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Abstract

This document describes an extension of ITK to handle both primal and dual meshes simultaneously.
This paper describe in particular the data structure, an extension of itk::QuadEdgeMesh, a filter to
compute and add to the the structure the dual of an existing mesh, and an adaptor which let a down-
ward pipeline process the dual mesh as if it was a native itk::QuadEdgeMesh. The new data structure,
itk::QuadEdgeMeshWithDual, is an extension of the already existing itk::QuadEdgeMesh [2], which al-
ready included by default the due topology, to handle dual geometry as well. Two types of primal meshes
have been specifically illustrated: triangular / simplex meshes and Voronoi / Delaunay. A functor mech-
anism has been implemented to allow for different kind of computation of the dual geometry. This paper
is accompanied with the source code and examples.
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1 Surfaces

1.1 Orientable 2-Manifold Mesh: A discrete real-world object

The surfaces of real world objects are oriented 2-manifolds. Those are usually represented in computer
using meshes which are the sampled, discrete version of the underlying, supposedly continuous surface.
The definition of surface mesh is of combinatorial nature [3], that improves reasoning about data structure
like the same facet cannot appear on both sides of an edge. The surface mesh is a union of C = V ∪ E ∪ F
of three disjoint sets together with an incidence relation where V the vertices, E the edges and F the facets
of the mesh. The incident relation on C must be symmetric. No two elements from the same set V , E, F are
incident. There are four additional conditions: (1) every edge is incident to two vertices, (2) every edge is
incident to two facets, (3) for every incident pair of vertices or facets, there are exactly two edges incident
to both and (4) every vertex and every facets is incident to at least one other element. The neighbourhood
of a vertex are edges and facets which are incident to that vertex. Thus, the neighbourhood decomposes into
disjoint cycles, where each cycle is an alternating sequence of edges and facets.

A surface mesh is 2-manifold if (1) each edge is incident to only one or two facets and (2) the facets incident
to a vertex form a close or an open fan i.e. for each point on a 2-manifold there exists a neighbourhood that
is homeomorphic to the open disc. If every vertex has a closed fan, the given 2-manifold has no boundary. If
a vertex has a open fan, then edges that are incident to one facet; they are called border edges and they form
the boundary of the 2-manifold mesh. A non-manifold example would be two tetrahedra glued together at a
single vertex or common edge as shown in figure 1. A mesh is a 2-manifold if and only if the neighbourhood
of each vertex decomposes into a single cycle. The next distinction is between orientable and non-orientable
mesh. A surface mesh is oriented if each cycle around a facet is oriented and if, for each edge, the two cycles
of its two incident facets are oriented in opposite direction. A 2-manifold mesh is orientable if there exists
such an orientation. This new data structure only consider orientable 2-manifolds mesh representation with
and without boundary.

Genus is a topologically invariant property of a surface defined as the largest number of non-intersecting
closed curves that can be drawn on the surface without separating it. Also, it is a complete invariant in the
sense that, if two orientable closed surfaces have the same genus, then they must be topologically equivalent.
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1.2 Special Case A: Triangular Meshes 3

Figure 1: Examples of Meshes

The genus of a surface is related to the Euler characteristic χ. For an orientable surface such as a sphere
(genus 0) or torus (genus 1), the relationship is

χ = 2 − 2g −b (1)

With g being the genus, and b being the number of borders (for non-closed surfaces).

Given an arbitrary polygonal mesh τ of a regular region R ⊂ S of a surface S, we shall denote by F
the number of polygonal faces, by E the number of sides(edges), and by V the number of vertices of the
triangulation. Another way to compute the Euler characteristic is then

F − E + V = χ (2)

Special cases of discrete 2-manifolds of interest to us are triangular meshes and simplex meshes illustrated
in figure 2.

1.2 Special Case A: Triangular Meshes

A common representation of discrete surfaces are triangulation τ for which the surface R ⊂ S is composed
of a set of adjacent triangles Ti, i = 1, ..., n, such that

• ∪n
i=1 = Ti = R.

• If Ti ∩ Tj 6= φ, then Ti ∩ Tj is either a common edge of Ti and Tj or a common vertex of Ti and Tj.

Each triangles of a triangulation shares at least one of its edge with a neighbouring triangle. Triangles being
the simplest polygon that can represent a surface, it has been used intensively in Computer graphics and is
still ubiquitous today in surface representations and corresponding data formats.

1.3 Special Case B: Simplex Meshes

Simplex meshes are used for discrete surface representation. Simplex meshes have two main properties, (1)
each vertex is adjacent to a fixed number of neighbouring vertices: 2 for a contour (1-simplex mesh), 3 for
a surface (2-simplex mesh) and 4 for tetrahedron (3-simplex mesh, not treated here); and (2) the topology
of a 2-simplex mesh is dual of a triangulation. A k-simplex can be referred a (k+1)-connected mesh. For
instance, a segment of non-zero length is a 1-simplex, a triangle (polygon) of non-zero area is a 2-simplex
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Figure 2: Triangulation and Simplex Mesh

and a tetrahedron of non-zero volume is a 3-simplex mesh. Formally, a k-Simplex Mesh (kSM) of R3 is
defined as a pair (V (M), N(M)) [1] where:

V (M) = {Pi}, {i = 1, ...,n}, Pi ε R3 (3)

N(M) : {1, ...,n} −→ {1, ...,n}k+1

i 7−→ (N1(i),N2(i), ...,Nk+1(i))
(4)

∀i ε {1, ...,n}, ∀ j ε {1, ...,k+1}, ∀l ε {1, ...,k+1}, l 6= j
N j(i) 6= i

(5)

Nl(i) 6= N j(i) (6)

V (M) is the set of vertices of M and N(M) is the associated connectivity function. Equations (5) and (6)
present a mesh from exhibiting loops. It is important to make a distinction between the topological nature of
a mesh represented by its connectivity function N(M) and its geometric nature corresponding to the position
of its vertices V(M).

The structure of a simplex mesh is the one of a simply connected graph and does not in itself constitute a new
surface representation. The simplex mesh representation has several desirable properties that makes them
well suited for the recovery of geometric models from range data. The characteristics of simplex mesh for
discrete surfaces includes generality (represents all types of orientable surfaces regardless of their genus and
end numbers), simplicity (minimum number of vertices to represents a surface or shape) and adaptability.

2 Duality

2.1 Notion of Duality

We define A and B to be dual surface meshes i.e., B is dual of A and vice versa, if the following conditions
are satisfied.

• The number of vertices of A is the same as the number of face of B, so that they can be put into
one-to-one correspondence.

• The number of vertices of B is the same as the number of face of A, so that they can also be put into
one-to-one correspondence.
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(a) 2D Triangular Mesh with its Dual

(b) 2D Quad Mesh with its Dual

Figure 3: Examples of Dual Meshes. (We also sampled the border points.)

• Each pair of vertices of A that map to adjacent faces in B is joined by an edge which can be put
into correspondence with the common edge of the associated pair of faces of B. The edges that
join adjacent vertices of B can be put into the same correspondence with the common edges of the
associated pairs of elements of A.

Figure 3 illustrates the duality of meshes. Each boundary edge of a face in mesh A is put into correspondence
with a half-open edge in mesh B which starts at the corner corresponding to that face in A as shown in
figure 3.

2.2 Triangulation - Simplex Duality

One of the most interesting way of considering simplex meshes is through duality of triangulations. The
structure of a k-simplex mesh is indeed closely related to the structure of a k-triangulation. A k-triangulation
of Rd is composed of p-simplices ( 1≤ p≤ k ) which are the p-faces of the triangulation. We define a p-face
of a k-simplex mesh as being the dual of a (k− p) simplices of a k-triangulation. For instance, a 1-face of a
2-simplex mesh is an edge and a 2-face of a 2-simplex mesh is polygon. In general, a p-face of a k-simplex
mesh is a (p− 1)-simplex mesh and is, therefore, made of q-faces (q < p). A Simplex mesh is said to be
regular if all p-faces have the same number of vertices.

Simplex meshes are dual of triangulations. Thus, their connectivity functions N(M) are mapped by an home-
omorphism. Simplex meshes are topologically equivalent to triangulations but not geometrically equivalent.
We can define a topological transformation that associates a k-simplex mesh to a k-triangulation. This trans-
formation is pictured in figure 4 and considers differently the vertices and edges located at the boundary of
the triangulation from those located inside.
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Figure 4: a) A 1-Simplex mesh and its dual; b) A 2-Simplex mesh and its dual triangulation; c) same as (b).
The dual of the triangulation boundary is considered to extract the simplex mesh.

2.3 Delaunay - Voronoi Duality

Taking a set of point P in R3, the Delaunay triangulation of P is a specific triangulation of P that respects
the Delaunay criterion stating that no point of P should be inside of the circumference circle of any triangle
of the triangulation of P . Taking a set of point P in R3, the Voronoi diagram (or tesselation) is the partition
of R3 into n polyhedral regions such as each region T has a set of points in R3 which are closer to T than to
any other region.
The Voronoi diagram is the dual of the Delaunay triangulation, and the Delaunay triangulation is the dual
structure of the Voronoi diagram. By dual, we mean to draw a line segment between two Voronoi vertices
if their Voronoi polygons have a common edge, or in more mathematical terminology: there is a natural
bijection between the two which reverses the face inclusions. The duality between Delaunay triangulations
and Voronoi diagram is geometric because it depends on the position of its vertices.

3 Implement Duality in ITK

3.1 Existing Data Structure for Meshes in ITK

The QuadEdgeMesh data structure in itk, as depicted in figure 5, can handle discrete 2-manifold surfaces. It
actually store the geometry and both primal and dual topology. It has a constant complexity local accesses
an modifications. The QuadEdgeMesh data structure is a 3 layers structure in which the bottom layer is
called QuadEdge (QE) layer that represents the topology, the intermediate layer is called QE Geometric
(QEGeom) layer that linking topology and geometry and finally the upper layer is native to ITK called ITK
layer. The QE data structure is presented in detail in [2]. For each edge, there are 4 QEs in the structure
as illustrated in figure 5(b). It contains two primal QEs and two dual QEs. For the sake of simplicity,
we only draw connection for one point and one face from QE to QEGeom and QEGeom to ITK layer as
shown in figure 5(b), conversely both points and faces are equally linked in the data structure. This data
structure only need three operators as Rot, Onext and Splice to implement all other modifications (Euler
operator) and accessibility of the mesh. Currently, QuadEdgeMesh data structure have topological duality
but lack geometrical duality as represent in table 1. There are only few filters available in ITK that transform
triangular mesh to simplex mesh but it is specific not generic to duality. Additionally, in many cases it is of
much interest to have the both representation of a discrete surface directly integrated in the structure. Our
contribution includes an extension of data structure that contain both primal and dual mesh simultaneously,
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(a) QuadEdgeMesh structure (b) QuadEdge structure

Figure 5: Existing data structures

Table 1: QuadEdgeMesh Data Structure
Primal Dual

Geometry Yes No
Topology Yes Yes

a filter that transform primal mesh to primal/dual mesh just using single data structure and an adaptor for
displaying dual mesh.

3.2 Extension in data structure, QuadEdgeMeshWithDual data structure

We create a new class itk::QuadEdgeMeshWithDual derived from itk::QuadEdgeMesh. This class now
stores both primal and dual mesh simultaneously. The new design of QuadEdgeMeshWithDual data structure
is contained double reference i.e., one for primal point to dual cell and one for primal cell to dual point as
depicted in figure 6(a). For the sake of simplicity, we only draw connection from QE layer to QEGeom
layer and QEGeom layer to ITK layer for one point and one face instead of both points and both faces
as shown in figure 6(a). The primal and dual overlapping structures of connections at QEGeom layer is
shown in figure 6(b). Furthermore, this class contains three new containers; DualPointsContainer for dual
points, DualCellsContainer for dual cells and DualEdgeCellsContainer for boundary edges and three new
functions; AddDualPoint for adding dual point, AddDualFace for dual cells (polygon) and AddDualEdge
for boundary edges.

In order to keep the primal-dual references in a single data structure, we have two design options. In first
design, we use to maintain two look up tables; one table for storing references of primal cell to dual point
and and second table for primal point to dual cell. The advantage of this approach is backward compatibility
of code and test cases. The bad side of this design is to maintain these tables that having the complexity
nlog(n) causing severe degradation of performance in case of large mesh. In second design, we modify the
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(a) QuadEdgeMeshWithDual’s layers (b) QEGeom Layer of QuadEdgeMeshWithDual

Figure 6: QuadEdgeMeshWithDual data structure

Table 2: Summaries of changes in new data structure
Old Data Structure New Data Structure

Changes OriginRef Type Point ID Pair < Point,Cell >
Cell ID Pair <Cell,Point >

Additions Dual Containers
-

DualPointsContainer
DualCellsContainer

DualEdgeCellsContainer
Not yet implemented Dual Data Containers - -

existing data structure by adding two reference pair; primal point to dual cell and primal cell to dual point
as shown below. With this design, no look up table is required to maintain the primal and dual references.
So it is very efficient approach but not compatible with respect to previous code and test cases.

typedef GeometricalQuadEdge<
std::pair<PointIdentifier, CellIdentifier>,
std::pair<CellIdentifier, PointIdentifier>,
PrimalDataType,
DualDataType
> QEPrimal;

A summaries of changes in new data structure can be depicted in Table 2

3.3 Primal to primal/dual filter

In order to transform primal mesh into dual mesh, we also create a new filter called
itk::QuadEdgeMeshToQuadEdgeMeshWithDualFilter. This filter is templated with QuadEdgeMeshWithD-
ual data structure. This filter generate dual mesh from primal mesh in three phases; first phase is computing
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dual point from primal cells, second phase is computing dual cells from primal points, and in last phase,
primal borders edges are used to generate dual border cell.

We also implement a new adaptor for connecting the dual mesh natively to a downward pipeline.

Dual point functor

As explained before, there is no geometrical duality between the primal and the dual. Therefore any formula
that compute points that satisfy the criteria of duality detailed in section 2.1 can be use. Not to restrict
ourselves to a single option that may limit the application of the filter, a functor is used to compute the dual
point. Depending on the case faced, the user is able to choose from the already two existing dual point func-
tor, or use his own functor. Except from the classic ITK macro, typedef definition and constructor/destructor,
the functor has only one method where the process is done.

template< class TInputMesh, class TOutputMesh=TInputMesh>
class DualPointFunctor
{
typedef typename TInputMesh::CellsContainer CellsContainer;
typedef typename CellsContainer::ConstIterator CellIterator;
...
inline OutputPointType
operator() ( const TInputMesh* primalMesh, CellIterator cellIterator )
{...}

};

Barycentre By default, the barycentre of each face is used to compute the location of the dual point. It has
the advantage to be relatively straightforward to compute, to compute a dual point which is always located
within the face and to work with any kind of face. The following equation is used to compute the centre

M =
P1 + P2 + ... + Pn

n
(7)

where P1, P2, ..., Pn are the points retrieve from the current cell.

Circumcentre The circumcentre is a particular dual point of triangle mesh. It is the centre of the circum-
ference circle of a triangle and is determine by the crossing point of the perpendicular bisectors. As such, it
is not always within the face, and more costly to compute. The interest of this is in the case of the Delaunay
triangulation in order to obtain its dual, the corresponding Voronoi tesselation. The following equation is
used to compute the centre

M = P1 +
|P3−P1|2 [(P2−P1)× (P3−P1)]× (P2−P1) + |P2−P1|2 [(P3−P1)× (P2−P1)]× (P3−P1)

2 |(P2−P1)× (P3−P1)|2
(8)

where P1, P2, P3 are the points retrieved from the current triangle, and × the cross product. In order to
simplify the calculus and avoid the use of square roots the edge length are squared and the coordinates of
all the point relative to the first point P1 are used. Due to the floating-point errors such solution may be
unstable in the case of the denominator is close to 0. To prevent such case, the exact geometric predicate
implemented for ITK [4] is use for the cross product calculation.
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(a) Dual without dual edge point (b) Dual with dual edge point (c) Dual with dual edge point border

Figure 7: Dual borders management options

Dual borders calculation

As shown in figure 3, the dual of a primal mesh that contain a border is not a closed mesh. The dual edge
point obtain from the primal border are not included into any faces of the dual. This representation may be
problematic to some other process which may not take into account the EdgeContainer that store the edges
in the QuadEdgeMesh structure, and therefore discard edges that are not part of any face (e.i. Mesh writting
filter). If the dual edge point are not compute, the effect still occur but is less important that in the previous
case. Another option is to create a border by connecting the dual edge point, however this solution may
lead to some flipped triangles in specific configuration. The SetBorders() methods allow the user to decide
how the filter should manage the borders (Fig. 7). By default the filter will compute the dual edge point and
create a border to the dual mesh.

4 Validation

4.1 Test on planer triangular to simplex mesh with and without holes

We create a square triangulated (primal) mesh as shown in figure 8(a). Green color represents primal points
and cells. From this primal mesh, we would try to generate dual mesh. First, we generate dual points us-
ing the BarycentreDualPointFunctor on the primal cells as shown in figure 8(b) with red points. We add
these dual points in m DualPointsContainer of itk::QuadEdgeMeshWithDual by using AddDualPoint().
Second, we iterate around each primal point to form dual cells and add dual cell in m DualCellsContainer
of itk::QuadEdgeMeshWithDual by using AddDualFace(). By doing this we generate all dual cells except
boundary cells. Dual cell are represented by red color in figure 8(b).
In order to tackle borders, first we get boundary edges of primal mesh. Select one boundary edge
from list; create a new point (dual) in the middle of edge and add in m DualPointsContainer of
itk::QuadEdgeMeshWithDual by using AddDualPoint(...). In figure 8(c), red points on border lines rep-
resent boundary points of dual mesh. Then, find the dual point associated with the face on the left and make
an edge between these two dual points. Now iterate along left triangle to form dual cell and add this dual cell
into m DualCellsContainer of itk::QuadEdgeMeshWithDual by using AddDualFace(). In figure 8(c), red
cells represent dual cells. The final dual mesh generated from primal mesh is shown in following figure 8(d).
For testing this data structure and filter, we deleted one primal edge and re-run the whole code for getting
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(a) Primal mesh (b) Primal mesh with inner dual cells

(c) Primal and dual mesh (d) Dual mesh

Figure 8: Primal to dual mesh
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(a) Primal mesh with inside hole (b) Primal with dual mesh (c) Dual mesh with inside hole

Figure 9: Primal to dual mesh with inside hole

dual mesh. The snapshot of re-run is shown in figure 9.

4.2 Test with Delaunay to Voronoi

Using the PointSetToDelaunayTriangulationFilter [5], we tested this data structure on Delaunay mesh to
Voronoi diagram. We input a planer Delaunay mesh into new data structure as shown in figure 10(a) and
generate the corresponding Voronoi diagram by using QuadEdgeMeshToQuadEdgeMeshWithDualFilter and
the CircumcentreDualPointFunctor as shown in figure 10(b). Later, the Voronoi diagram is shown in fig-
ure 10(c) using new adaptor itk::QuadEdgeMeshWithDualAdaptor.

4.3 Test on non planar mesh

We perform last test on non-planer mesh. A spherical triangulation mesh can be seen in figure 11(a),
generated simplex (dual) mesh along with triangulation (primal) mesh can be seen in figure 11(b) and finally,
simplex (dual) mesh generated with new adaptor can be seen in figure 11(c).

(a) Delaunay Mesh (b) Delaunay and Voronoi Mesh (c) Voronoi Mesh

Figure 10: Delaunay to Voronoi Mesh
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5 Usage

An example SimplexMesh.cxx is provided with the sources and is used for the tests. The fil-
ter QuadEdgeMeshToQuadEdgeMeshWithDualFilter is templated on float and 3 dimensions
itk::QuadEdgeMeshWithDual.

// Typedef definition
typedef itk::QuadEdgeMeshWithDual< float, 3 > MeshType;
typedef itk::QuadEdgeMeshToQuadEdgeMeshWithDualFilter< MeshType >

FillDualFilterType;
typedef itk::QuadEdgeMeshWithDualAdaptor< MeshType > AdaptorType;

typedef itk::VTKPolyDataWriter< MeshType > MeshWriterType;
typedef itk::VTKPolyDataWriter< AdaptorType > DualMeshWriterType;

// Create primal mesh
MeshType::Pointer myPrimalMesh = MeshType::New();
CreateSquareTriangularMesh< MeshType >( myPrimalMesh );

// Create dual mesh
FillDualFilterType::Pointer fillDual = FillDualFilterType::New();
fillDual->SetInput( myPrimalMesh );
fillDual->Update();

AdaptorType* adaptor = new AdaptorType();
adaptor->SetInput( fillDual->GetOutput() );

// Write dual mesh

(a) Non-Planer Triangulation Mesh (b) Non-Planer Triangulation and Sim-
plex Mesh

(c) Non-Planer Simplex Mesh

Figure 11: Non-Planer Mesh containing (Triangulation and Simplex Mesh)
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DualMeshWriterType::Pointer writer = DualMeshWriterType::New();
writer->SetInput( adaptor );
writer->SetFileName( "TestSquareTriangularSimplexMesh.vtk" );
writer->Write();
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