Document Object Model based XML Handling
in ITK

Release 0.00

Ren-Hui Gong1 and Ziv Yaniv!

September 21, 2012
1Sheikh zZayed Institute for Pediatric Surgical Innovati@hjldren’s National Medical Center, USA

Abstract

The Insight Segmentation and Registration Toolkit (ITKgyously provided a framework for parsing
Extensible Markup Language (XML) documents using the SanmjPl for XML (SAX) framework.
While this programming model is memory efficient, it placessmof the implementation burden on
the user. We provide an implementation of the Document @bjleciel (DOM) framework for parsing
XML documents. Using this model, user code is greatly sifigali shifting most of the implementation
burden from the user to the framework. The provided impldaién consists of two tiers. The lower
level tier provides functionality for parsing XML documerénd loading the tree structure into memory.
It then allows the user to query and retrieve specific entridse upper tier uses this functionality to
provide an interface for mimicking a serialization and éeiaization mechanism for ITK objects. The
implementation described in this document was incorpdriai® ITK as part of release 4.2.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3387]
Distributed undeCreative Commons Attribution License

Contents

1 Introduction 2

2 SAX-based XML handling 2

3 DOM-based XML handling 3
3.1 Basicuse (Tierld) 3
3.2 Mimicking serialization (Tier2). e e 4
3.3 Coreclasses 4
3.4 Utilityclasses. e e 7

4 Examples 7
41 TierlXMLhandling. 7
42 Tier2XMLhandling. e 9

4.3 Useofutilityclasses. e e 12

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

5 Conclusion 13
6 Acknowledgement 13
A DOM Framework Files 14

1 Introduction

The Extensible Markup Language (XML}t p: // www. w3. or g/ XM.) has been widely used to perform
tasks such as providing application settings, storingninégliate or final states to disk, transferring objects
over the network, and so on.

Reading or writing an XML document can be realized using drtevo common application programming
interfaces (APIs): Simple API for XML (SAX)ht t p: / / www. saxproj ect. org), and Document Object
Model (DOM) (tt p: / / www. W3. or g/ DOM). Each API has pros and cons. SAX-based XML reading/writing
is more appropriate for reading large documents, while Dikdded XML reading/writing is much easier
for the user to implement.

Previously the Insight Segmentation and Registrationkip@TK) (ww.. i t k. or g), only provided a SAX-
based XML reading/writing framework. To enhance the XML diimg functionality in ITK, we imple-
mented a DOM-based XML reading/writing framework. In agigitwe define an interface that allows the
user to mimic serialization via XML, building upon the DOMrctionality. This allows the user to define
ITK objects using XML, easily writing an object descriptitmdisk or loading an object from disk directly
into memory.

We next provide a short review of the SAX based XML framewarkTiK. We then describe the new DOM
based framework, and introduce its core and associatéty atdsses. Finally we provide examples showing
how to use the framework both for reading and writing XML i(time), and for mimicking serialization (tier
two).

2 SAX-based XML handling

The SAX based XML processing model is event driven. In the cdseading, the XML document is fed
into a SAX-based reader as a textual stream, and the reagtanily processes each piece of incoming
information. That is, for each possible event (start tagl &g, character read) the user is required to
implement a callback function which will be invoked when thent occurs.

Thus, in order to read a specific XML document the user impigmleer own reader class that inherits from
i tk:: XM_.Reader <T>, and implements three virtual functions that comprise th& 8iterface:

virtual void StartEl ement(const char *name, const char **atts) = 0;
virtual void EndEl ement (const char *name) = 0;
virtual void CharacterDataHandl er(const char *inData, int inLength) = O;

From the reader’s point of view, SAX-based XML reading {gushbased approach with the reader waiting
for events to occur, triggering the XML stream processindpisTnodel makes efficient use of computer

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3387]
Distributed undeCreative Commons Attribution License

http://www.w3.org/XML
http://www.saxproject.org
http://www.w3.org/DOM
www.itk.org
http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

tb

User caches
information herself

SAX-based Reading
itk::XMLReader<T>

XML > Object In Memory
Document (T

User-defined Writing
itk:XMLWriterBase<T>

User caches
information herself

Figure 1: SAX-based XML reading/writing in ITK: user caches the required information herself until reading of the
object is complete.

memory and is able to handle very large documents as there reeed to load the complete text into
memory prior to processing it. However, the implementor X based reader has to accumulate all of
the relevant pieces of information on their own, a user madamche. If there are dependencies between
data elements the logical validity of the document can orlgdnfirmed after all of the processing has been
completed.

This event based approach is similar for writing, with therugquired to implement her own writer class,
inheriting fromi t k: : XMLW i t er Base<T>, and implementing the virtual function required by the SARIA

virtual int WiteFile() = 0;

In practice this means that the user needs to implement an whter from scratch for each new document,
as the framework provides minimal automation. Figlipgovides a schematic description of the information
flow in the SAX based framework.

3 DOM-based XML handling

3.1 Basic use (Tier 1)

The DOM framework is based on the use of an intermediate @it structure residing in memory which
represents the complete XML document. In our implementatiis data structure uses thiek: : DOVNode
andi t k: : DOMIext Node classes, with the root of the structure beingOdNode.

To read an XML document into memory the user does not needptement a thing. The XML document

is parsed and loaded into memory usingithk: : DOWNodeXM_Reader class, with the user only required to
set the file name and invoke thipdat e() method. Once all the data is in memory the user obtains the roo
of the tree and traverses the structure to obtain the desifecnation. This is gull based approach with
the user initiating the data collection from the data strrect

The approach to writing is similar, in this case the user a¢edctively construct the document structure in
memory. Once the structure is created they use tte: DOVNodeXM.W i t er to write the XML file. This
only requires providing the root to the writer, setting a filsme, and invoking thepdat e() method.

To the user, the main advantage of this framework as comparthé SAX one is that obtaining data values
from the tree structure is much simpler than obtaining themguthe callback mechanism. In addition the

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3387]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

3.2 Mimicking serialization (Tier 2) 4

DOM-based Reading

itk::DOMNodeXMLReader itk::DOMReader<T>

XML >/ DOM Object
Document / itk:DOMNode |

< <€

'(Object In Memory
i

DOM-based Writing

itk:DOMNodeXMLWriter itk::DOMWiriter<T>

Figure 2: New DOM-based XML reading/writing in ITK 4.2+: all information is pre-cached in the intermediate DOM
object.

resulting code can be better organized and is much morebileattadevelopers, as data acquisition can be
localized in a single method instead of distributed acrosst af callbacks.

3.2 Mimicking serialization (Tier 2)

In many cases we would like to use XML to configure our prograifisat is, we use XML to describe a
specific object instance in memory (a limited form of seriation). This results in a recurring pattern, load
the information from disk into the tree data structure amdhtbet the values for the object instance variables
by traversing the data structure.

When mimicking serialization in this manner, we can corkaik the two step process in a single class. In
our implementation this is done by the abstiiadt: : DOVReader <T> class. To implement a specific object
reader the user derives a class froni: : DOVReader <T> and implements a single function:

virtual void GenerateData(const DOMNode* inputdom const void* userdata) = O;

This function is responsible for creating the output objegihg the information in the given tree structure,
and possibly some additional information. The later seagsupplemental information in cases where the
XML does not contain all of the required data. This optionaiety used but is useful on occasion.

Object writing is similar. The user inherits from the abstia k: : DOWV i t er <T> class, and implements one
virtual function that constructs the intermediate treadtire from the object we want to serialize. Again,
the user may supply additional information if it is requifed writing the object to file. For example, if the
object contains multiple images, the user will need to $pdibé names so that the images are written to the
specific files and the XML file contains the relevant file names.

virtual void GenerateData(DOVMNode* out putdom const voi d* userdata) const = 0;

Figure2 shows a schematic description of our DOM based serializdtanmework.

This serialization mimicking mechanism alleviates thedhiee the programmer to generate correct textual
output per object type. As a result, the developer can foouh® simpler task of translating between the
tree data structure and the specific object instantiatibtimerewhen reading or writing.

3.3 Core classes

The core classes used in the implementation of the DOM frareare shown in Figur8.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3387]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

3.3 Core classes 5

Object

DomModexMLReader DOmMMode DOmModexmLWriter
DOMTextMode
DOMReader=T= DOMiriter<T=

Figure 3:Core classes for DOM-based XML reading/writing in ITK.

The main class used to construct the tree data structure nmonyesi t k: : DOVNode. Except for the root
node, each node is associated with a parent node, a setibéit&s; and a set of child nodes. The class
provides a number of methods for setting and accessing gheatme, parent, attributes and children. Each
attribute is represented usingéey, Val ue> pair, and both key and value are text strings.

One special attribute with Key="id" is internally used to slinguish a node from its siblings. This means
that the attribute “id” (all combinations of upper and lowease) should be used cautiously as we assume
that the value of this attribute is unigue among its siblifigs. nodes that share the same parent as this
node) in an XML tree structure.

Anitk::DOWNode in a DOM tree structure can be retrieved using one of theviotlg methods:

1. By using the index among its immediate siblings;
2. By using the offset with respect to an immediate sibling;

3. By using the XML tag name and an optional index (the inderdgliired when the parent has multiple
children with the same tag name);

4. By using the optional “id” attribute; and

5. By using a path or query string that concatenates one ce nfdhe above methods.

The class t k: : DOMText Node represent XML tag values that only contain one text strihgas no attributes
and children, and can only be used as a leaf node. To retrieivieka: DOMIext Node, all above-mentioned
methods except for (4) can be used. In the case of (3), théaspag name “!” is used to represent this type
of nodes.

Figure4 shows an XML description and the corresponding data stredgtumemory.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3387]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

3.3 Core classes

1 <?xml version="1.0" encoding="IS0O-8859-1"2>
2 o<registration result id="005">

3 é <description>

4 CT atlas to X-ray registration.

5 = <description>

6 o <final transform>

7 © <transform id="deformable">

8 12.30 230.14 -11.85

9 | </transform>
10 o <transform id="rigid" rotation center="0 0 20.45">
i 0 0 0 -133.01 -4.71 0.79
820 | </transform>
13 </final transform>
14 |</registration result>

| itk::DOMNode |
m_Name="registration_result"
m_ID="005"
itk:: DOMNode { itk :DOMNode |
m_Name="description" {m_Name="fina|_transform"]
itk::DOMTextNode itk::DOMNode [itk::DOMNode
m_Name="!" m_Name="transform" m_Name="transform"
m_Text="CT atlas to ..." | m_ID="deformable") m_ID="rigid"
m_Attributes["rotation_center"]="0 0 20.45"
L SOIE DI e [itk::DOMTextNode |
m_Name="1" m_Name="1"
m_Text="12.30 230.14 .." i Tex=l0 0 0-133.01 "

Figure 4:XML document and corresponding data structure in memory.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3387]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

3.4 Utility classes 7

The classest k: : DOVNodeXM_Reader andi t k: : DOVNodeXM.W i t er are used to parse an XML document
into a DOM object and to write a DOM object to an XML documentdisk. These classes should be used
when dealing with an XML document which describes severadddy related pieces of information. Once
the structure is in memory the user extracts the informaiiptraversing the tree nodes.

The classest k: : DOVReader <T> andi t k: : DOV i t er <T> are abstract classes from which the user derives
their own specific readers/writers, mimicking serialiaafde-serialization of a single object. The derived
class simply encapsulates the traversal and extractidmeaddta from the internal DOM tree structure.

Note that the classes$ k: : DOVReader <T> andi t k: : DOWN i t er <T> are derived fromt k: : Cbj ect instead
of i tk:: Processj ect, though they have similar member functions sucBeis-i | eName() , Updat e(),
and so on. This decision was made to allow reading and writiredpjects with any type, instead of limiting
ittoitk:: DataChject.

3.4 Utility classes

Reading/writing XML documents on disk and objects in memiomplves a lot of string processing and
string-based data input/output. To facilitate these djmrs, several utility classes are provided.

The classi tk:: StringTool s provides operations to read/write primitive data, vectansl ITK arrays
from/to strings. It also provides additional functions $bring manipulation such as trimming, case conver-
sion, splitting, sub-string testing, and so on. All operas in this class are static functions.

The class t k: : FancySt ri ng inherits from the C++st d: : string and adds alitk: : StringTool s oper-
ations as member functions. The streaming operaterand << have been overloaded for this class such
that it can be used as a string stream. This avoids explicithating an intermediate string stream from a
string when it needs to input/output data from/to a strimgaddition, a manipulator,t k: : Cl ear Cont ent,

is provided to clear the content of such a string.

The class tk:: Fil eTool s provides two functions to create directories or files if tlyn't exist. The
functions are based on existing ITK file manipulation todisfined inSyst enfool s. hxx), and are provided
to make sure that data files can be written to disk.

Although the above utility classes are provided to faddit®OM-based XML handling, they are useful
outside of this framework.

4 Examples

4.1 Tier 1 XML handling

In this example we demonstrate how to use the Tier 1 techr(i§aetion3.1) to read/write two user vari-
ables. The first variable is a string holding some descegtxt, and the second variable is a score of double
type. The corresponding XML document is:

<ny_settings>
<desc>
Some user notes go here
</ desc>
<score val ue="90"/>
</my_settings>

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3387]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

4.1 Tier 1 XML handling

The following code snippet shows how to read the variables fsuch an XML file:

PEETEEETLEE i i i i i

/] Tier 1 reading: first read a DOM object fromthe XM file,
/1 then extract the information of interest fromthe DOM object.
FEEEEEEEEEE i e iy

/] Step 1. read the DOM object froman XM file

i tk:: DOVNode: : Poi nt er out put DOMbj ect ;

const char* input XMLFi | eName = ...

i tk:: DOWNodeXM.Reader : : Poi nter reader = itk::DOVWNodeXM.Reader:: New();
reader->Set Fi | eNane(i nput XMLFi | eNane) ;

reader - >Updat e() ;

out put DOMbj ect = reader - >CGet Qut put () ;

/] Step 2: read the variables fromthe DOM obj ect

if (output DOMDbj ect->CGet Nane() != "ny_settings")
{
throw "Unrecogni zed input XML document!";
}
std::string desc = "";
{

i tk:: DOWNode* node = out put DOMObj ect - >Get Chi | d("desc");
desc = node->Cet Text Chi | d()->Cet Text () ;

doubl e score = 0.0;
{
i tk:: DOWNode* node = out put DOMObj ect - >Get Chi | d("score");
itk::FancyString fs = node->GetAttribute("value");
fs >> score;

}

The following code snippet shows how to write the variabteart XML file:

FEEEEEEEEE i e iy

[l Tier 1 witing: first wite the information of interest to a DOM object,
/] then wite the DOM object to an XM file.

PEETELETLEE i rr i e

/] Step 1. wite the variables to a DOM obj ect
i tk:: DOVNode: : Poi nt er i nput DOMObj ect = itk;: DOVNode: : New() ;
i nput DOMObj ect - >Set Name("ny_settings");
std::string desc = ...
{
Il create a node and add it to the DOM object
i tk:: DOWNode: : Poi nter node = itk::DOVNode: : New();
node- >Set Name("desc");
i nput DOVObj ect - >AddChi | dAt End(node);
/1 add a text child to the newy created node
node- >AddText Chi | d(desc);

doubl e score = ...

{
Il create a node and add it to the DOM object

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3387]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

4.2 Tier 2 XML handling 9

i tk:: DOWNode: : Poi nter node = itk::DOVNode: : New();
node- >Set Name("score");

i nput DOVLj ect - >AddChi | dAt End(node);

/1 add an attribute to the newy created node
itk::FancyString fs;

fs << score;

node->Set Attribute("value", fs);

}

/] Step 2: wite the DOM object to an XM file

const char* output XML.Fi | eNane = ...

i tk::DOVWNodeXM.Witer::Pointer witer = itk::DOWodeXM.Witer::New();
writer->Setlnput(inputDOMbject);

writer->SetFil eName(output XMLFi | eNane);

writer->Update();

4.2 Tier 2 XML handling

In this example we demonstrate how to use the Tier 2 techr{i§eetion3.2) to read/write a simple testing
object namedOMTest (bj ect . It contains a single member varialmeFooVal ue of type “float” as well as
the corresponding set/get methods. The XML document d@sgrthis object is:

<DOMTest Qbj ect >
<foo val ue="123. 45"/ >
</ DOMTest oj ect >

The following code example demonstrates the reading of anabbject. It first implements a DOM-based
reader that reads an XML file and produces the correspondsigbject, then uses the implemented reader
to perform object reading in a user program.

POLEEEEEEEEE L e e e i irrl
/1 File DOMIest Obj ect DOVMReader . h
PELEETEEEEET i e r i b irrl

[l The reader derives fromitk:: DOVReader<T> and, except for the common definitions
/] required by itk::Cbject, it needs only to inplenent one protected virtual function, GenerateData.

#i ncl ude <itkDOVReader. h>
#incl ude "DOMrest hj ect. h"

cl ass DOMIest Obj ect DOMReader : public itk:: DOVReader <DOMIest Qbj ect >
{

/1 Common definitions for itk::Qhject go here.

prot ect ed:
virtual void GenerateData(const DOWNodeType* inputdom const void*)
{

Il First check whether the user has supplied a correct XM. document.
if (inputdom >GetNane() != "DOMlest Ohject")

{
it kExceptionMacro("tag name DOMIest Object is expected");

}

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3387]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

4.2 Tier 2 XML handling

10

Il The user nay have already provided an instance of the test object
Il as the output. If so, retrieve this object for subsequent reading.
Qut put Type* output = this->Cet Qut put();

Il 1f the user hasn't provided an instance as the output, create one.
if (output == NULL)

{

Qut put Type: : Poi nter object = QutputType:: New();

out put = (Qut put Type*)obj ect;

t hi s->Set Qut put (output);

}

Il W will use the itk::FancyString to facilitate data reading fromstring.
itk::FancyString s;

Il Retrieve the child node with the tag nane "foo".
const DOWNodeType* node = inputdom >CGet Child("foo");
if (node == NULL)

{

i tkExceptionMacro("Child foo not found!");

}

Il Now retrieve the value of the attribute "value", which is a text string,
/1 and convert it to type float.

float fooValue = 0;

s = node->CetAttribute("value");

s >> fooVal ue;

/1 Finally assign the obtained value to the output object.
out put - >Set FooVal ue(fooVal ue);
}
b

LOLEEEEECEEEE e e b e e bbb rrl
/1 File main.cpp
POLEEEEECEEEE i b b it rrrl

[l This user programreads a test object froman XM file using the reader
/'l described above, and then perforns subsequent processing.

#incl ude "DOMrest Chj ect DOVReader . h"

int min(int argc, char* argv[])

{
Il Variable to store the output test object.
DOMTest Obj ect : : Poi nt er out put Obj ect ;

Il Read the object froman XM file.

const char* input XMLFi|leNane = ...

DOMTest Chj ect DOVReader : : Poi nter reader = DOMIest Obj ect DOVReader : : New() ;
reader - >Set Fi | eName(i nput XM_Fi | eNane);

reader - >Updat e() ;

out put Cbj ect = reader->Cet Qut put () ;

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3387]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

4.2 Tier 2 XML handling 11

/'l Perform subsequent processing on the output object.

The following code example demonstrates the writing of & eégect. It first implements a DOM-based
writer that accepts an input test object and writes the spomeding XML document to a disk file, then uses
the implemented writer to perform object writing in a usesgram.

POLEETEEPEEE b e i rrl
/1 File DOMIest Chj ect DOMNiter.h
LOLEEEEECEEEE e b e e bbb rrl

[l The witer derives fromitk:: DOMWNiter<T> and, except for the common definitions
/] required by itk::Cbject, it needs only to inplenent one protected virtual function, GenerateData.

#include <itkDOMWiter.h>
#incl ude "DOMrest hj ect. h"

cl ass DOMrest Chj ect DOMWiter : public itk::DOWNIter<DOMIest Qbj ect >
{

/1 Conmmon definitions for itk::(Qbject go here.

prot ect ed:
virtual void CGenerateData(DOMNodeType* outputdom const void*) const
{
Il First set the tag name for the intermediate DOM object.
out put dom >Set Name(" DOMTIest Ohj ect");

Il Retrieve the test object to be witten out.
const | nput Type* input = this->CGetlnput();

Il W will use the itk::FancyString to facilitate data witing to string.
itk::FancyString s;

Il Create a child node with the tag name "foo", and add it to the DOM object.
DOWNodePoi nter node = DOWNodeType: : New() ;

node- >Set Name("foo");

out put dom >AddChi | d(node);

Il Finally retrieve the foo value fromthe input test object, convert it
Il to a string, and set the value for the attribute "value" in the newy created
Il child node.
float fooValue = input->GetFooVal ue();
s << fooVal ue;
node->Set Attribute("value", s);
}
b

PELEETEECEEET i r i irrl
[l File main.cpp
PELEEEEEEEEE L e i e i irrl

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3387]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

4.3 Use of utility classes 12

[l This user program produces a test object, and then wite it to an
/I XML file using the witer described above.

#incl ude "DOMrest Chj ect DOMN i ter. h"

int min(int argc, char* argv[])

{
Il Generate the test object.
DOMTest Obj ect : : Poi nter i nput Qbj ect;

Il Wite the test object to an XM file.

const char* output XMLFi | eNane = ...

DOMTest Cbj ect DOMN i ter::Pointer witer = DOMIest Cbj ect DOMNiter:: New();
writer->Setlnput(inputQbject);

writer->SetFileNane(output XMLFi | eNane);

writer->Update();

return EXIT_SUCCESS,

4.3 Use of utility classes

The previous examples demonstrated some capabilitieeof th : FancyStri ng class. Here we provide
more examples to show its data 1/0 functionality:

itk::FancyString fs;

[l Wite a fundamental C data to the string.
int i =...

fs << itk::CearContent << i;

/1 Read a fundanental C data fromthe string.
fs > i;

[l Wite a vector to the string.

std::vector<float> v = ...

fs << itk::CearContent << v,

Il Read all elenents in the string to a vector.

fs > v;

/1 Read a specified nunber of elements fromthe string to a vector.
v.resize(3);

fs.ToData(v);

/I Wite an I TK array to the string.

itk::Array<double> a = ...

fs << itk::CearContent << a;

/] Read all elenents in the string to an | TK array.

fs > a;

/'l Read a specified nunber of elements fromthe string to an I TK array.
a.SetSize(5);

fs.ToData(a);

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3387]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

13

The following example demonstrates the use ©Of: : Fi | eTool s. The file to be written is located in a
directory that does not exist, and teeat eFi | ¢() function is called to create the directory as well as the
file. This pre-processing is necessary to make sure thaégqubat writing with thest d: : of st r eamwill be
successful.

[/ W want to wite sone data to this file, which is located in a directory that does
/1 not exist.
const char* fn = ...

/] Create the directory as well as the file.
itk::FileTools::CreateFile(fn);

/1 Open the file for witing.
std::ofstreamofs(fn);
if (!'ofs.is_open())

{
i tkExceptionMacro("Cannot wite file!");

}

/1 Wite the data to the file.

5 Conclusion

We have provided an overview of the DOM-based XML framewartkdduced in ITK version 4.2. This
framework provides a simpler approach to loading XML datntpreviously provided by ITK. In addition
the resulting code is often cleaner, more understandalilevelopers, and thus easier to maintain.

6 Acknowledgement

This work was supported by NLM/NIH contract HHSN2762010088B.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3387]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

14

A DOM Framework Files

The following listing shows the directories and files asatad with the framework.

<| TKDI R>\ Mbdul es\ | O XML\
i ncl ude\
i t kDOWNode. h
i t kDOWNodeXM.Reader . h
i t kDOWNodeXMLW i ter.h
i t kDOVReader . h
i t kDOVReader . hxx
i t kDOMText Node. h
itkDOWViter.h
it KDOWViter. hxx
i tkFancyString. h
i tkFancyString. hxx
itkFileTools.h
itkStringTools.h
i tkStringTool s. hxx
src\
i t kDOMNode. cxx
i t kDOMNodeXM_Reader . cxx
i t KkDOVNodeXML.W i t er. cxx
i tkFancyString. cxx
i tkStringTool s. cxx
test\
CMakelLi sts. t xt
i t kDOMTest 1. cxx
i t kDOMTest 2. cxx
i t kDOMTest 3. cxx
i t kDOMTest 4. cxx
i t kDOMTest 5. cxx
i t kDOMTest 6. cxx
i t kDOMTest 7. cxx
i t kDOMTest 8. cxx
i t kDOMTest Cbj ect . h
i t kDOMTest Cbj ect DOVReader . h
i t kDOMTest Cbj ect DOMNiter. h

<| TKDI R>\ Exanpl es\ | O XML\
CMvakelLi st s. txt
DOVFi ndDeno. cxx
i tkParticleSwar mOpti m zer DOVReader . cxx
i tkParticl eSwar nOpti m zer DOVReader . h
itkParticleSwarnOptim zer DOMN i ter. cxx
itkParticleSwarnOptinm zerDOMNiter.h
i tkParticleSwar nOpti m zer SAXReader . cxx
itkParticleSwarnOptim zer SAXReader . h
itkParticleSwarnOptim zer SAXW i ter. cxx
itkParticleSwarnOptim zer SAXWiter.h
Particl eSwar nOpti m zer ReadWi t e. cxx

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3387]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3387
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	SAX-based XML handling
	DOM-based XML handling
	Basic use (Tier 1)
	Mimicking serialization (Tier 2)
	Core classes
	Utility classes

	Examples
	Tier 1 XML handling
	Tier 2 XML handling
	Use of utility classes

	Conclusion
	Acknowledgement
	DOM Framework Files

