
Document Object Model based XML Handling
in ITK

Release 0.00

Ren-Hui Gong1 and Ziv Yaniv1

September 21, 2012

1Sheikh Zayed Institute for Pediatric Surgical Innovation,Children’s National Medical Center, USA

Abstract

The Insight Segmentation and Registration Toolkit (ITK) previously provided a framework for parsing
Extensible Markup Language (XML) documents using the Simple API for XML (SAX) framework.
While this programming model is memory efficient, it places most of the implementation burden on
the user. We provide an implementation of the Document Object Model (DOM) framework for parsing
XML documents. Using this model, user code is greatly simplified, shifting most of the implementation
burden from the user to the framework. The provided implementation consists of two tiers. The lower
level tier provides functionality for parsing XML documents and loading the tree structure into memory.
It then allows the user to query and retrieve specific entries. The upper tier uses this functionality to
provide an interface for mimicking a serialization and de-serialization mechanism for ITK objects. The
implementation described in this document was incorporated into ITK as part of release 4.2.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3387]
Distributed underCreative Commons Attribution License

Contents

1 Introduction 2

2 SAX-based XML handling 2

3 DOM-based XML handling 3
3.1 Basic use (Tier 1). 3
3.2 Mimicking serialization (Tier 2) . 4
3.3 Core classes. 4
3.4 Utility classes. 7

4 Examples 7
4.1 Tier 1 XML handling . 7
4.2 Tier 2 XML handling . 9
4.3 Use of utility classes. 12

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

2

5 Conclusion 13

6 Acknowledgement 13

A DOM Framework Files 14

1 Introduction

The Extensible Markup Language (XML) (http://www.w3.org/XML) has been widely used to perform
tasks such as providing application settings, storing intermediate or final states to disk, transferring objects
over the network, and so on.

Reading or writing an XML document can be realized using one of two common application programming
interfaces (APIs): Simple API for XML (SAX) (http://www.saxproject.org), and Document Object
Model (DOM) (http://www.w3.org/DOM). Each API has pros and cons. SAX-based XML reading/writing
is more appropriate for reading large documents, while DOM-based XML reading/writing is much easier
for the user to implement.

Previously the Insight Segmentation and Registration Toolkit (ITK) (www.itk.org), only provided a SAX-
based XML reading/writing framework. To enhance the XML handling functionality in ITK, we imple-
mented a DOM-based XML reading/writing framework. In addition we define an interface that allows the
user to mimic serialization via XML, building upon the DOM functionality. This allows the user to define
ITK objects using XML, easily writing an object descriptionto disk or loading an object from disk directly
into memory.

We next provide a short review of the SAX based XML framework in ITK. We then describe the new DOM
based framework, and introduce its core and associated utility classes. Finally we provide examples showing
how to use the framework both for reading and writing XML (tier one), and for mimicking serialization (tier
two).

2 SAX-based XML handling

The SAX based XML processing model is event driven. In the case of reading, the XML document is fed
into a SAX-based reader as a textual stream, and the reader instantly processes each piece of incoming
information. That is, for each possible event (start tag, end tag, character read) the user is required to
implement a callback function which will be invoked when theevent occurs.

Thus, in order to read a specific XML document the user implements her own reader class that inherits from
itk::XMLReader<T>, and implements three virtual functions that comprise the SAX interface:

virtual void StartElement(const char *name, const char **atts) = 0;
virtual void EndElement(const char *name) = 0;
virtual void CharacterDataHandler(const char *inData, int inLength) = 0;

From the reader’s point of view, SAX-based XML reading is apushbased approach with the reader waiting
for events to occur, triggering the XML stream processing. This model makes efficient use of computer

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3387]
Distributed underCreative Commons Attribution License

http://www.w3.org/XML
http://www.saxproject.org
http://www.w3.org/DOM
www.itk.org
http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

3

tb

Figure 1: SAX-based XML reading/writing in ITK: user caches the required information herself until reading of the

object is complete.

memory and is able to handle very large documents as there is no need to load the complete text into
memory prior to processing it. However, the implementor of aSAX based reader has to accumulate all of
the relevant pieces of information on their own, a user managed cache. If there are dependencies between
data elements the logical validity of the document can only be confirmed after all of the processing has been
completed.

This event based approach is similar for writing, with the user required to implement her own writer class,
inheriting fromitk::XMLWriterBase<T>, and implementing the virtual function required by the SAX API:

virtual int WriteFile() = 0;

In practice this means that the user needs to implement an XMLwriter from scratch for each new document,
as the framework provides minimal automation. Figure1provides a schematic description of the information
flow in the SAX based framework.

3 DOM-based XML handling

3.1 Basic use (Tier 1)

The DOM framework is based on the use of an intermediate tree data structure residing in memory which
represents the complete XML document. In our implementation this data structure uses theitk::DOMNode
anditk::DOMTextNode classes, with the root of the structure being aDOMNode.

To read an XML document into memory the user does not need to implement a thing. The XML document
is parsed and loaded into memory using theitk::DOMNodeXMLReader class, with the user only required to
set the file name and invoke theUpdate() method. Once all the data is in memory the user obtains the root
of the tree and traverses the structure to obtain the desiredinformation. This is apull based approach with
the user initiating the data collection from the data structure.

The approach to writing is similar, in this case the user needs to actively construct the document structure in
memory. Once the structure is created they use theitk::DOMNodeXMLWriter to write the XML file. This
only requires providing the root to the writer, setting a filename, and invoking theUpdate() method.

To the user, the main advantage of this framework as comparedto the SAX one is that obtaining data values
from the tree structure is much simpler than obtaining them using the callback mechanism. In addition the

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3387]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

3.2 Mimicking serialization (Tier 2) 4

Figure 2: New DOM-based XML reading/writing in ITK 4.2+: all information is pre-cached in the intermediate DOM

object.

resulting code can be better organized and is much more readable to developers, as data acquisition can be
localized in a single method instead of distributed across aset of callbacks.

3.2 Mimicking serialization (Tier 2)

In many cases we would like to use XML to configure our programs. That is, we use XML to describe a
specific object instance in memory (a limited form of serialization). This results in a recurring pattern, load
the information from disk into the tree data structure and then set the values for the object instance variables
by traversing the data structure.

When mimicking serialization in this manner, we can consolidate the two step process in a single class. In
our implementation this is done by the abstractitk::DOMReader<T> class. To implement a specific object
reader the user derives a class fromitk::DOMReader<T> and implements a single function:

virtual void GenerateData(const DOMNode* inputdom, const void* userdata) = 0;

This function is responsible for creating the output objectusing the information in the given tree structure,
and possibly some additional information. The later servesas supplemental information in cases where the
XML does not contain all of the required data. This option is rarely used but is useful on occasion.

Object writing is similar. The user inherits from the abstract itk::DOMWriter<T> class, and implements one
virtual function that constructs the intermediate tree structure from the object we want to serialize. Again,
the user may supply additional information if it is requiredfor writing the object to file. For example, if the
object contains multiple images, the user will need to specify file names so that the images are written to the
specific files and the XML file contains the relevant file names.

virtual void GenerateData(DOMNode* outputdom, const void* userdata) const = 0;

Figure2 shows a schematic description of our DOM based serialization framework.

This serialization mimicking mechanism alleviates the need for the programmer to generate correct textual
output per object type. As a result, the developer can focus on the simpler task of translating between the
tree data structure and the specific object instantiation, either when reading or writing.

3.3 Core classes

The core classes used in the implementation of the DOM framework are shown in Figure3.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3387]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

3.3 Core classes 5

Figure 3:Core classes for DOM-based XML reading/writing in ITK.

The main class used to construct the tree data structure in memory isitk::DOMNode. Except for the root
node, each node is associated with a parent node, a set of attributes, and a set of child nodes. The class
provides a number of methods for setting and accessing the tag name, parent, attributes and children. Each
attribute is represented using a<Key,Value> pair, and both key and value are text strings.

One special attribute with Key=“id” is internally used to distinguish a node from its siblings. This means
that the attribute “id” (all combinations of upper and lowercase) should be used cautiously as we assume
that the value of this attribute is unique among its siblings(i.e. nodes that share the same parent as this
node) in an XML tree structure.

An itk::DOMNode in a DOM tree structure can be retrieved using one of the following methods:

1. By using the index among its immediate siblings;

2. By using the offset with respect to an immediate sibling;

3. By using the XML tag name and an optional index (the index isrequired when the parent has multiple
children with the same tag name);

4. By using the optional “id” attribute; and

5. By using a path or query string that concatenates one or more of the above methods.

The classitk::DOMTextNode represent XML tag values that only contain one text string. It has no attributes
and children, and can only be used as a leaf node. To retrieve an itk::DOMTextNode, all above-mentioned
methods except for (4) can be used. In the case of (3), the special tag name “!” is used to represent this type
of nodes.

Figure4 shows an XML description and the corresponding data structure in memory.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3387]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

3.3 Core classes 6

Figure 4:XML document and corresponding data structure in memory.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3387]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

3.4 Utility classes 7

The classesitk::DOMNodeXMLReader anditk::DOMNodeXMLWriter are used to parse an XML document
into a DOM object and to write a DOM object to an XML document ondisk. These classes should be used
when dealing with an XML document which describes several loosely related pieces of information. Once
the structure is in memory the user extracts the informationby traversing the tree nodes.

The classesitk::DOMReader<T> anditk::DOMWriter<T> are abstract classes from which the user derives
their own specific readers/writers, mimicking serialization/de-serialization of a single object. The derived
class simply encapsulates the traversal and extraction of the data from the internal DOM tree structure.

Note that the classesitk::DOMReader<T> anditk::DOMWriter<T> are derived fromitk::Object instead
of itk::ProcessObject, though they have similar member functions such asSetFileName(), Update(),
and so on. This decision was made to allow reading and writingof objects with any type, instead of limiting
it to itk::DataObject.

3.4 Utility classes

Reading/writing XML documents on disk and objects in memoryinvolves a lot of string processing and
string-based data input/output. To facilitate these operations, several utility classes are provided.

The classitk::StringTools provides operations to read/write primitive data, vectorsand ITK arrays
from/to strings. It also provides additional functions forstring manipulation such as trimming, case conver-
sion, splitting, sub-string testing, and so on. All operations in this class are static functions.

The classitk::FancyString inherits from the C++std::string and adds allitk::StringTools oper-
ations as member functions. The streaming operators>> and<< have been overloaded for this class such
that it can be used as a string stream. This avoids explicitlycreating an intermediate string stream from a
string when it needs to input/output data from/to a string. In addition, a manipulator,itk::ClearContent,
is provided to clear the content of such a string.

The classitk::FileTools provides two functions to create directories or files if theydon’t exist. The
functions are based on existing ITK file manipulation tools (defined inSystemTools.hxx), and are provided
to make sure that data files can be written to disk.

Although the above utility classes are provided to facilitate DOM-based XML handling, they are useful
outside of this framework.

4 Examples

4.1 Tier 1 XML handling

In this example we demonstrate how to use the Tier 1 technique(Section3.1) to read/write two user vari-
ables. The first variable is a string holding some descriptive text, and the second variable is a score of double
type. The corresponding XML document is:

<my_settings>
<desc>

Some user notes go here.
</desc>
<score value="90"/>

</my_settings>

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3387]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

4.1 Tier 1 XML handling 8

The following code snippet shows how to read the variables from such an XML file:

///
// Tier 1 reading: first read a DOM object from the XML file,
// then extract the information of interest from the DOM object.
///

// Step 1: read the DOM object from an XML file
itk::DOMNode::Pointer outputDOMObject;
const char* inputXMLFileName = ...
itk::DOMNodeXMLReader::Pointer reader = itk::DOMNodeXMLReader::New();
reader->SetFileName(inputXMLFileName);
reader->Update();
outputDOMObject = reader->GetOutput();

// Step 2: read the variables from the DOM object
if (outputDOMObject->GetName() != "my_settings")

{
throw "Unrecognized input XML document!";
}

std::string desc = "";
{
itk::DOMNode* node = outputDOMObject->GetChild("desc");
desc = node->GetTextChild()->GetText();
}

double score = 0.0;
{
itk::DOMNode* node = outputDOMObject->GetChild("score");
itk::FancyString fs = node->GetAttribute("value");
fs >> score;
}

The following code snippet shows how to write the variables to an XML file:

///
// Tier 1 writing: first write the information of interest to a DOM object,
// then write the DOM object to an XML file.
///

// Step 1: write the variables to a DOM object
itk::DOMNode::Pointer inputDOMObject = itk::DOMNode::New();
inputDOMObject->SetName("my_settings");
std::string desc = ...

{
// create a node and add it to the DOM object
itk::DOMNode::Pointer node = itk::DOMNode::New();
node->SetName("desc");
inputDOMObject->AddChildAtEnd(node);
// add a text child to the newly created node
node->AddTextChild(desc);
}

double score = ...
{
// create a node and add it to the DOM object

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3387]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

4.2 Tier 2 XML handling 9

itk::DOMNode::Pointer node = itk::DOMNode::New();
node->SetName("score");
inputDOMObject->AddChildAtEnd(node);
// add an attribute to the newly created node
itk::FancyString fs;
fs << score;
node->SetAttribute("value", fs);
}

// Step 2: write the DOM object to an XML file
const char* outputXMLFileName = ...
itk::DOMNodeXMLWriter::Pointer writer = itk::DOMNodeXMLWriter::New();
writer->SetInput(inputDOMObject);
writer->SetFileName(outputXMLFileName);
writer->Update();

4.2 Tier 2 XML handling

In this example we demonstrate how to use the Tier 2 technique(Section3.2) to read/write a simple testing
object namedDOMTestObject. It contains a single member variablem_FooValue of type “float” as well as
the corresponding set/get methods. The XML document describing this object is:

<DOMTestObject>
<foo value="123.45"/>

</DOMTestObject>

The following code example demonstrates the reading of suchan object. It first implements a DOM-based
reader that reads an XML file and produces the corresponding test object, then uses the implemented reader
to perform object reading in a user program.

//
// File DOMTestObjectDOMReader.h
//

// The reader derives from itk::DOMReader<T> and, except for the common definitions
// required by itk::Object, it needs only to implement one protected virtual function, GenerateData.

#include <itkDOMReader.h>
#include "DOMTestObject.h"

class DOMTestObjectDOMReader : public itk::DOMReader<DOMTestObject>
{
// Common definitions for itk::Object go here.
...
protected:

virtual void GenerateData(const DOMNodeType* inputdom, const void*)
{
// First check whether the user has supplied a correct XML document.
if (inputdom->GetName() != "DOMTestObject")

{
itkExceptionMacro("tag name DOMTestObject is expected");
}

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3387]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

4.2 Tier 2 XML handling 10

// The user may have already provided an instance of the test object
// as the output. If so, retrieve this object for subsequent reading.
OutputType* output = this->GetOutput();

// If the user hasn’t provided an instance as the output, create one.
if (output == NULL)

{
OutputType::Pointer object = OutputType::New();
output = (OutputType*)object;
this->SetOutput(output);
}

// We will use the itk::FancyString to facilitate data reading from string.
itk::FancyString s;

// Retrieve the child node with the tag name "foo".
const DOMNodeType* node = inputdom->GetChild("foo");
if (node == NULL)

{
itkExceptionMacro("Child foo not found!");
}

// Now retrieve the value of the attribute "value", which is a text string,
// and convert it to type float.
float fooValue = 0;
s = node->GetAttribute("value");
s >> fooValue;

// Finally assign the obtained value to the output object.
output->SetFooValue(fooValue);

}
};

//
// File main.cpp
//

// This user program reads a test object from an XML file using the reader
// described above, and then performs subsequent processing.

#include "DOMTestObjectDOMReader.h"

int main(int argc, char* argv[])
{

// Variable to store the output test object.
DOMTestObject::Pointer outputObject;

// Read the object from an XML file.
const char* inputXMLFileName = ...
DOMTestObjectDOMReader::Pointer reader = DOMTestObjectDOMReader::New();
reader->SetFileName(inputXMLFileName);
reader->Update();
outputObject = reader->GetOutput();

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3387]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

4.2 Tier 2 XML handling 11

// Perform subsequent processing on the output object.
...

}

The following code example demonstrates the writing of a test object. It first implements a DOM-based
writer that accepts an input test object and writes the corresponding XML document to a disk file, then uses
the implemented writer to perform object writing in a user program.

//
// File DOMTestObjectDOMWriter.h
//

// The writer derives from itk::DOMWriter<T> and, except for the common definitions
// required by itk::Object, it needs only to implement one protected virtual function, GenerateData.

#include <itkDOMWriter.h>
#include "DOMTestObject.h"

class DOMTestObjectDOMWriter : public itk::DOMWriter<DOMTestObject>
{
// Common definitions for itk::Object go here.
...
protected:

virtual void GenerateData(DOMNodeType* outputdom, const void*) const
{
// First set the tag name for the intermediate DOM object.
outputdom->SetName("DOMTestObject");

// Retrieve the test object to be written out.
const InputType* input = this->GetInput();

// We will use the itk::FancyString to facilitate data writing to string.
itk::FancyString s;

// Create a child node with the tag name "foo", and add it to the DOM object.
DOMNodePointer node = DOMNodeType::New();
node->SetName("foo");
outputdom->AddChild(node);

// Finally retrieve the foo value from the input test object, convert it
// to a string, and set the value for the attribute "value" in the newly created
// child node.
float fooValue = input->GetFooValue();
s << fooValue;
node->SetAttribute("value", s);

}
};

//
// File main.cpp
//

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3387]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

4.3 Use of utility classes 12

// This user program produces a test object, and then write it to an
// XML file using the writer described above.

#include "DOMTestObjectDOMWriter.h"

int main(int argc, char* argv[])
{

// Generate the test object.
DOMTestObject::Pointer inputObject;
...

// Write the test object to an XML file.
const char* outputXMLFileName = ...
DOMTestObjectDOMWriter::Pointer writer = DOMTestObjectDOMWriter::New();
writer->SetInput(inputObject);
writer->SetFileName(outputXMLFileName);
writer->Update();

return EXIT_SUCCESS;
}

4.3 Use of utility classes

The previous examples demonstrated some capabilities of the itk::FancyString class. Here we provide
more examples to show its data I/O functionality:

itk::FancyString fs;

// Write a fundamental C data to the string.
int i = ...
fs << itk::ClearContent << i;
// Read a fundamental C data from the string.
fs >> i;

// Write a vector to the string.
std::vector<float> v = ...
fs << itk::ClearContent << v;
// Read all elements in the string to a vector.
fs >> v;
// Read a specified number of elements from the string to a vector.
v.resize(3);
fs.ToData(v);

// Write an ITK array to the string.
itk::Array<double> a = ...
fs << itk::ClearContent << a;
// Read all elements in the string to an ITK array.
fs >> a;
// Read a specified number of elements from the string to an ITK array.
a.SetSize(5);
fs.ToData(a);

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3387]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

13

The following example demonstrates the use ofitk::FileTools. The file to be written is located in a
directory that does not exist, and theCreateFile() function is called to create the directory as well as the
file. This pre-processing is necessary to make sure that subsequent writing with thestd::ofstream will be
successful.

// We want to write some data to this file, which is located in a directory that does
// not exist.
const char* fn = ...

// Create the directory as well as the file.
itk::FileTools::CreateFile(fn);

// Open the file for writing.
std::ofstream ofs(fn);
if (!ofs.is_open())

{
itkExceptionMacro("Cannot write file!");
}

// Write the data to the file.
...

5 Conclusion

We have provided an overview of the DOM-based XML framework introduced in ITK version 4.2. This
framework provides a simpler approach to loading XML data than previously provided by ITK. In addition
the resulting code is often cleaner, more understandable todevelopers, and thus easier to maintain.

6 Acknowledgement

This work was supported by NLM/NIH contract HHSN276201000578P.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3387]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

14

A DOM Framework Files

The following listing shows the directories and files associated with the framework.

<ITKDIR>\Modules\IO\XML\
include\

itkDOMNode.h
itkDOMNodeXMLReader.h
itkDOMNodeXMLWriter.h
itkDOMReader.h
itkDOMReader.hxx
itkDOMTextNode.h
itkDOMWriter.h
itkDOMWriter.hxx
itkFancyString.h
itkFancyString.hxx
itkFileTools.h
itkStringTools.h
itkStringTools.hxx

src\
itkDOMNode.cxx
itkDOMNodeXMLReader.cxx
itkDOMNodeXMLWriter.cxx
itkFancyString.cxx
itkStringTools.cxx

test\
CMakeLists.txt
itkDOMTest1.cxx
itkDOMTest2.cxx
itkDOMTest3.cxx
itkDOMTest4.cxx
itkDOMTest5.cxx
itkDOMTest6.cxx
itkDOMTest7.cxx
itkDOMTest8.cxx
itkDOMTestObject.h
itkDOMTestObjectDOMReader.h
itkDOMTestObjectDOMWriter.h

<ITKDIR>\Examples\IO\XML\
CMakeLists.txt
DOMFindDemo.cxx
itkParticleSwarmOptimizerDOMReader.cxx
itkParticleSwarmOptimizerDOMReader.h
itkParticleSwarmOptimizerDOMWriter.cxx
itkParticleSwarmOptimizerDOMWriter.h
itkParticleSwarmOptimizerSAXReader.cxx
itkParticleSwarmOptimizerSAXReader.h
itkParticleSwarmOptimizerSAXWriter.cxx
itkParticleSwarmOptimizerSAXWriter.h
ParticleSwarmOptimizerReadWrite.cxx

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3387]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	SAX-based XML handling
	DOM-based XML handling
	Basic use (Tier 1)
	Mimicking serialization (Tier 2)
	Core classes
	Utility classes

	Examples
	Tier 1 XML handling
	Tier 2 XML handling
	Use of utility classes

	Conclusion
	Acknowledgement
	DOM Framework Files

