
S/W

Degassed
Water Pump

Control Signal (TTL)

Water Circulation

Thermal Energy

Thermal Energy

Electrical

Energy

USMessage

EIMessage

ImageMessage

Analog Signal

Analog Signal

U
lt

ra
s

o
u

n
d

 D
a

ta

Ultrasound Machine

(Win XP 32bit)

Workstation with GPU

(Win XP 64bit, CUDA)

Ultrasound Imaging System

RF-Ablation System

 3

Figure 1 shows the system configuration of a US thermal monitoring system based on MUSiiC ToolKit

1.0 and OpenIGTLinkMUSiiC 1.0. In the figure, all components in the block diagram are connected with a

unidirectional communication mechanism. This means that the data source module, RF-Server, cannot

receive any feedback information from its client modules, EIM or B-Mode server. In this block diagram,

an end user of ImageViewer will not be able to set control parameters of RF-Server that affect ultrasound

data acquisition. As shown in this example, our previous software framework did not support closed-loop

feedback control by not providing bidirectional communication between software modules or task classes.

IGT procedures typically require many sources of information such as surgical instrument tracking infor-

mation, pre-operative medical images, intra-operative medical images, or multiple medical imaging mo-

dalities. This presents a need for an efficient and interactive communication mechanism between the vari-

ous data sources. With continued research on US IGT systems, there is a growing demand for real-time

US data acquisition and processing, and synchronization of data from multiple sources such as tracking

data or temperature data. There is also a demand for a bidirectional communication mechanism between

modules in an IGT system.

To address the requirements above, we propose MUSiiC ToolKit 2.0, an upgraded software framework for

interventional advanced US research in IGT systems. In this paper, we will focus on the following new

features of our upgraded software framework: (1) Bidirectional communication mechanism at application

level and task-class level. (2) Real-time US data acquisition and processing method. (3) Real-time data

synchronization from multiple data sources.

This paper is organized as follows: Section 2 provides an overview of MUSiiC ToolKit 2.0 and a detailed

explanation of the new functionalities in this software framework. In section 3, we introduce an advanced

US research applications based on MUSiiC ToolKit 2.0. We conclude with a discussion on possible future

improvements and directions in section 4.

2 MUSiiC ToolKit 2.0

Figure 2 shows an overview of MUSiiC ToolKit 2.0. Our software framework can be classified into four

categories: OpenIGTLink 2.0 [3, 4], OpenIGTLinkMUSiiC 2.0, MUSiiC Notes 2.0, and MUSiiC Modules,

a collection of executable programs. OpenIGTLink 2.0 is the software library of standard TCP/IP-based

message protocol for the integration of medical IGT system, which is proposed by J. Tokuda [3]. In this

library, multiple data types are defined as TCP/IP messages for real-time communication between subsys-

tems of an IGT system, and there are serialization and deserialization mechanisms for each message.

OpenIGTLinkMUSiiC is the extended version of OpenIGTLink by adding a special ultrasound data mes-

sage and other message types (GenMessage, ArgMessage, and FileMessage) for advanced ultrasound re-

search [2]. In this research, we upgrade this software library to OpenIGTLinkMUSiiC 2.0 by adding active

task classes that have their own independent task thread. These task threads are based on multithreaded

techniques and thread-safe inter-process communication (IPC) [13] for efficient real-time ultrasound data

computation. We also implemented the Observer design pattern [14] in this library for bidirectional com-

munication between applications or active task class components. Since OpenIGTLinkMUSiiC 2.0 pro-

vides the basic functionalities such as abstract active-task classes (MUSiiCTaskObject, MUSiiC-

TaskAbstract, and MUSiiCTaskInterfaceAbstract), thread-safe data interfaces (MUSiiCVector and

 4

MUSiiCVectorSet), and callback interfaces (MUSiiCCallbackInterface, MUSiiCCallbackInterface-

Control), it is therefore considered as the fundamental library in MUSiiC ToolKit 2.0.

Figure 2. Overview of MUSiiC ToolKit 2.0

MUSiiCNotes 2.0 is the component based library in our software framework. It provides US research-

oriented task classes, such as US data acquisition, beamforming, envelope detection, scan conversion,

data synchronization, and Graphic User Interface (GUI) units for each task class or executable program.

As shown in figure 2, MUSiiC Notes 2.0 depends on OpenIGTLink 2.0 [3, 4], OpenIGTLinkMUSiiC 2.0,

the Qt SDK [15], the Visualization ToolKit (VTK) [16], and hardware-dependent SDKs such as the

Ultrasonix SDK (Ultrasonix Co.) [17] and the 3D Guidance medSAFE/driveBay SDK (Ascension Tech-

nology Co.) [18].

MUSiiC Modules is a collection of executable programs related to US research. All of these programs are

based on a network distributed computing system to improve the performance of US data processing and

the flexibility to reconfigure the US research system. To support these features, all programs have their

own network classes (MUSiiCTCPServer and MUSiiCTCPClient) and file input/output (I/O) classes

(MUSiiCFileIO). Figure 2 also shows that there are four types of executable modules: Data acquisition

modules, Data Processing modules, Data synchronization module, and Data I/O modules. Different data

acquisition modules support collecting US pre-beamformed and post-beamformed RF data, tracking in-

formation of a medical device, or temperature information in real-time. The data synchronization module

can combine different data from multiple data sources using the timestamps of each data. We can also add

extra information such as ultrasound calibration information [11] to the synchronized data at this module.

The data I/O modules allow us to efficiently display the data in various formats on the computer monitor.

It also gives us the capability to read and write the data to files on the local hard disk in real-time.

2.1 MUSiiC ToolKit 2.0: Real-time US Data-Computation

A significant advantage of US in IGT systems is its ability to provide intra-operative data such as B-mode

images, US strain images, or photoacoustic images [1, 9, 12, 19]. However, in general, US data pro-

cessing is computationally expensive [20]. Therefore, a well-defined task abstract class that supports mul-

tithreaded programming is an essential part of a software framework for US research.

To fulfill these requirements, we built an active task object class, MUSiiCTaskObject, to run a task func-

tion with an independent thread, and two task abstract classes, MUSiiCTaskAbstract and MUSiiCTask-

InterfaceAbstract, to manage multiple task objects efficiently. Also, we made a thread-safe data interface,

MUSiiCVector, for transferring data between task objects or task abstract classes and a data interface

manager, MUSiiCVectorSet. Both of these classes define “concurrent_pushback”, “concurrent_pop”, and

MUSiiC ToolKit 2.0

OpenIGTLink 2.0

OpenIGTLinkMUSiiC 2.0

MUSiiC Notes 2.0

Qt VTK
H/W

SDK

MUSiiC Modules

MUSiiC Modules

Data-Acquisition Data-Processing Data-Synchronization Data-Input/output

MUSiiC

RF-Server

MUSiiC

Pre RF-Server

MUSiiC

Tracking-Server

MUSiiC

Thermometer

MUSiiC

BeamForm

MUSiiC

B-Mode

MUSiiC

Scanconversion

MUSiiC

Sync

MUSiiC

Image Viewer

MUSiiC

FileManager

MUSiiC

StreamWriter

a b

 5

“concurrent_get” functions that allow the data to be safely written, deleted, or read by multiple threads.

Figure 3 represents the Unified Modeling Language (UML) class diagrams for MUSiiCTaskObject,

MUSiiCTaskAbstract, MUSiiCTaskInterfaceAbstract, MUSiiCVector, and MUSiiCVectorSet.

Figure 3. UML class diagram of MUSiiCTaskObjects, MUSiiCTaskAbstract,

MUSiiCTaskInterfaceAbstract, MUSiiCVector, and MUSiiCVectorSet.

The MUSiiCTaskObject class has a MultiThreader class pointer from the OpenIGTLink library that sup-

ports independent threads on multiple operating systems. In this class, the main task function is declared

as a virtual function. This means that we can implement our own specific task function in any subclasses

of this class. The task function of MUSiiCTaskObject follows the function type of MUSiiCTaskFunction/

MUSiiCCallbackFunction as shown in Table 1. Multiple input parameters are defined in these function

types, allowing us to delicately control a task function. Moreover, we can build a task sequence by adding

local or global functions of MUSiiCTaskFunction type to MUSiiCTaskObject.

MUSiiCTaskObjects

m_pThread: igtl::MultiTreader::Pointer

m_pPreSelfCallbackFunction: MUSiiCCallbackInterface::Pointer

m_pPostSelfCallbackFunction: MUSiiCCallbackInterface::Pointer

m_pPreCallbackInterfaceControl: MUSiiCCallbackInterfaceControl::Pointer

m_pPostCallbackInterfaceControl: MUSiiCCallbackInterfaceControl::Pointer

+ (virtual) RunTask(int, int, void*, igtlMessageBase::Pointer, void*, void*): int

+ (virtual) StopTask(): void

+ AddLocalTaskFunction(ObjType, funType): int

+ RemoveLocalTaskFunction(int): int

+ AddGlobalTaskFunction(MUSiiCTaskFtn*):int

+ RemoveGlobalTaskFunction(int): int

+ AddPreCallbackInterface(MUSiiCCallbackInterface::Pointer): int

+ AddPostCallbackInterface(MUSiiCCallbackInterface::Pointer): int

+ RemovePreCallbackInterface(MUSiiCCallbackInterface::Pointer): int

+ RemovePostCallbackInterface(MUSiiCCallbackInterface::Pointer): int

+ GetPreCallbackInterface(): MUSiiCCallbackInterface::Pointer

+ GetPostCallbackInterface(): MUSiiCCallbackInterface::Pointer

(virtual) TaskFunction(int, int, void*, igtlMessageBase::Pointer, void*, void*): int

MUSiiCTaskAbstract

m_pSelfTaskObject: MUSiiCTaskObject::Pointer

m_pTaskList: std::vector<MUSiiCTaskObject::Pointer>

+ (virtual) RunTask(int, int, void*, igtlMessageBase::Pointer, void*, void*): int

+ (virtual) StopTask(): void

+ AddLocalTaskFunction(ObjType, funType): int

+ RemoveLocalTaskFunction(int): int

+ AddGlobalTaskFunction(MUSiiCTaskFtn*):int

+ RemoveGlobalTaskFunction(int): int

+ AddPreCallbackInterface(MUSiiCCallbackInterface::Pointer): int

+ AddPostCallbackInterface(MUSiiCCallbackInterface::Pointer): int

+ RemovePreCallbackInterface(MUSiiCCallbackInterface::Pointer, int): int

+ RemovePostCallbackInterface(MUSiiCCallbackInterface::Pointer, int): int

+ GetPreCallbackInterface(int): MUSiiCCallbackInterface::Pointer

+ GetPostCallbackInterface(int): MUSiiCCallbackInterface::Pointer

+ AddTaskObject(MUSiiCTaskObject::Pointer): int

+ RemoveTaskObject(MUSiiCTaskObject::Pointer): int

MUSiiCTaskInterfaceAbstract<Input, Output>

Template Class

m_pPreTaskInputDataSet: MUSiiCVectorSet<Input>::Pointer

m_pPreTaskOutputDataSet: MUSiiCVectorSet<Input>::Pointer

m_pPostTaskInputDataSet: MUSiiCVectorSet<Output>::Pointer

m_pPostTaskOutputDataSet: MUSiiCVectorSet<Output>::Pointer

m_pSelfPreTaskInputDataInterface: MUSiiCVector<Input>::Pointer

m_pSelfPreTaskOutputDataInterface: MUSiiCVector<Output>::Pointer

+ (virtual) RunTask(int, int, void*, igtlMessageBase::Pointer, void*, void*): int

+ (virtual) StopTask(): void

+ AddPreInputDataInterface(MUSiiCVector <Input>::Pointer): int

+ AddPreOutputDataInterface(MUSiiCVector <Input>::Pointer): int

+ AddPostInputDataInterface(MUSiiCVector <Output>::Pointer): int

+ AddPostOutputDataInterface(MUSiiCVector <Output>::Pointer): int
MUSiiCVectorSet<DataType>

Template Class

m_MUSiiCVectorList: MUSiiCVector<MUSiiCVector<DataType>::Pointer>::Pointer

+ ADDMUSiiCVector(MUSiiCVector<DataType>::Pointer):int

+ RemoveMUSiiCVector(MUSiiCVector<DataType>::Pointer):int

+ concurrent_pushback(DataType&): int

+ concurrent_pop(DataType&): int

+ concurrent_get(DataType&): int

MUSiiCVector<DataType>

Template Class

m_Data: std::Vector<DataType>

+ concurrent_pushback(DataType&): int

+ concurrent_pop(DataType&): int

+ concurrent_get(DataType&): int

 6

Table 1. The function type of MUSiiCTaskFunction/MUSiiCCallbackFunction

Although we can run a task thread independently using an instance of MUSiiCTaskObject, multiple task

threads are needed to improve the performance of US data processing. MUSiiCTaskAbstract was designed

to address this requirement. In figure 3, MUSiiCTaskAbstract has a container variable and several task

control functions to control multiple MUSiiCTaskObject instances and their own task-functions.

MUSiiCTaskInterfaceAbstract is a subclass of MUSiiCTaskAbstract, which is designed for thread-safe

data communication between MUSiiCTaskInterfaceAbstract objects. We designed MUSiiCVector, a con-

current data interface, based on the mutual exclusion method and MUSiiCVectorSet, a management class

for this data interface. Both of these classes are based on the template design pattern and will allow any

kind of data type to be transferred efficiently in our data interface.

Figure 4 shows the flexibility in our software framework to support a number of different multitasking

patterns. The combination of MUSiiCTaskObject, MUSiiCTaskAbstract and MUSiiCTasknterfaceAbstract

allow us to implement the cases shown in Figure 4(a), 4(b), 4(c), and 4(d) respectively. These cases are

the combinations of single or multiple threads and a single task or a sequence of tasks.

/// The function type of MUSiiCTaskFunction/MUSiiCCallbackFunction

/// Input arguments:

/// - command : Represents a changed status or any command

/// - taskInfo: Describes the information of task

/// - ptr: The pointer of caller

/// - msg: Message type of OpenIGTLink and OpenIGTLinkMUSiiC

/// - data1: User-defined data

/// - data2: User-defined data

/// Output arguments:

/// return value is integer-type

/// -1 : failed

/// ≥0 : successes.

typedef int (*MUSiiCTaskFtn) (int command, int taskInfo, void* ptr, igtl::MessageBase::Pointer msg, void* data1, void* data2)

 7

Figure 4. Examples of Multitasking pattern using MUSiiCTaskObject and MUSiiCTaskInterfaceAbstract .

(a) Single thread of single task, (b) Single thread of task sequence, (c) Multiple threads of single task, (d)

Multiple threads of task sequence, and (e) Network diagram of task classes based on MUSiiCTask-

InterfaceAbstract.

Moreover, MUSiiCTaskInterfaceAbstract has instances of MUSiiCVectorSet, the required data interface,

and MUSiiCVector, the provided data interface, for data communication between task class objects. As

seen in figure 3, since MUSiiCVectorSet can control multiple MUSiiCVector objects concurrently, each

task class can receive multiple data from different data providers. The result of a task class can also be

broadcasted to multiple data consumers in parallel. Figure 4(e) shows the network of task classes that are

based on MUSiiCTaskInterfaceAbstract. As shown in the figure, tasks 1 and 2 form a serial connection,

while tasks 4, 5, and 6 are connected to task 2 in parallel. Task 2 and 3 demonstrate a serial connection

between MUSiiCTaskInterfaceAbstract and any data provider or consumer that is not based on

MUSiiCTaskInterfaceAbstract. This example shows that MUSiiCTaskInterfaceAbstract provides high

flexibility in the connectivity and data communication between task classes.

2.2 MUSiiC ToolKit 2.0: Bidirectional Communication Mechanism

MUSiiCTaskInterfaceAbstract

<Input, Output>

MUSiiCTaskObject

MUSiiCTaskObject

MUSiiCTaskInterfaceAbstract

<Input, Output>

MUSiiCTaskObject

MUSiiCTaskObject

MUSiiCTaskInterfaceAbstract

<Input, Output>

MUSiiCTaskObject

MUSiiCTaskObject

MUSiiCTaskInterfaceAbstract

MUSiiCTaskObject

Task-Thread

Task Function

Task Function

MUSiiCTaskObject

Task-Thread

Task Function

Task Function

d

MUSiiCTaskInterfaceAbstract

MUSiiCTaskObject

Task-Thread

Task Function

MUSiiCTaskObject

Task-Thread

Task Function

c

MUSiiCTaskInterfaceAbstract

MUSiiCTaskObject

Task-Thread

Task Function

Task Function

b

MUSiiCTaskInterfaceAbstract

MUSiiCTaskObject

Task-Thread

Task Function

a

e

Task #1 Task #2

Task #6

The direction of Data-flow

Required Data-interface (MUSiiCVector)

Provided Data-interface (MUSiiCVectorSet)

Outside

Task Function

Task #3

MUSiiCTaskInterfaceAbstract

<Input, Output>

MUSiiCTaskObject

MUSiiCTaskObject

Task #4

MUSiiCTaskInterfaceAbstract

<Input, Output>

MUSiiCTaskObject

MUSiiCTaskObject

Task #5

 8

An interactive communication mechanism between the application level and task class component level is

necessary to integrate US systems and IGT systems. Figure 4 shows that asynchronous bidirectional

communication between the task classes using the instances of MUSiiCVector and MUSiiCVectorSet is

possible. We describe a synchronous bidirectional communication mechanism between task classes and

an asynchronous communication method between applications.

2.2.1 Bidirectional Communication Mechanism at software class level.

We apply the observer software design pattern in OpenIGTLinkMUSiiC2.0 by adding instances of the

MUSiiCallbackInterface and MUSiiCCallbackInterfaceControl classes in the MUSiiCTaskObject and

MUSiiCTaskAbstract classes.

Figure 5. UML class diagram of MUSiiCCallbackInterface and MUSiiCCallbackInterfaceControl

Figure 5 represents the UML class diagram of MUSiiCCallbackInterface, MUSiiCLocalCallbackInterface,

MUSiiCGlobalCallbackInterface and MUSiiCCallbackInterfaceControl. The MUSiiCCallbackInterface

class provides basic observer functions: “Notify” that sends notifications or messages to a pre-registered

callback function, “IsCallbackFunction” that checks whether any callback function has been registered in

this interface. As shown in figure 5, this class has two child classes. MUSiiCLocalCallbackInterface is

based on the template class design pattern and MUSiiCGlobalCallbackInterface can register any local or

global function as a callback function of this interface class as long as it is of type MUSiiCTaskFunction

or MUSiiCCallbackFunction. Moreover, MUSiiCCallbackInterfaceControl is designed to control multi-

ple MUSiiCCallbackInterface objects efficiently. It has dedicated functions to add or remove a pre-

defined instance of MUSiiCCallbackInterface to or from this class. All predefined callback functions reg-

istered in this class are notified or updated by “CallAllExternalCallbackInterface”.

As in figure 3, MUSiiCTaskObject has instances of MUSiiCCallbackInterface and MUSiiCCallback-

InterfaceControl, and MUSiiCTaskAbstract provides several functions allowing access to these instances.

With this design, we can realize a synchronous bidirectional communication based on the observer design

pattern between the MUSiiCTaskObject instances in MUSiiCTaskAbstract or MUSiiCTaskAbstract clas-

ses. A network diagram of callback interfaces between task classes based on this software design is

shown in figure 6. Although this network diagram is very similar to the network diagram in figure 4(e), it

demonstrates synchronous bidirectional communication using callback interfaces as opposed to asynchro-

nous bidirectional communication using concurrent data interfaces. This shows that our software frame-

work is capable of providing asynchronous and synchronous bidirectional communication at the software

task class level.

MUSiiCGlobalCallbackInterface

+ SetGlobalFunction(MUSiiCTaskFtn) : int

MUSiiCLocalCallbackInterface<ObjType, funType>

Template Class

+ SetLocalFunction(ObjType, funType) : int

MUSiiCCallbackInterface

+ Notify(int, int, void*, igtlMessageBase::Pointer, void*, void*): int

MUSiiCCallbackInterfaceControl

m_CallbackInterfaceList: std::vector<MUSiiCCallbackInterface::Pointer>

+AddCallbackInterface (MUSiiCCallbackInterface:Pointer) : int

+RemoveCallbackInterface (MUSiiCCallbackInterface:Pointer) : int

+CallAllExternalCallbackInterfaces(int, int, void*, igtlMessageBase::Pointer, void*, void*): int

CallAllExternalCallbackInterfaces()

: Call all callback functions that registered by

 MUSiiCCallbackInterface

 9

Figure 6. Network diagram callback interfaces between task classes based on MUSiiCTaskAbstract.

2.2.2 Bidirectional Communication Mechanism at application level.

Since US IGT subsystems are often connected at the application level, software frameworks for these sys-

tems must support bidirectional communication. With the increasing availability of Ethernet in IGT sys-

tems, TCP/IP is a common communication mechanism [3]. However, the TCP/IP socket provided by

OpenIGTLink2.0 only supports synchronous communication. There is a need to improve this method and

the performance of TCP/IP data transmission.

We built custom TCP/IP network I/O classes (MUSiiCTCPServer and MUSiiCTCPClient) based on I/O

completion ports [21] for Windows operating system. We intend to implement asynchronous TCP/IP

network I/O classes using epoll [22] and Kqueue [23] for Linux and Mac OS X operating systems respec-

tively in the near future. They provide an efficient threading model for handling multiple asynchronous

I/O requests in a program and for supporting bidirectional communication between multiple clients at the

application level. The block diagram for our network classes is shown in figure 7. Each of these classes

has three instances of MUSiiCTaskObject to run independent tasks. The MUSiiCTCPServer class has Lis-

tening-Task, Data-Sending, and Data-Receiving MUSiiCTaskObject instances. The MUSiiCTCPClient

class has Creating-client socket, Data-Sending, and Data-Receiving MUSiiCTaskObject instances. The

task thread of Listening-Task in MUSiiCTCPServer provides multi-client connections and the Creating-

client socket task thread in MUSiiCTCPClient can create multiple client sockets in a single

MUSiiCTCPClient instance. The data communication of these classes is based on the igtlMessageBase

data type, which is also the parent of all message data types in OpenIGTLink2.0 [2, 4]. This allows our

network classes to send or receive any kind of message type defined in OpenIGTLink2.0. As shown in

figure 7, required (MUSiiCCallbackInterface or MUSiiCVector) and provided (MUSiiCCallbackInter-

faceControl or MUSiiCVectorSet) interfaces allow us to send and receive data asynchronously with these

network classes. In addition, executable modules with these network classes are capable of asynchronous

bidirectional TCP/IP data communication with subsystems that use message types supported in

OpenIGTLink2.0, such as 3D Slicer or other tracking devices [4, 24].

MUSiiCTaskAbstract

MUSiiCTaskObject

Task

Function

MUSiiCTaskObject

Task

Function

MUSiiCTaskAbstract

MUSiiCTaskObject

Task

Function

MUSiiCTaskAbstract

MUSiiCTaskObject

Task

Function

MUSiiCTaskAbstract

MUSiiCTaskObject

Task

Function

MUSiiCTaskAbstract

MUSiiCTaskObject

Task

Function

Task #1

Task #2 Task #3

Task #5

Task #4

The direction of Command/Data-flow

Required Callback Interface (MUSiiCCallbackInterface)

Provided Callback Interface (MUSiiCCallbackInterfaceControl)

 10

Figure 7. Block diagram of MUSiiCTCPServer and MUSiiCTCPClient.

2.3 MUSiiC ToolKit 2.0: Real-time Multiple Data Synchronization

US IGT systems can be composed of many subsystems including a robotic system, tracking devices, and

medical imaging systems. Real-time synchronization between multiple data sources is therefore necessary

to integrate the US system with other IGT subsystems.

We built a specific task class, MUSiiCSync, to solve this requirement. Our synchronization method is

closest data combining based on the timestamp of each data. The block diagram of MUSiiCSync is shown

in figure 8(a). There are two task objects, Data-Collect and Data-Combine, in this class. The Data-Collect

task thread receives multiple data from different data sources through the TCP/IP network and generates a

MUSiiCSyncData instance designed to contain a reference data and multiple data of other types during

the time of data collection, Tc (see figure 8(b)). Generally, Tc is two divided by the frame rate of the ref-

erence data in seconds. The Data-Combine task thread finds the data from each data group with the clos-

est timestamp to the timestamp of the reference data. If TrackingDataMessage and ImageMessage data of

OpenIGTLink2.0 are present in the instance of MUSiiCSyncData, this task thread updates the tracking

information of ImageMessage with the information from TrackingDataMessage. At this time, we can ap-

ply extra information such as calibration data from the US transducer.

There is a latency time (Tl) in MUSiiCSync to generate the first set of synchronized data. The set of syn-

chronized data from MUSiiCSync will be delayed by at most Tc. In general, US data is the reference data

in MUSiiCSync, and the frame rate is 30 frames per second. In this case, Tc will be 60 ms and Tl will be

less than 60 ms. We feel that this delay is acceptable in US IGT systems. The set of synchronized data

from MUSiiCSync can be sent to another task class through an instance of MUSiiCCallbackInterface or

MUSiiCVector. In this case, the data can be saved to the local hard disk using the MUSiiCFileIO class or

sent to the TCP/IP network with MUSiiCTCPClient.

MUSiiCTCPServer

Listening-Task

(MUSiiCTaskObject)

Data-Sending

(MUSiiCTaskObject)

Data-Receiving

(MUSiiCTaskObject)

MUSiiCTCPClient

Creating-client socket

(MUSiiCTaskObject)

Data-Sending

(MUSiiCTaskObject)

Data-Receiving

(MUSiiCTaskObject)

TCP/IP

Network

DATA

(igtlMessageBase)

The direction of Command/Data-flow

Required Interface (MUSiiCCallbackInterface/ MUSiiCVector)

Provided Interface (MUSiiCCallbackInterfaceControl/ MUSiiCVectorSet)

 11

Figure 8. Block diagram of (a) MUSiiCSync, and (b) Timeline of MUSiiCSync.

3 Application for Advanced Ultrasound Research using MUSiiC ToolKit 2.0

We built an upgraded US thermal monitoring system using MUSiiC ToolKit 2.0. A block diagram of this

system is presented in figure 9. There are two US elastography modules based on thermal strain imaging

for monitoring the change of tissue temperature: MUSiiC_NCC_Elastrography [20] and MUSiiC_TrUE_

Elastography. Since MUSiiC_TrUE_Elastography requires synchronized US RF data and US transducer

tracking information to generate a tracked elastography [7], a MUSiiCSync module is added to the system.

The block diagram in figure 9 is very similar to the one shown in figure 1. Our previous software frame-

work only supported unidirectional communication making it difficult to realize interactive communica-

tion between subsystems. In contrast, our new system based on MUSiiC ToolKit2.0 provides bidirectional

communication methods between software modules and task class levels. This communication mecha-

nism allows us to change control parameters in MUSiiC RF-Server 2.5, MUSiiC B-Mode or MUSiiC_-

NCC_Elastography from the MUSiiC ImageViewer and check the results immediately on a screen.

Instances of MUSiiCTCPServer, MUSiiCTCPClient, and MUSiiCFileIO are implemented in all software

modules. This means that we can send out the results of each module to real-time US IGT system or save

the data to the local hard disk.

MUSiiCSync

Data-Collect

(MUSiiCTaskObject)

Data-Combine

(MUSiiCTaskObject)

The direction of Command/Data-flow

Required Interface (MUSiiCCallbackInterface/ MUSiiCVector)

Provided Interface (MUSiiCCallbackInterfaceControl/ MUSiiCVectorSet)Synchronized

Data Set

Data1

Data2

Data_Ref

Data1_01

Data2_01

Data_Ref_01

Data1_02

Data2_02

Data1_03

Data_Ref_02

Data2_03

Data1_04

Data2_04

Data1_05

Data_Ref_03

Data1_06

Data2_05

Data_Ref_01 Data1_01 Data1_02 Data1_03

Data2_01 Data2_02

Data_Ref_02 Data1_02 Data1_03 Data1_04

Data1_05

Data2_02 Data2_03 Data2_04

Data_Ref_01

Data_Ref_02

Data1_02 Data2_01

Data1_03 Data2_03

Incoming Data MUSiiCSync Data Synchronized Data Set

Tc: Time of Data-Collection

Tl: Latency time

Time

Data_Ref Reference Data

Data1

Data2

Data type 1

Data type 2

a

b

 12

Figure 9. Block diagram of upgraded version of ultrasound thermal monitoring system.

4 Conclusions

In this work, we presented MUSiiC ToolKit 2.0 as a software framework for advanced US IGT systems.

We describe the infrastructure to enable three main features: real-time data processing, bidirectional data

communication, and real-time data synchronization. We also present an upgraded application using this

new software framework and describe its advantages over the previous version. Future work will focus on

developing new modules in MUSiiC Notes 2.0 and extending MUSiiC ToolKit 2.0 to support applications

such as photoacoustic imaging. In the future, we plan to release our software framework as open source

software under the New BSD license [25].

Acknowledgements

The authors would like to thank Pezhman Foroughi and Nishikant Deshmukh from Johns Hopkins Uni-

versity for their cooperation. The authors also thank Dr. Russell H. Talyor of NSF ERC-CISST at the

Johns Hopkins University for his valuable advice and discussion. This work was supported by NIH NCI

SBIR funding R44CA134169.

References

[1] P. J. Stolka, H. J. Kang, and E. M. Boctor, "The MUSiiC Toolkit: Modular Real-Time Toolkit for

Advanced Ultrasound Research," presented at the MICCAI 2010, International Workshop on

System and Architectures for Computer Assisted Interventions, 2010.

[2] H. J. Kang, P. J. Stolka, and E. M. Boctor, "OpenITGLinkMUSiiC: A Standard Communications

Protocol for Advanced Ultrasound Research," presented at the MICCAI 2011, International

Workshop on System and Architectures for Computer Assisted Interventions, 2011.

[3] J. Tokuda, G. S. Fischer, X. Papademetris, Z. Yaniv, L. Ibanez, P. Cheng, H. Liu, J. Blevins, J. Arata,

and A. J. Golby, "OpenIGTLink: an open network protocol for image‐guided therapy environment,"

The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 5, pp. 423-434,

2009.

[4] Open IGT Link Protocol (Ver. 2) , http://www.na-mic.org/Wiki/index.php/OpenIGTLink/ProtocolV2.

Workstation with GPU

(Win 7 64bit, CUDA)

UltraSonix Ultrasound Machine

(Win XP 32 bit)

MUSiiC RF-Server2.5

MUSiiC

TCPServer

M
U

S
ii

C

P
o
rt

a
W

ra
p

M
U

S
ii

C

D
a
ta

M
a
n

a
g
er

MUSiiC

FILEIO

MUSiiC EM Tracker Server

MUSiiC

TCPServer

M
U

S
ii

C

E
M

T
ra

ck
er

W
ra

p

M
U

S
ii

C

D
a
ta

M
a
n

a
g
er

MUSiiC

FILEIO

MUSiiC B-Mode

MUSiiC

FILEIO

MUSiiC

TCPClient

M
U

S
ii

C

B
M

o
d

e

M
U

S
ii

C

D
a
ta

 M
a
n

a
g
er MUSiiC

FILEIO

MUSiiC

TCPServer

MUSiiC Sync

MUSiiC

FILEIO

MUSiiC

TCPClient

Client

Socket

Client

Socket

M
U

S
ii

C

S
y
n

c

M
U

S
ii

C

D
a
ta

 M
a
n

a
g
er

MUSiiC

FILEIO

MUSiiC

TCPServer

MUSiiC NCC Elastography

MUSiiC

FILEIO

MUSiiC

TCPClient

M
U

S
ii

C

E
I_

N
C

C
_

E
n

g
in

e

M
U

S
ii

C

D
a
ta

 M
a
n

a
g
er MUSiiC

FILEIO

MUSiiC

TCPServer

MUSiiC TrUE Elastography

MUSiiC

FILEIO

MUSiiC

TCPClient

M
U

S
ii

C

T
rU

E
_
E

n
g
in

e

M
U

S
ii

C

D
a
ta

 M
a
n

a
g
er MUSiiC

FILEIO

MUSiiC

TCPServer

MUSiiC Image Viewer

MUSiiC

FILEIO

MUSiiC

TCPClient

MUSiiC

Rendering Ending

MUSiiC

Control Parameter

Panel

MUSiiC

TCPServer

MUSiiC

FILEIO

Task

Task

The direction of Command/Data - flowThe direction of Command/Data - flow

Workstation / MachineWorkstation / Machine

MUSiiC ModuleMUSiiC Module

Task-class of OpenIGTLink2.0Task-class of OpenIGTLink2.0

Task-class of MUSiiC Notes 2.0Task-class of MUSiiC Notes 2.0

http://www.na-mic.org/Wiki/index.php/OpenIGTLink/ProtocolV2

 13

[5] E. M. Boctor, P. Stolka, H. J. Kang, C. Clarke, C. Rucker, J. Croom, E. C. Burdette, and R. J.

Webster III, "Precisely shaped acoustic ablation of tumors utilizing steerable needle and 3D

ultrasound image guidance," in SPIE Medical Imaging 2010, San Diego, CA/USA, 2010.

[6] J. Boisvert, D. Gobbi, S. Vikal, R. Rohling, G. Fichtinger, and P. Abolmaesumi, "An open-source

solution for interactive acquisition, processing and transfer of interventional ultrasound images,"

presented at the MICCAI 2008, International Workshop on System and Architectures for Computer

Assisted Interventions, 2008.

[7] P. Foroughi, C. Csoma, H. Rivaz, G. Fichtinger, R. Zellars, G. Hager, and E. Boctor, "Multi-

modality fusion of CT, 3D ultrasound, and tracked strain images for breast irradiation planning," in

SPIE Medical Imaging 2009, Lake Buena Vista, FL/USA, 2009, p. 72651B.

[8] S. Billings, N. Deshmukh, H. J. Kang, R. Taylor, and E. M. Boctor, "System for robot-assisted real-

time laparoscopic ultrasound elastography," in SPIE Medical Imaging 2012, San Diego, CA/USA,

2012, p. 83161W.

[9] H. Sen, N. Deshmukh, R. Goldman, P. Kazanzides, R. H. Taylor, E. Boctor, and N. Simaan,

"Enabling technologies for natural orifice transluminal endoscopic surgery (NOTES) using

robotically guided elasticity imaging," in SPIE Medical Imaging 2012, San Diego, CA/USA, 2012, p.

83161Y.

[10] E. M. Boctor, A. Viswanathan, S. Pieper, M. A. Choti, R. H. Taylor, R. Kikinis, and G. Fichtinger,

"CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API," 2004, p. 27.

[11] Z. Yaniv, P. Foroughi, H. J. Kang, and E. Boctor, "Ultrasound calibration framework for the image-

guided surgery toolkit (IGSTK)," 2011, p. 79641N.

[12] H. J. Kang, N. P. Deshmukh, P. Stolka, E. C. Burdette, and E. M. Boctor, "Ultrasound imaging

software framework for real-time monitoring of acoustic ablation therapy," in SPIE Medical Imaging

2012, San Diego, CA/USA, 2012, p. 83201E.

[13] W. R. Stevens, UNIX Network Programming: Interprocess Communications vol. Volume 2, 1998.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software, 1994.

[15] Qt SDK, http://qt.nokia.com/products/qt-sdk/.

[16] The Visualization ToolKit (VTK), www.vtk.org.

[17] Ultrasonix Wiki, http://www.ultrasonix.com/wikisonix/index.php/Main_Page.

[18] Ascension Technology Copoeration. http://www.ascension-tech.com/technical/index.php.

[19] H. J. Kang, N. Kuo, X. Guo, D. Song, J. U. Kang, and E. M. Boctor, "Software framework of a real-

time pre-beamformed RF data acquisition of an ultrasound research scanner," in SPIE Medical

Imaging 2012, San Diego, CA/USA, 2012, p. 83201F.

[20] N. Deshmukh, H. Rivaz, and E. Boctor, "GPU-based elasticity imaging algorithms," in MICCAI-

GRID 2009 - International Conference on Medical Image Computing and Computer Assisted

Intervention, London/UK, 2009.

[21] I/O Completion Port, http://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx.

http://qt.nokia.com/products/qt-sdk/
http://www.vtk.org/
http://www.ultrasonix.com/wikisonix/index.php/Main_Page
http://www.ascension-tech.com/technical/index.php
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx

 14

[22] epoll, http://en.wikipedia.org/wiki/Epoll.

[23] Kqueue, http://en.wikipedia.org/wiki/Kqueue.

[24] 3D Slicer, http://www.slicer.org/.

[25] New BSD license, http://opensource.org/licenses/bsd-license.php.

http://en.wikipedia.org/wiki/Epoll
http://en.wikipedia.org/wiki/Kqueue
http://www.slicer.org/
http://opensource.org/licenses/bsd-license.php

