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Abstract

Nonrigid image registration is an important, but resouremdnding and time-consuming task in medical
image analysis. This limits its application in time-créticclinical routines. In this report we explore
acceleration of two time-consuming parts of a registratityorithm by means of parallel processing
using the GPU. We built upon the OpenCL-based GPU image psougframework of the recent ITK4
release, and implemented Gaussian multi-resolutioresfieg and a general resampling framework. We
evaluated the performance gain on two multi-core machinés MVidia GPUs, and compared to an
existing ITK4 CPU implementation. A speedup factor~of2-4 was realized for the multi-resolution
strategies and a speedup factorof0-46 was achieved for resampling, for larger image&@ voxels).
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1 Introduction

Image registration is the process of aligning images, and can be defineegp8raization problem:
ﬁ:argrrdinC(IF,IM;p), 1)

with Ig andly the d-dimensional fixed and moving image, respectively, prile vector of parameters of
sizeN that model the transformatioh. The cost functior” consists of a similarity measus|g, Iyv; W) that
defines the quality of alignment. Examples are the mean square differei&i®)(Mormalised correlation
(NC), and mutual information (MI) measure. Image registration is usually dddzkin a multi-resolution
framework, and after the optimization procedutghas finished a resampling of the moving image is usually
desired to generate the registration regu(fT ).

Currently existing nonrigid image registration methods have poor computapenrmance. The poor
computational performance is in contrast with the great demand for imagsragion in several time-
critical clinical applications. Compensation of this motion needs to be online, ia&fdw seconds, but is
currently unavailable.

In this document we describe GPU-based solutions that address ttimmeuof two parts of the registration
framework: the Gaussian multi-resolution framework and the resamplingWarke To develop GPU ac-
celeration of these two image registration steps, the open standard Op@&p€h Computing Language)
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Figure 1: Two multi-resolution strategies using a Gaussian pyramid 8.0,4.0,2.0 voxels). The first
row shows multi-resolution with down-samplingixedRecursivelmagePyramid ), the second row with-
out (FixedSmoothingimagePyramid ). Note that in the first row, for each dimension, the image size is
halved every resolution, but that the voxel size increases with a facsorzhysically the images are of the
same size every resolution.

was chosen because of its wide applicability on graphical cards (InteD Aavid NVIDIA). The Gaussian

pyramid implementation acted as a learning example to OpenCL, since it mostlytsafsgaussian blur-

ring, which is a straightforward filtering technique comparing to resamplihgs Work is addressed in the
context of the open source registration softwaastix

The remainder of the paper is organized as follows. We first provide uhetal on the pyramids and
resampling step in Sectigh In addition, the rationale for the focus on these two components is given in
Section3. Then, the OpenCL architecture and the ITK4 GPU acceleration frarkés/visited in Section

4. Section5 gives details on the GPU programming designs. The experiment results aliiimages are
given in Sectior6, and Sectior? is the conclusion.

2 Methods

It is common to start the registration proce$kusing images that have lower complexity, e.g., images that
are smoothed and optionally downsampled. This increases the chancee$sul registration. After com-
putation of these lower complexity images, the core of the registration is stagteBguation {) is solved

by some optimization scheme (usually a gradient descent like scheme). Atdlof this optimization the
resulting image is computed, using what is called a resampling step.

2.1 Multi-resolution: Gaussian image pyramids
There are several ways of computing the lower complexity images. A sdriesages with increasing

amount of smoothing is called a scale space. If the images are not only sihdadih@lso downsampled,
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2.2 Image resampling 4

the data is not only less complex, but trmounf data is actually reduced. Several scale spaces or pyramids
are found in the literature, amongst others Gaussian and Laplacian pgranaighological scale space, and
spline and wavelet pyramids. The Gaussian pyramid is by far the most commadnrdmage registration,
and the computation of this pyramid we target to accelerate. Figsinews the Gaussian pyramid with and
without downsampling. Irelastix ~ we have three kinds of pyramids:

Gaussian pyramid: (FixedRecursivelmagePyramid and MovingRecursivelmagePyramid ) Applies
smoothing and down-sampling.

Gaussian scale spacefFixedSmoothinglmagePyramid andMovingSmoothingimagePyramid ) Applies
smoothing andho down-sampling.

Shrinking pyramid: (FixedShrinkinglmagePyramid and MovingShrinkinglmagePyramid ) Applies
no smoothing, but only down-sampling.

2.2 Image resampling

Resampling is the process of computing the vaju@ (X)) for every voxelx inside some domain. Usually,

the fixed image domaiQr is chosen, meaning that the computational complexity is linearly dependent
on the number of voxels in the fixed image. The procedure is simple: 1) loapatiwoxelsx € Qg, 2)
compute its mapped positign= T (X), 3) sincey is generally a non-voxel position, intensity interpolation

of the moving image & is needed, and 4) fill in this value &in the output image.

Notice from above that the procedure is dependent on a choice of thedlater and the transform. Several
methods for interpolation exist, varying in quality and speed. Examples afalae inelastix  are nearest
neighbor, linear and B-spline interpolation. Nearest neighbor interpoletihe most simple technique, low
in quality, requiring little resources. The intensity of the voxel nearest tawi is returned. The B-spline
interpolation quality and complexity depends on its order: 0 order equalssierighbor, 1-st order equals
linear interpolation, and higher order generally gives better quality. Tdieehthe order, the higher the
computational complexity. For resampling usually an order of 3 is used.eTdreralso many flavors of
transformations. The ones availableeiastix ~ in order of increasing flexibility, are the translation, the
rigid, the similarity, the affine, the nonrigid B-spline and the nonrigid thin-plateis-like transformations.

3 Preliminaries

3.1 Project focus

In this project we focus on accelerating the image registration procequneehns of parallelization of
certain components, exploiting the GPU. As this is our first encounter with @&gramming we identified
two independent components that are time-consuming and allow for parallghenGaussian pyramids
and the resampling step. Both components are intrinsically parallellizable: dabes@n filtering relies on
a line-by-line causal and anti-causal filtering, where all image scan lmede independently processed;
The resampling step requires for every voxel the same independaatiopgtransformation followed by
interpolation). The Gaussian filtering does consume some time, but not rdatiamad is a good starting
point to learn GPU programming. Depending on the input images sizes,draratfons and interpolation
the resampling part can take a considerable time of the total registrationderitaages, sometimes even
dominating the runtime. In this project we did not focus on the core of thetratisn algorithm.
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3.2 elastix ,ITK and CMake 5

We aim for high quality software that is portable, open source, with the sedarated into the distinct
components for maintainability.

3.2 elastix ,ITK and CMake

Parallelization is performed in the context of the image registration softwaltedelastix  [7], available

at http://elastix.isi.uu.nl . The software is distributed as open source via periodic software esleas
under a BSD license, which means that it can be used by other ressaanidendustry for free, without any
restrictions. The software consists of a collection of algorithms that are caiymased to solve (medical)
image registration problems. The modular desigrlastix  allows the user to quickly configure, test,
and compare different registration methods for a specific application. xr@nd-line interface enables
automated processing of large numbers of data sets, by means of scripting.

elastix  is based on the open source Insight Segmentation and Registration ToIKRI{ 6] available at
www.itk.org . This library contains a lot of image processing functionality, and deliaersxtremely well
tested coding framework. It is implemented in C++, nightly tested, has a rigawllaboration process,
and works on many platforms and compilers. The use of the ITKastix implies that the low-level
functionality (image classes, memory allocation, etc.) is thoroughly tested. algtall image formats
supported by the ITK are supported &lgstix  as well. elastix  can be compiled on multiple operating
systems (Windows, Linux, Mac OS X), using various compilers (MS Visuatli®, GCC), and supports
both 32 and 64 bit systems.

Bothelastix and ITK employ the CMake build systeB}] This amongst others allows easy incorporation
of external components on all the supported platforms, such as the Qfibrety.

The Kitware Wiki [2] provides information to understand the outline of the GPU acceleration Wwarke
Read more about OpenCL fatp://www.khronos.org/opencl/

3.3 GPU programming platform

There are two major programming frameworks for GPU computing, i.e. OpemdLCUDA, which have
been competing in the developer community for the past few years. Untinthec€UDA has attracted
most of the attention from developers, especially in the high performamoputing realm. However, the
OpenCL software has now matured to the point where developers arg takatond look.

Both OpenCL and CUDA provide a general-purpose model for data/esii@lism, but only OpenCL pro-
vides an open, industry-standard framework. As such, it has gatrsempport from nearly all processor
manufacturers including AMD, Intel, IBM and NVIDIA, as well as otherattierve the mobile and embed-
ded computing markets. As a result, applications developed in OpenCLwaneantable across a variety of
GPUs and CPUs.

In this project we decided to adopt OpenCL for algorithm implementation foréasons: i) OpenCL so-
lutions are independent of the GPU hardware vendor available eladtie  -user site, thereby broadening
the applicability of this work; ii) Our image registration packaggstix  is largely based on the Insight
Toolkit (ITK) [ 6], who recently adopted OpenCL.
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4 GPU programming with OpenCL

4.1 GPUs

Multi-core computers and hyper-threading technology have enablectctieéegation of a wide variety of
computationally intensive applications. Nowadays, another type of haedpramises even higher com-
putational performance: the graphics processing unit (GPU). Originabyl to accelerate the building of
images in a frame buffer intended for output to a display, GPUs are incghagapplied to scientific cal-
culations. Unlike a traditional CPU, which includes no more than a few carpspgrammable GPU has
a highly parallel structure, as well as dedicated, high-speed memorymBhiss them more effective than
general purpose CPUs for algorithms where processing of largesbtdalata is done in parallel.

The increasing computing power of GPUs gives them considerably hjgget computing power than
CPUs. For example, NVIDIAs GTX280 GPU provide 933 Gflop/s with 24k BIcores, the GeForce GTX
680 provides 1581 Gflop/s with 1536 SIMD cores while Intels Xeon pismex5675 (3.06GHz 6-cores)
reaches 144 Gflop/s. Intels next generation of graphics procesgbssipport more than 900 Gflop/s and
AMDs latest GPU HD7970 provides 3788 Gflop/s 2048 SIMD cores.

Writing parallel programs to take full advantage of this GPU power is still a badlenge. The execution
time of an application is sometimes dominated by the latency of memory instructions. Opgimsage of
memory accesses, memory hierarchy, threads and clearly understaadog features of the underlying
architecture could improve application performance.

4.2 OpenCL

The OpenCL C programming languadwty://www.khronos.org/opencl/ ) is used to create programs
that describe data-parallel kernels and tasks that can be executet: @r more heterogeneous devices
such as CPUs, GPUs, FPGAs and potentially other devices developedfirittee An OpenCL program
is similar to a dynamic library, and an OpenCL kernel is similar to an exporteztibumfrom the dynamic
library. Applications cannot call an OpenCL kernel directly, but instgaeue the execution of the kernel
to a command-queue created for a device. The kernel is executedhemyoasly with the application code
running on the host CPU. OpenCL is based on the ISO/IEC 9899:1999g04dger specification (referred
to in short as C99) with some restrictions and specific extensions to the mfargparallelism. There is
a standard defined for the C++ Bindings but this is only to wrap the OpenZICAPI in classes. Note
that C++ on the kernels level is not supported by the standard, positiggtiens on the implementation of
kernels.

OpenCL is an open standard and was initially developed by Apple Inc., wiatds trademark rights,
and refined into an initial proposal in collaboration with technical teams at ANDI, Intel, and NVidia.
OpenCL is maintained by the non-profit technology consortium Khronasi@r The latest OpenCL 1.2
specification has been released November 2011, the updated Openg€jetification revision 19, been
released November 14, 2012.

Availability

It is possible to install several OpenCL implementatigoiatformg at the same system, to develop against
any one of them, and then choose at run time which devices from which rptatfio use. There are five
OpenCL implementations available at this time: 1) AMD (supports both CPUs arid &MUSs), 2) Apple
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(supports both CPU and GPU), 3) Intel (supports Intel CPUs and GRté$s HD Graphics 4000/2500),
4) NVidia (supports only GPUs), 5) IBM (supports CPUs, IBM’s Powescessor). Our implementation
targets the first four systems.

The OpenCL Architecture

The OpenCL architecture has a strict specification and uses a hiedrigyr main ingredientsniodels:

Platform model: Defines the relationship between thest and thedevice An OpenCL application runs
on a host (CPU) and submits commands from the host to execute computatitms processing
elements within a device (GPU or CPU). Examples of available platforms aile Nitelia, AMD,
and within these platforms the availaldlevices NVidia with GeForce GTX 260, Quadro FX 1800;
AMD with Radeon HD6630M, HD7970 or the AMD Phenom Il x4 CPU. Theusr application
decides which device to use as an accelerator.

Execution model: Defines a flexible execution model that incorporates both task and daibepsm
which are coordinated vieommand queues The command queues provide a general way of spec-
ifying relationships between tasks, ensuring that tasks are executedenar out-of-order. Using
this model the OpenCL application gets configured on the host and it is itesirbiow kernels are
executed on the device. This includes setting up an OpenCL context ongh&ohthe execution of
the kernels, sets an memory objects visible to the host and the devices fimed decommand queue
(in-order execution, out-of-order execution) to coordinate the di@tu

Memory model: Defines the memaory hierarchy that kernels use, regardless the actlalyimg mem-
ory architecture for the device. Four distinct memory regions exists (GMbenory, Local Mem-
ory, Constant Memory and Private Memory). Each compute device hkxbal gnemory, which is
the largest memory space available to the device, and typically resideschipfBRAM (NVidia
GeForce GTX 260 has 896MB). There is also a read-only, limited-sizetannhmemory space
(NVidia GeForce GTX 260 has 64Kb), which allows for efficient reuseead-only parameters in
a computation. Each compute unit on the device has a local memory (NVidia €&eEdiX 260 has
16Kb), which is typically on the processor die, and therefore has mudtehlmandwidth and lower
latency than global memory. Additionally, each processing element hastgrivemory, which is
typically not used directly by programmers, but is used to hold data forwadtritem that does not
fitin the processing elements registers. To achieve maximum performaneeagftication different
memories are used.

Programming model: The OpenCL execution model supports data parallel and task parakgbpnming
models. Synchronization is achieved using command queue barriers dimgjwa events.

A typical OpenCL application starts by queueing available platforms (Intel/idXAd1D), and within each
platform the available devices (GeForce GTX 260, Quadro FX 1800; ¢ke ar the application decides
which device to use as an accelerator). The platform model defines tai®mship between the host
and device. The application allocates and transfers memory from CPU to k&Ptels allocate local or
private memory. The host and OpenCL device memory models are, for thepartsindependent of each
other. The interaction occurs in one of two ways: by explicitly copying datsyanapping and unmapping
regions of a memory object. The OpenCL supports two patterns of memoegsafd/rite/Execute/Read)
and (Unmap/Execute/Map). Choosing a pattern is based on application mleedgal is to minimize
copies/allocations. If the application receives and sends buffers wifingaaddresses, choose read/writes,
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4.3 1TK4 and GPU acceleration 8

if the application processes the buffer (for example, analyze it), chmaggunmap to avoid additional
memory allocation. All this happens within the memory model. Kernels have to beileghoploaded from
binaries and subsequently set for the selected device. This happentiate and is necessary because
you may not know in advance just what sort of platform you're going tgeta In case of success, kernels
are scheduled to execute on the device. This gets controlled within thetiexewodel. Finally, hardware
thread contexts that execute the kernel must be created and mappedtdztuhardware units. This is
done using the programming model.

4.3 1TK4 and GPU acceleration

The ITK4 GPU Acceleration module wraps the OpenCL 1.1 API in an ITK4es®Pl. It takes care
about the OpenCL initialization, program compilation, and kernel executibralso provides conve-
nience classes for interfacing to ITK image classes and filtering pipelinke ascitk::GPUImage
itk:GPUImageTolmageFilter and itk::GPUInPlacelmageFilter . The ITK GPU acceleration is still
a work in progress, suggestions and patches are welcomed to make it better

To enable GPU support within ITK4 you should enablelifie USE_GPUflag during CMake configuration
of ITK. The core ITK4 OpenCL architecture (platform model, executiomeiomemory model, see Section
4.2) is presented by the following classes

e itk::GPUContextManager : Manages context and command queues.
e itk:GPUKernelManager : Load, setup, compile and run OpenCL kernels.
e itk:GPUDataManager : Provides functionalities for CPU-GPU data synchronization.

One of the core requirements of ITK is its ability to create data flow pipelinesatleatapable of ingest-
ing, processing, analyzing and streaming data. ITK is organized argatadobjects and process ob-
jects. A pipeline is a series of process objects that operate on one or morehbjietéso The data objects
“flows” along the pipeline. The core pipeline classils:GPUImage , itk::GPUImageTolmageFilter

and itk::GPUInPlacelmageFilter are responsible for combining CPU and GPU filters and efficient
CPU/GPU pipeline synchronization. The generic design of itkeGPUImageTolmageFilter allows
extending existing ITK filters for GPU implementation. ITK4 uses a commonly@ededesign pattern to
instantiate GPU filters in a program using an object factory method.

In order to make a GPU filter you have to first inherit your filter fraitk:: GPUImageTolmageFilter ,
create OpenCL kernel code and register the GPU filter in your program.

4.4 Modifications to ITK4’s OpenCL support

For this project several enhancements to ITK4’s GPU code were deede

Find OpenCL

To build ITK for your system the cross-platform, open-source buildesgsCMake 8] is used. In order to
locate OpenCL on the system (CL/cl.h, OpenCL.lib) BrelOpenCL.cmake has to be defined. Currently
the FindOpenCL module is not part of CMake’s standard distribution due to the under dawelot status.
For our work we modified an existing modulg][ The complete list of added functionality is found in
AppendixA.
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4 OPEMCL
OPENCL_C_VERSION_1 1 [
OPEMNCL_C_VERSION_1 2 ]
OPENCL_INCLUDE_DIRS C:/Program Files/NVIDIA GPU Computing Toelkit/CUDA/VS.0/include
OPEMCL_LIERARIES C:/Program Files/NVIDIA GPU Computing Teclkit/CUDAMAS.0/lib/x64/OpenCL.lib

OPENCL_MATH_DENORMS_ARE ZERO
OPENCL_MATH_SINGLE_PRECISION_CONSTANT
OPENCL_OPTIMIZATION_FAST RELAXED MATH
OPENCL_OPTIMIZATION_FINITE_ MATH_ONLY
OPENCL_OPTIMIZATION_NO_SIGNED_ZEROS
OPENCL_OPTIMIZATION_OPT DISABLE
OPENCL_OPTIMIZATION STRICT ALIASING
OPENCL_OPTIMIZATION_UNSAFE_MATH_OPTIMIZATIONS
OPENCL_PROFILING
OPENCL_USE_PLATFORM_NVIDIA
OPENCL_WARNINGS_AS_ERRORS
OPENCL_WARNINGS_DISABLE

50 e

[,C\Ilow a* b+ cto be replaced by a mad. The mad computes a * b + ¢ with reduced accuracy. L

1 3 o

Figure 2: CMake OpenCL options to control platform, math intrinsics and opttiaizaptions.

We added support for a number of build options categorized as poegsor options, options for math
intrinsics, options that control optimization and miscellaneous options. ThiglsdkeCoptions are passed
to the clBuildProgram() command in theitk::GPUKernelManager to compile OpenCL kernels. In
this way we are able to control building and optimization of an OpenCL applicatinifar to the compile
settingeCMAKE_<C,CXX> FLAGSised for C/C++. The process of configuring is illustrated in FiQuiEhese
options allow us to develop under different platforms as well as contrahzber of optimizations.

Modifications to ITK core GPU classes

For our implementation we copied a number of classes from ITK 4.1.0 and irteddsome changes. The
changes introduced to these copied classes may later be merged backTH tnaihstream. Here is a
complete list of the copied files:

itk GPUContextManager.(cxx,h) itkGPUDataManager.(Cxx, h)
itkGPUFunctorBase.h itkGPUImage. (txx,h)
itkGPUImageDataManager.(h,txx) itkGPUImageTolmageFil ter.(h,txx)
itkGPUInPlacelmageFilter.(h,txx) itk GPUKernelManager .(cxx,h)
itkGPUUnaryFunctorimageFilter.(h.hxx) itkOclUtil.(cx X,h)

The following main functionality has been added:

e Support for Intel/AMD/NVidia OpenCL platforms. We extended tile:GPUContextManager to
handle other platforms via CMake configuration.

e Possibility to Debug OpenCL kernels with Intel's OpenCL implementation. Thd BB for
OpenCL supports Microsoft Visual Studio Debugger via a plug-in intexfd his enables us to debug
into OpenCL kernels using the familiar graphical interface of the Microgsital Studio software
debugger]].

e OpenCL execution profiling. Event objects can be used to capture pgoiiiiformation that mea-
sure execution time of OpenCL commands. Profiling of OpenCL commandsecaery handy in
understanding performance bottlenecks of GPU architectures.

e CMake math intrinsics and optimization options for OpenCL compilation (See setd#hnThese
options controls the optimizations for floating-point arithmetic.

e Work-around for incorrecitk::GPUImage::Graft() implementation. The original implementation
[8] contains some logical error in one of the key ITK pipeline methods.

Latest version available at thiesight Journal http:/hdl.handle.net/10380/3393 ]
Distributed undetCreative Commons Attribution License


http://www.itk.org/Doxygen/html/classitk_1_1GPUKernelManager.html
http://www.itk.org/Doxygen/html/classitk_1_1GPUContextManager.html
http://www.itk.org/Doxygen/html/classitk_1_1GPUImage::Graft().html
http://www.insight-journal.org
http://hdl.handle.net/10380/3393
http://creativecommons.org/licenses/by/3.0/us/

4.5 OpenCL building program 10

e Some protected variables of thig::GPUImage  class have been made publicly accessible wih

methods ldexToPhysicalPoint , PhysicalPointTolndex ). These functions are needed for the
resampler to convert from index to physical world.
o itk::GPUImageTolmageFilter::GenerateData() has been modified to resemble CPU ITK

pipeline execution.

e The itk:OpenCLSize has been introduced toitk::GPUKernelManager  ::LaunchKernel()
to support configurable kernel execution logic wilobal _work _size , local _work _size and
global _work _offset

e Two new classestk:OpenCLEvent  and itk::OpenCLEventList were introduced. These event
objects are used to synchronize execution of multiple kernels, in case adijteéres multiple kernels
to be scheduled.

e The signature of thetk::GPUKernelManager  ::LaunchKernel() function was modified to return
itk::OpenCLEvent  instead of simply a booleahaunchKernel()  is basically an ITK wrap around
an OpenCL function that enqueues the kernel, but no guarantee isajeeit the order of execution.
Therefore, flavors ofaunchKernel()  were added that wait for an event list to have finished before
executing the current kernel. This is useful to support in-orderwdatof lists of kernels, which is
essential for complex OpenCL filtering operations like ftke GPUResamplelmageFilter

e We added locking mechanisms foitk::GPUDataManager ~ to prevent unnecessary updates of
CPU/GPU buffers.

e A number of modifications have been made to tlie:GPUKernelManager to improve design,
code, debugging support and integrate CMake OpenCL math and optimiagtions.

The changes, bugs and other modifications has been reported to theréiTBug tracking system, see
https:/fissues.itk.org/jira/browse/ITK

4.5 OpenCL building program

We would like to highlight a particular issue you may encounter during deivejof he final assembly code
from OpenCL kernels will be generated by the NVidia or AMD compiler at thenmatcIBuildProgram

is called. The compilation often happens from text strings constructedtainel The NVidia compiler will
cache assembly kernels filjppData/Roaming/NVIDIA/ComputeCache (Windows) or~/.nv/  (Unix), so
that after the first time the program is called the cached binary can be@sptbiling a simple kernel could
take up to 0.5 s for the first time, while loading the same kernel from cachs &ik®st nothing (10* s).
Try to avoid defining kernels that may change at runtime due to a user setth@s the image properties,
constant variables €onstant) or defines (#define). This may create unexpected perfoerbattlenecks in
your programm by triggering recompilation of the kernel every time a new inEgameters or definitions
are passed. Note that OpenCL also allows applications to create a progjach as a pre-built offline
binary. This was however not explored in this project.

5 Accelerating the two image registration components

5.1 Unify the existing Gaussian image pyramids
As described in Sectiof.1 there are three Gaussian pyramids availableldstix . Each of them has a

different way of dealing with smoothing and resizing of the data. The sd@ipyramid smoothes according
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BEas-

Figure 3: Multi-resolution pyramids with four levels. (a) The rescale ando$iiog schedule are not used;
(b) Only a smoothing schedule is used; (c) Only the rescale scheduleds (@3eBoth the rescale and
smoothing schedule are used; () Memory consumption option is used te ttreamage at level 1, while
other images have not been allocated.

to a schedule, and applies a fixed resizing derived from the smoothiegdeh The smoothing pyramid
smoothes and does not perform resizing; The shrinking pyramid dég&rform smoothing and only per-
forms resizing according to a resizing schedule. As a first step in thisgbregeunified the three Gaussian
pyramids to a single class that separately takes a smoothing schedule amd-samopling schedule. The
new ‘generic’ pyramid is implemented in C++ in ITK style in a multi-threaded fashising the CPU. We
have dubbed this class thi::GenericMultiResolutionGaussianimageFilter

The multi-resolution rescale schedule is specified in terms of shrink faaloisi¢ss) at each multi-

resolution level for each dimension. The smoothing schedule defines ttdasdadeviation of the Gaussian
kernel (in millimeters), again for each resolution level and for each dimensi®an additional feature, we
introduced an option to only compute the pyramid results for a given cugsalution level. The previous
pyramids computed the results for all levels, and stored all data in memonhyheaeing a large memory

footprint. The filter results is illustrated at Figude

This new module was tested and is already integratethétix ; it can be found in the directories

src/Components/FixedimagePyramids/FixedGenericPyram id
src/Components/MovinglmagePyramids/MovingGenericPyr amid

5.2 Gaussian pyramid GPU implementation

To implement the smoothing of images we have usedith&ecursiveGaussianimageFilter avail-
able in ITK. The filter computes an infinite impulse response convolution withppnoaimation of the
Gaussian kernel

G(xo) =+ x 2
(x;0) = 5 21Texp(—z(ﬂ). 2
So, itimplements the recursive filtering method proposed by Dedthk[4]. The filter smoothes the image
in a single, user-defined direction only. It should be called for eacletibrein a sequence to perform full
smoothing. The main control methods &etSigma() andSetDirection() ; the latter sets the direction
in which the filter is to be applied.

The filter takes an itk::Image as input, and produces a smootheitk::Image as output. The
filter is implemented as a subclass of thék:InPlacelmageFilter and thus can be executed
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Figure 4:itk::GPURecursiveGaussianimageFilter threads alignment for the output image: (a) The 2D

image for directiorx; (b) The 2D image for directiog; (c) The 3D image directior.

in place, saving memory (not the default). Therefore, for the GPU impleti@mtave derived our
itk::GPURecursiveGaussianimageFilter from itk::GPUInPlacelmageFilter to support this behav-
ior on the GPU as well.

To parallelize the work load, the image is split in several regions and eaghdthvorks on its own re-
gion. The itk::RecursiveGaussianimageFilter performs execution row-by-row for the directiaror
column-by-column for the directiopn All rows or columns can be processed independently, but columns
can only be processed when all rows have finished. Fidillestrates the process. The internal algorithm
implementation allocates an input and output buffer the size of the row or cohmdradditionally requires

a scratch buffer of the same size. The filtering kernel performs a lcangdanti-causal pass, and the result
is copied to the output. This execution model is suitable for a GPU implementatiene\saveral rows or
columns can be executed simultaneously.

To achieve maximum performance each thread uses the local GPU memooygalttihis introduces a
limitation on the input image size, since only 16kB is available (see Se4t®d)nThe maximum supported
image size is then calculated as follows: there are three floating point $(iffi@ut, scratch, output), the
maximum space per buffer is then 16kB divided by three, which equals mmaxof 1365 pixels. In other
words, the current implementation works for images of maximum size [1365] 13§1365,1365,1365].

This limitation could be avoided by changing the internal computation or by ush@y platforms with a

larger local memory (for example Intel's OpenCL implementation allows 32kB).

5.3 Image resampling

As noted in Sectior2.2, resampling is the procedure to create a new version of the (moving) image tha
is geometrically transformed and possibly has a different size and resolufm perform this operation

elastix  uses the itk::ResamplelmageFilter from the ITK. This filter resamples an existing image
through a specified transform provided wietTransform()  and interpolate via some image function
provided withSetinterpolator() . There are many different transformation classes available (translation,
rigid, affine, B-spline), as well as a number of interpolation techniques (nearest neighbor, Bspline¥.
1See the directoryTK/Modules/Core/Transform from the ITK repository for more examples
2See the directorjTK/Modules/Core/lmageFunction from the ITK repository for more examples
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Figure 5: Design for GPU Interpolators.
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itk::GPUTranslationTransformBase | itk::GPUMatrixOffsetTransformBase itk::GPUBSplineBaseTransform

Figure 6: Design for GPU transforms.

Expanding this filter for GPU implementation, a set of GPU classes have beeloded to resample images
within the ITK framework.

Currently, we implemented the following interpolators

e itk::GPUNearestNeighborinterpolatelmageFunction
e itk::GPULinearInterpolatelmageFunction
o itk::GPUBSplinelnterpolatelmageFunction

and the following transforms

itk::GPUldentity Transform
itk::GPUTranslationTransform
itk:: GPUEuler2DTransform

itk:: GPUEuler3DTransform
itk:GPUSimilarity2DTransform
itk:: GPUSimilarity3DTransform
itk:: GPUAffineTransform
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e itk::GPUBSplineTransform
e itk::GPUCompositeTransform

These are the most common choices. It is relatively easy to add implementdtathertransform compo-
nents, since base functionality is in place. Note that the identity transfornedsinshe Gaussian pyramids
when shrinking is performed through the resampler instead ofittiShrinkimageFilter (an option
in the resample filter). Several classes are provided, that cover balegriengations for the most common
usages of the transforms and interpolators:

e itk::GPUBSplineBaseTransform is a base class for thigk::GPUBSplineTransform

e itk:GPUlmageBase is the OpenCL definition of the ITK image properties suchdisction
spacing , origin , size , index _to _physical _point and physical _point _to _index . This
class also provides common coordinates transformation for OpenCL I&eidentical to the
itk::lmageBase  class.

e itk::GPUlmageFunction is OpenCL implementation oitk::ImageFunction

e itk::GPUlnterpolatorBase is a base class for all GPU interpolators.

e itk::GPUMatrixOffsetTransformBase is a base class for the following
transforms: itk::GPUEuler2DTransform , itk::GPUEuler3DTransform ,
itk: GPUSimilarity2DTransform , itk::GPUSimilarity3DTransform , and

itk:: GPUAffineTransform

e itk::GPUTransformBase is a base class for all GPU transforms.

e itk::GPUTranslationTransformBase is a base class for thigk::GPUTranslationTransform

e itk::GPUlnterpolatelmageFunction contains some attributes related to titelmage  coordi-
nate system definition.

The classestk::GPUTransformBase and itk::GPUlnterpolatorBase have been created to provide a
generic way of passing parameters to ttle GPUResamplelmageFilter from transforms and interpo-
lators with the functiorGetParametersDataManager() . They also provide access to the OpenCL code

via a virtual GetSourceCode()  function, which returns code as a string object. In addition, access to the
transformation matrixes performing conversion between pixel and plysioadinate systems is provided

by the itk::GPUlnterpolatelmageFunction with the functionGetParametersDataManager() . See
Figure5 and6 for an inheritance diagram.

In addition to the above classes, some other classes required a GPlLhvdrsioase of a B-spline in-
terpolator or transform, calculation of the B-spline coefficients of an imagegisired L0]. This action is
performed by thetk::BSplineDecompositionimageFilter . The ITK implementation of this filter does
not support multi-threading. This appeared to be a bottle-neck in the Queue and therefore an OpenCL
implementation of this class was made called ilkeGPUBSplineDecompositionimageFilter . In ad-
dition, itk::GPUCastimageFilter and itk::GPUShrinkimageFilter were made, as they were used by
the resampler.

In the ITK CPU implementation the flexibility to use any transformation in combination arith inter-
polator is achieved using classes and virtual methods. This flexibility intesdaanajor challenge when
implementing a GPU version of this filter. As mentioned earlier, OpenCL is a simp@fiatiguage speci-
fication, which does not provide any way of implementing virtuality on kerrialsrder to solve this issue,
we propose to split the final OpenCL kernel for thle:GPUResamplelmageFilter in three kernels and
use the enqueue mechanism with synchronization in combination with an intetengetiarmation field:

Initialization: ResamplelmageFilterPre is an OpenCL kernel responsible for the initialization of the
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Figure 7: Design oftk::GPUResamplelmageFilter: GPUGenerateData() . We select a chunk of the
output image, and for that chunk a series of transformafigs.. T1(To(X))) are computed and stored in
the deformation field. After these transformation kernels have finishedjpl¢image is interpolated and
the result is stored in the output image chunk. The we proceed to the na®.ch

deformation field buffer.

Transformation: ResamplelmageFilterLoop is an OpenCL kernel performing the transformation

Interpolation: ResamplelmageFilterPost is an OpenCL kernel performing the interpolatign(T (X)).

The design is illustrated in Figuig

The ResamplelmageFilterPre kernel is compiled when the resample filter is constructed. The
ResamplelmageFilterLoop kernel and theResamplelmageFilterPost kernel are compiled when
GPUResamplelmageFilter::SetTransform() and GPUResamplelmageFilter::Setinterpolator()

are called, respectively. The code needed to compile these kernels isvaetrthrough the
GetSourceCode()  functionality provided by the base classes. When a B-spline transfoBrspline in-
terpolator has been selected, we provide the additional parameterén@-amefficients) as images to the
ResamplelmageFilterLoop kernel. At the moment th6PUGenerateData() method is called, all kernels
are ready for use.

As mentioned, next to the input and output images, we introduce an intermeelcabe-typed image repre-
senting for each point the deformation (deformation field buffer). Thetimqutput and intermediate vector
image are all stored in global memory. The input and output image are stomgueately in GPU memory.
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In order to reduce memory consumption and to support larger image siges part (chunk) of the defor-
mation field is stored in memory. This chunk is reused until the full image is resdmipte performance
these chunks should be as large as the GPU can fit. This chunk-predsdunly implemented for 3D, as
this is not needed in 2D.

The GPUResamplelmageFilter::GPUGenerateData() function is mainly responsible for setting pa-
rameters to the kernels, splitting the deformation field buffer in chunks ameldsting of the kernels.
For the scheduling two dedicated clasSgenCLEvent and OpenCLEventList were developed, and the
GPUKernelManager was modified to support it.

The above described implementation of the resampling framework not orppsesingle transformations
T(x), but also any compositions of transformatiofig(... T1(To(X))). This feature is frequently used

in image registration, for example when a rigid or affine registration is pmddrprior to a nonrigid B-
spline registration. Irelastix  we always use these composed transformations, also when only a single
transformation is selected by the user. Atki:GPUCompositeTransform was created to store all GPU
transformations. ThBesamplelmageFilterLoop kernel was then modified to sequentially schedule a list
of transformations, again exploiting the event lists.

A number of issues where encountered during developments and amaeloied here.

Kernel arguments The number of function arguments used in the kernel function appeaitssl limited
in NVidia OpenCL implementation (execution problem). Therefore, we minimizedntimsber by
grouping all parameters passed to tite: GPUResamplelmageFilter kernel in a struct and set it
in constant memory. This generalizes the implementation and solved the NVid# issu

Double vs float The current design of the ITKtk::BSplineTransform does not allow to store the co-
efficients parameter asflaat type. It is hardcoded to be of tygleuble , which poses problems on
some GPUs. To overcome this problem we added an extra copy and eastiap from double to
float to theitk:: GPUBSplineTransform , by defining theitk::GPUCastimageFilter . This poses
some unnecessary overhead when using B-spline interpolators asibtras.

6 Experimental results

6.1 Experimental setup

In our experiments we have used various images with different sizes tvgeith two different computer
systems. Details of the systems are given in Tdblé\s can be seen, we have used NVidia's GTX 260
and 480 graphical cards, while currently (end 2012) the 690 geneiativailable with much more GPU
acceleration power. In addition to GPU tests. The four images were of diomsng and 3, with sizes:

a small 2D image of 256 256 which hass 10* pixels, small 3D (100« 100x 100~ 1f), medium 3D
(256 x 256 x 256~ 107) and large 3D (51 512x 256~ 10°).

To evaluate the performance and accuracy of the OpenCL implementaticcora@ared the results with
the original ITK CPU implementation. Two quality criteria were chosen. Thedye factor was used to
measure the performance gain. For evaluation of the accuracy we @saexbthmean square error (RMSE)

SWe tried to get some explanation of this problem on NVidia’s forum, progidinminimal example illustrating the prob-
lem. We did however not get a reasonable explanation, leaving us withotiddusion that this is an NVidia driver issue. See
http://forums.nvidia.com/index.php?showtopic=215769 &st=0&p=1326194&hl=clEnqueueNDRangeKernel&fromsearc h=1&#entr
Note that this issue did not occur on other OpenCL platforms.
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Table 1: Test systems details.

| System 1 System 2
(O)S) Windows 7, 64 bit Linux Ubuntu 10.04.3 LTS, 64 bit
CPU Intel Core i7, 4 cores @ 2.6 GHz Intel Xeon E5620, 8 cores @ 2.4 GHz
GPU Nvidia Geforce GTX 260 Nvidia Geforce GTX 480
Compiler MS VS2010 gcc4.4.3

OpenCL version OpenCL 1.1 CUDA 5.0, driver 306.97 NVIDIA UNIX86_64 Kernel Module 290.10

between the results of the ITK CPU implementation (which acts as a grounddndfihat of the GPU:

RMSE= \/i iiﬂcpu(xi) — IGPU(Xi))Z 3)

The test was considered to be successful if the RMSE was smaller tharirsesieold.

All timings were measured on a second run of the program, where theoprpiled GPU kernel is loaded
from cache. In the first run the GPU program is somewhat slower due twthtime compilation.

6.2 Multi-resolution: Gaussian image pyramids

Several rescale and smoothing schedules were tested on the foutslateseompared with the CPU imple-
mentation. We have used four resolution levels to generate the GaussanighyA default scaling schedule
was used, which downsizes the images by a factor of 8, 4, 2 and 1 fauheskolutions, respectively. Also
a default smoothing schedule was used witk 4,2, 1 and 0 for the four resolutions, respectively. Talles
and3 shows the timing and accuracy results for the two test systems, respectively

The accuracy as measured by the RMSE was quite small, meaning that theisgoeshlts were almost
exactly equal. We assume that the residual error is due to numericakdiffes between the CPU and the
GPU.

Moderate speedup factors in the range 2 - 4 were measured on bothsyftelarger images. Small images
are actually slower on the GPU, because of the copying overhead idvditaés could be partially hidden by
overlapping memory transfer with kernel execution, but this requiregtatians to the source code. Note
that the CPU implementation was already quite fast. Only the large image took morkstt@mprocess. For
that size of images, however, the GPU is beneficial.

Notice from the tables that when only smoothing is performed and no rescalisgeedup of 3.0 - 3.7

was obtained, but when rescaling was added the performance drupfegl- 2.0. So, most acceleration
comes from smoothing and not from the rescaling operation. Furthertig&gsn is needed to find the
bottleneck related to the resizing operation. Also note from the tables thetharftweak is to completely

skip execution when no smoothing or no resizing is needed.
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Table 2: Results of the multi-resolution pyramid filter on System 1, which hasesc@imings shown are
for all four levels in total. Failure was due to insufficient GPU memory for tlgdalata sets, and was
marker_as na.

image size CPU(s) GPU(s) ratio RMSE passed rescale smooth ik

256x256 0.005 0.070 0.1  0.0000 Yes Off Off Off
256x256 0.013 0.193 0.1  0.0003 Yes Off On Off
256x256 0.003 0.060 0.1  0.0000 Yes On Off Off
256x256 0.007 0.151 0.0 0.0003 Yes On On Off
256x256 0.006 0.140 0.0 0.0003 Yes Off On On
256x256 0.002 0.068 0.0  0.0000 Yes On Off On
256x256 0.008 0.145 0.1  0.0003 Yes On On On
100x100x100 0.017 0.030 0.6  0.0000 Yes Off Off Off
100x100x100 0.063 0.225 0.3 0.0071 Yes Off On Off
100x100x100 0.018 0.030 0.6  0.0000 Yes On Off Off
100x100x100 0.077 0.245 0.3 0.0071 Yes On On Off
100x100x100 0.065 0.229 0.3 0.0071 Yes Off On On
100x100x100 0.012 0.025 0.5 0.0000 Yes On Off On
100x100x100 0.070 0.251 0.3 0.0071 Yes On On On
256x256x256 0.271 0.221 1.2  0.0000 Yes Off Off Off
256x256x256 1.461 0.660 2.2 0.0076 Yes Off On Off
256x256x256 0.318 0.197 1.6 0.0011 Yes On Off Off
256x256x256 1.930 0.706 2.7 0.0076 Yes On On Off
256x256x256 1.537 0.531 29 0.0076 Yes Off On On
256x256x256 0.185 0.144 1.3  0.0000 Yes On Off On
256x256x256 1.801 0.643 2.8 0.0076 Yes On On On
512x512x256 1.046 na na 0.0000 No Off Off Off
512x512x256 7.145 na na  0.0000 No Off On Off
512x512x256 1.941 0.500 3.9 0.0057 Yes On Off Off
512x512x256 9.208 na na  0.0000 No On On Off
512x512x256 7.173 na na 0.0000 No Off On On
512x512x256 0.837 0.367 2.3 0.0000 Yes On Off On
512x512x256 8.342 na na 0.0000 No On On On
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6.2 Multi-resolution: Gaussian image pyramids 19

Table 3: Results of the multi-resolution pyramid filter on System 2, which hase&c@imings shown are
for all four levels in total. Due to insufficient GPU memory two test failed, befytivere rerun with the
memory conservation flag. These tests are marked with Yes*.

image size CPU(s) GPU(s) ratio RMSE passed rescale smooth ik
256x256 0.002 0.002 0.7  0.0000 Yes Off Off Off

256x256 0.005 0.007 0.7  0.0000 Yes Off On Off
256x256 0.002 0.004 0.6  0.0000 Yes On Off Off
256x256 0.005 0.011 0.5 0.0000 Yes On On Off
256x256 0.006 0.007 0.9 0.0000 Yes Off On On
256x256 0.002 0.002 1.1 0.0000 Yes On Off On
256x256 0.005 0.008 0.7  0.0000 Yes On On On
100x100x100 0.009 0.024 0.4 0.0000 Yes Off Off Off
100x100x100 0.043 0.022 2.0 0.0007 Yes Off On Off
100x100x100 0.014 0.017 0.8 0.0000 Yes On Off Off
100x100x100 0.056 0.035 1.6 0.0007 Yes On On Off
100x100x100 0.043 0.021 2.0 0.0007 Yes Off On On
100x100x100 0.006 0.010 0.6  0.0000 Yes On Off On
100x100x100 0.045 0.028 1.6  0.0007 Yes On On On
256x256x256 0.086 0.226 0.4 0.0000 Yes Off Off Off
256x256x256 0.779 0.211 3.7 0.0010 Yes Off On Off
256x256x256 0.155 0.122 1.3 0.0010 Yes On Off Off
256x256x256 0.915 0.370 25 0.0010 Yes On On Off
256x256x256 0.792 0.210 3.8 0.0010 Yes Off On On
256x256x256 0.080 0.085 0.9 0.0000 Yes On Off On
256x256x256 0.847 0.329 2.6 0.0010 Yes On On On
512x512x256 0.308 0.783 0.4 0.0000 Yes Off Off Off
512x512x256 3.611 0.384 9.4 0.0000 Yes* Off On Off
512x512x256 0.759 0.432 1.8 0.0065 Yes On Off Off
512x512x256 4.264 1.404 3.0 0.0018 Yes On On Off
512x512x256 3.532 0.383 9.2 0.0000 Yes* Off On On
512x512x256 0.279 0.305 0.9 0.0000 Yes On Off On
512x512x256 3.756 1.252 3.0 0.0004 Yes On On On
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Table 4: Results of the resampling filter on System 1, which has 4 corespigosite transform was not
used. Timings are shown in seconds.

image size CPU(s) GPU(s) ratio RMSE passed interpolator tresform

100x100x100 0.015 0.022 0.7 40.2 Yes Nearest Translation
256x256x256 0.192 0.085 2.3 28.7 Yes Nearest Translation
512x512x256 0.488 0.271 1.8 0.0 Yes Nearest Translation
100x100x100 0.019 0.023 0.8 0.1 Yes Linear Translation
256x256x256 0.292 0.085 3.4 0.1 Yes Linear Translation
512x512x256 1.277 0.259 4.9 0.2 Yes Linear Translation
100x100x100 0.293  0.133 2.2 0.1 Yes BSpline Translation
256x256x256 5.279 1.075 4.9 0.2 Yes BSpline Translation
512x512x256 23.164 5.223 4.4 0.2 Yes BSpline Translation
100x100x100 0.008 0.017 0.5 1.1 Yes Nearest Affine
256x256x256 0.131 0.077 1.7 2.5 Yes Nearest Affine
512x512x256 0.519 0.247 2.1 6.3 Yes Nearest Affine
100x100x100 0.029 0.019 1.5 0.1 Yes Linear Affine
256x256x256 0.342 0.086 4.0 0.2 Yes Linear Affine
512x512x256 1.293 0.263 4.9 0.6 Yes Linear Affine
100x100x100 0.285 0.134 2.1 0.1 Yes BSpline Affine
256x256x256 5.216 1.098 4.8 0.2 Yes BSpline Affine
512x512x256 24.147 5.130 4.7 0.7 Yes BSpline Affine
100x100x100 0.968  0.053 18.3 0.2 Yes Nearest BSpline
256x256x256 11.015 0.475 23.2 0.6 Yes Nearest BSpline
512x512x256  43.053 1.643 26.2 0.5 Yes Nearest BSpline
100x100x100 0.677  0.053 12.7 0.0 Yes Linear BSpline
256x256x256 10.980 0.490 22.4 0.0 Yes Linear BSpline
512x512x256 43.276 1.624 26.6 0.0 Yes Linear BSpline
100x100x100 0.927 0.164 5.6 0.1 Yes BSpline BSpline
256x256x256 16.017 1.473 10.9 0.2 Yes BSpline BSpline
512x512x256 65.470 6.278 10.4 0.0 Yes BSpline BSpline

6.3 Image resampling

We tested the GPU resampling filter with different combinations of interpolataigransformations. For
the B-spline interpolator and B-spline transform we have used third @uleres. Detailed results are
shown in Tableg and5 for system 1 an@, and7 for system 2. Table4 and6 show the results for a single
transformation not using thék::GPUCompositeTransform , and Table$ and7 show the results for the
composite transformations. Finally, in Figuseve show the speedup more graphically. In the figure and
in the tables sometimes the following abbreviations were used: AffiAgFanslation =T, B-spline =B,
Euler3D =E and Similarity3D =S.

The results for resampling were very close in terms of RMSE to the outpdtipeal by ITK. The differences
were due to floating point differences, but they were acceptable. Fi¢ i@plementation is particularly
beneficial on the larger images, where the algorithm performs very slew em modern systems. On
smaller images the performance gain was less dramatic, or sometimes even saxatlerior large images,
using a B-spline interpolator and transform the execution time was up to 1.5 roimtihe CPU, while with
a two generation old graphic card this was reduced to about 2 s. SygeefdLp- 46 were achieved in those
cases.
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Figure 8: Speedup factors. Left and right column show results féesys and 2, respectively. First, second
and third row show results for the nearest neighbor, linear and B-sipliegpolator, respectively. Square
brackets indicates that the composite transfitkntGPUCompositeTransform is used.
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Table 5: Results of the resampling filter on System 1, which has 4 corequigosite transform was used.
Timings are shown in seconds.

image size CPU(s) GPU(s) ratio RMSE passed interpolator tresform

100x100x100 0.01 0.02 0.4 40.2 Yes Nearest [Translation]
256x256x256 0.19 0.08 2.4 28.7 Yes Nearest [Translation]
512x512x256 0.49 0.37 1.3 0.0 Yes Nearest [Translation]
100x100x100 0.02 0.02 0.8 0.1 Yes Linear [Translation]
256x256x256 0.31 0.08 3.7 0.1 Yes Linear [Translation]
512x512x256 1.27 0.25 5.0 0.2 Yes Linear [Translation]
100x100x100 0.29 0.13 2.2 0.1 Yes BSpline [Translation]
256x256x256 5.25 1.06 4.9 0.2 Yes BSpline [Translation]
512x512x256 23.20 5.03 4.6 0.2 Yes BSpline [Translation]
100x100x100 0.01 0.02 0.5 11 Yes Nearest [Affine]
256x256x256 0.19 0.09 2.2 2.5 Yes Nearest [Affine]
512x512x256 0.51 0.29 1.8 6.3 Yes Nearest [Affine]
100x100x100 0.02 0.02 0.9 0.1 Yes Linear [Affine]
256x256x256 0.32 0.08 3.8 0.2 Yes Linear [Affine]
512x512x256 1.32 0.26 5.1 0.6 Yes Linear [Affine]
100x100x100 0.29 0.13 2.2 0.1 Yes BSpline [Affine]
256x256x256 5.20 1.10 4.7 0.2 Yes BSpline [Affine]
512x512x256 22.87 4.92 4.6 0.7 Yes BSpline [Affine]
100x100x100 0.75 0.05 13.9 0.2 Yes Nearest [BSpline]
256x256x256 10.88 0.48 22.7 0.6 Yes Nearest [BSpline]
512x512x256 44.04 1.65 26.7 0.5 Yes Nearest [BSpline]
100x100x100 0.68 0.06 12.3 0.0 Yes Linear [BSpline]
256x256x256 11.16 0.49 22.7 0.0 Yes Linear [BSpline]
512x512x256 44.93 1.63 27.6 0.0 Yes Linear [BSpline]
100x100x100 0.95 0.17 55 0.1 Yes BSpline [BSpline]
256x256x256 16.20 1.48 10.9 0.2 Yes BSpline [BSpline]
512x512x256 66.69 6.00 11.1 0.0 Yes BSpline [BSpline]
100x100x100 0.84 0.06 15.0 0.1 Yes Nearest Ao
256x256x256 11.10 0.50 22.3 0.3 Yes Nearest  AoB]
512x512x256 44.17 1.73 25.6 0.5 Yes Nearest  AoB]
100x100x100 0.68 0.06 11.8 0.0 Yes Linear Aoc[B]
256x256x256 11.24 0.50 22.3 0.0 Yes Linear AoB]
512x512x256 45.52 1.67 27.3 0.0 Yes Linear AopB]
100x100x100 0.97 0.17 5.8 0.1 Yes BSpline Ac[B]
256x256x256 16.23 151 10.8 0.2 Yes BSpline  AcB]
512x512x256 70.59 6.26 11.3 0.0 Yes BSpline  AcB]
100x100x100 0.77 0.06 13.3 0.1 Yes Nearest ToPoBoEoY
256x256x256 10.03 0.47 21.2 0.3 Yes Nearest TopoBoEoS
512x512x256 42.34 1.66 25.5 0.5 Yes Nearest TopoBoEoY
100x100x100 0.62 0.06 10.9 0.0 Yes Linear To[AoBoEoS
256x256x256 10.35 0.53 19.7 0.0 Yes Linear To[AoBoEo g
512x512x256 43.34 1.73 25.0 0.0 Yes Linear To[AoBoEo g
100x100x100 0.87 0.18 49 0.1 Yes BSpline ToAoBoEoS
256x256x256 14.97 1.70 8.8 0.1 Yes BSpline  ToAocBoEoS
512x512x256 64.94 6.66 9.7 0.0 Yes BSpline  ToAocBoEoS
Latest version available at thiesight Journal http:/hdl.handle.net/10380/3393 ]

Distributed undeCreative Commons Attribution License


http://www.insight-journal.org
http://hdl.handle.net/10380/3393
http://creativecommons.org/licenses/by/3.0/us/

6.3 Image resampling 23

Table 6: Results of the resampling filter on System 2, which has 8 corespmigosite transform was not
used. Timings are shown in seconds.

image size CPU(s) GPU(s) ratio RMSE passed interpolator tresform

100x100x100 0.01 0.00 1.0 40.2 Yes Nearest Translation
256x256x256 0.05 0.05 1.1 28.7 Yes Nearest Translation
512x512x256 0.19 0.18 1.1 0.0 Yes Nearest Translation
100x100x100 0.01 0.01 2.6 0.1 Yes Linear Translation
256x256x256 0.16 0.05 3.3 0.1 Yes Linear Translation
512x512x256 0.69 0.18 3.8 0.2 Yes Linear Translation
100x100x100 0.22 0.03 8.1 0.1 Yes BSpline Translation
256x256x256 4.09 0.43 9.6 0.2 Yes BSpline Translation
512x512x256 16.77 1.48 11.3 0.2 Yes BSpline Translation
100x100x100 0.00 0.00 0.9 1.1 Yes Nearest Affine
256x256x256 0.05 0.05 1.1 2.3 Yes Nearest Affine
512x512x256 0.20 0.18 1.1 6.5 Yes Nearest Affine
100x100x100 0.01 0.01 2.1 0.1 Yes Linear Affine
256x256x256 0.17 0.05 3.4 0.1 Yes Linear Affine
512x512x256 0.68 0.18 3.7 0.6 Yes Linear Affine
100x100x100 0.22 0.03 7.5 0.1 Yes BSpline Affine
256x256x256 3.91 na na 0.0 No BSpline Affine
512x512x256 16.92 1.57 10.8 0.7 Yes BSpline Affine
100x100x100 0.37 na na 0.0 No Nearest BSpline
256x256x256 5.74 0.13 43.1 0.6 Yes Nearest BSpline
512x512x256 21.23 0.48 43.9 0.5 Yes Nearest BSpline
100x100x100 0.38 0.01 36.4 0.0 Yes Linear BSpline
256x256x256 5.95 0.14 43.2 0.0 Yes Linear BSpline
512x512x256 22.64 0.49 46.2 0.0 Yes Linear BSpline
100x100x100 0.59 0.03 18.5 0.1 Yes BSpline BSpline
256x256x256 10.44 0.52 20.2 0.2 Yes BSpline BSpline
512x512x256 42.61 1.79 23.8 0.0 Yes BSpline BSpline

Another interesting point is that the linear interpolator showed a largeonpeaince gain than the B-spline
interpolator. This is surprising, since commonly more complex operationsngive speedup. It may
be due to the fact that the B-spline GPU implementation required additionalgastthmemory transfer
operations, or that the GPU code is suboptimal compared to the CPU cdthe, more heavily (random)
memory access required by the B-spline get penalized more by a GPU.

Profiling the resampler

The execution time was sub-divided into its parts using profiling. The mordeatetasults are given in
Table8. The B-spline interpolator and transform work with an underlying B-sptimefficient image. This
image is hard-coded on the CPU to be of tgpeble and requires converting ftmat and copying to the
GPU, taking almost 20% of the time. Execution of the kernel consumed 75% d¢iftle. This means that
when a form of memory transfer hiding is employed the run time can be retiwabsut 1.5s, which would
result in a speedup of 30 instead of 23, only a minor gain in this case.
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Table 7: Results of the resampling filter on System 2, which has 8 corequfgosite transform was used.
Timings are shown in seconds. Failure was due to exception and was raankar

image size CPU(s) GPU(s) ratio RMSE passed interpolator tresform

100x100x100 0.01 0.00 1.0 40.2 Yes Nearest [Translation]
256x256x256 0.05 0.05 1.1 28.7 Yes Nearest [Translation]
512x512x256 0.19 0.18 1.1 0.0 Yes Nearest [Translation]
100x100x100 0.01 0.01 2.6 0.1 Yes Linear [Translation]
256x256x256 0.16 0.05 3.3 0.1 Yes Linear [Translation]
512x512x256 0.68 0.19 3.7 0.2 Yes Linear [Translation]
100x100x100 0.23 0.03 8.5 0.1 Yes BSpline [Translation]
256x256x256 4.25 0.43 10.0 0.2 Yes BSpline [Translation]
512x512x256 19.79 1.47 13.5 0.2 Yes BSpline [Translation]
100x100x100 0.01 0.01 1.1 1.1 Yes Nearest [Affine]
256x256x256 0.05 0.05 1.1 2.3 Yes Nearest [Affine]
512x512x256 0.20 0.18 1.2 6.5 Yes Nearest [Affine]
100x100x100 0.01 0.01 2.0 0.1 Yes Linear [Affine]
256x256x256 0.17 0.05 3.5 0.1 Yes Linear [Affine]
512x512x256 0.69 0.18 3.8 0.6 Yes Linear [Affine]
100x100x100 0.22 0.03 7.7 0.1 Yes BSpline [Affine]
256x256x256 4.23 0.45 9.5 0.2 Yes BSpline [Affine]
512x512x256 16.98 na na 0.0 No BSpline [Affine]
100x100x100 0.39 0.01 38.1 0.4 Yes Nearest [BSpline]
256x256x256 5.92 0.14 43.5 0.6 Yes Nearest [BSpline]
512x512x256 21.39 0.48 44.3 0.5 Yes Nearest [BSpline]
100x100x100 0.38 0.01 35.2 0.0 Yes Linear [BSpline]
256x256x256 5.86 0.14 42.3 0.0 Yes Linear [BSpline]
512x512x256 22.91 0.49 46.5 0.0 Yes Linear [BSpline]
100x100x100 0.64 0.03 20.0 0.1 Yes BSpline [BSpline]
256x256x256 10.06 0.51 19.6 0.2 Yes BSpline [BSpline]
512x512x256 38.42 1.79 215 0.0 Yes BSpline [BSpline]
100x100x100 0.38 0.01 36.1 0.1 Yes Nearest Ao
256x256x256 5.84 0.14 42.3 0.0 No Nearest Ao B]
512x512x256 22.39 0.50 45.0 0.5 Yes Nearest  AoB]
100x100x100 0.38 na na 0.0 No Linear AdB]
256x256x256 6.62 na na 0.0 No Linear AdB]
512x512x256 22.17 na na 0.0 No Linear AdB]
100x100x100 0.68 0.03 19.9 0.1 Yes BSpline  AoB]
256x256x256 9.77 0.54 18.1 0.0 No BSpline AoB]
512x512x256 39.06 1.89 20.7 0.0 Yes BSpline  AcB]
100x100x100 0.33 0.01 28.5 0.1 Yes Nearest ToPoBoEoY
256x256x256 5.11 0.13 38.2 0.3 Yes Nearest ToPoBoEoY
512x512x256 20.77 na na 0.0 No Nearest ToPoBoEoY
100x100x100 0.33 na na 0.0 No Linear TJAoBoEoY
256x256x256 5.08 na na 0.0 No Linear TqJAoBoEoY
512x512x256 21.35 0.53 40.0 0.0 Yes Linear To[AoBoEo g
100x100x100 0.53 0.04 14.7 0.1 Yes BSpline  ToAocBoEoS
256x256x256 8.79 na na 0.0 No BSpline TJAoBoEoS
512x512x256 37.94 1.80 211 0.0 Yes BSpline  ToAoBoEoY
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Table 8: Detailed execution of thtx::GPUResamplelmageFilter on the 512x512x256 image using a
B-spline transform and a B-spline interpolator (both third order), otesy®. The B-spline related entries
consist of double-float casting and transfer to the GPU.

Operation Time (s) %
B-spline interpolator 0.086 4.8
B-spline transform 0.243 136
CPU— GPU copying 0.027 15
Executing OpenCL kernel 1.341 75.0
GPU— CPU copying 0.084 4.7
Other operations 0.009 0.5
Total time 1.788 100

Comparison to previous results

We compared the resampling performance gain with our previous régultfiere the resample algorithm
was implemented using CUDA. There we reported a speedup of 10 - 65 vghacbit higher that we cur-
rently achieved with OpenCL. This is mostly contributed to a special CUDA impléatien [9] used for
the B-spline computation, where th& 8rder splines are decomposed in a numbersbbrder splines, i.e.
linear interpolation. Linear interpolation is hardwired on the GPU, leading tunaiderable performance
gain. This was not implemented in OpenCL. Further comparing the two implemestatierCUDA resam-
pler only supports 3D images, using 3rd order B-spline interpolation ansgftnanation, while the OpenCL
code is much more generic, supporting several dimensions, interpolatbtsaasformations. In addition,
OpenCL runs on all kinds of GPUs, while CUDA only supports NVidia org=e detailed speed up graphs
8.

7 Conclusion and Discussion

7.1 Conclusions

We developed a generic OpenCL framework to create pyramids and resamp the GPU, exploiting the
ITK GPU acceleration design. The generic architecture and close ititagvéth ITK will easy adoption by
the medical image processing community. The decision to use OpenCL allowsrignost of the graph-
ical devices available today. The developed code is generic and alldarssen to other transformations
usage during image registration.

We obtained speedup factors of 2 - 4 for the image pyramids and 10 - #&forsampling, on larger images,
using a Geforce GTX 480 (two new generations of GPUs have sinceeshipphis shows that the GPU is
an efficient computing device for these tasks. The specific kernelsimptemented in a straightforward

manner, leaving room for performance improvement in future work. Dethilee possibilities are given

below.

In conclusion, two time consuming parts of the registration algorithm werdeaated using GPU program-
ming. The knowledge obtained in this project and the resulting OpenCL caldisigns, will be of direct
benefit in future work, where the core of the registration algorithm cantssaccelerated using the GPU.
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7.2 Limitations and future work

There are several areas in which our work can be improved and exteide subdivided them in several
categories: transfer the work to the community, performance improvemertsgcimprovements, and
miscellaneous. We detail them in the list below.

Community adoption

1.

elastix  integration. The GPU extensions are currently only initially integrateelastix

The source code is there, and many GPU tests are in place. Outside theisests itet used.
Code needs to be added that supports good user experience. Thiadates robust detection
OpenCL existence on the system, whether a suitable GPU is installed, artdringithe GPU
factories toelastix . In addition, one could think of some helper functionality that predicts if
either the CPU or the GPU will give the best performance, and substyselects the fastest
option.

. Synchronization with the ITK. During development we significantly exéehthe ITK GPU

design and fixed some bugs. These changes need to be transfarked bze ITK repository.
This process will also generate feedback, thereby improving the cededse

Optimizations

N

Find and investigate the current bottlenecks with GPU profilers.

Using specialized hardware functions, such asrthéfunctions that gives hardware access to
the operationa x b+ ¢'. Related to the CMake flaQPENCL\ OPTIMIZATION\_MAD\ ENABLE

. Investigate the usage of the different types of memory. We took a dfi@ighrd implemen-

tation approach, but these memory-related choices are known to hageaféect on perfor-
mance.

. Experiment with different setups of the warps and the local size, etc.
. Hide the memory transfer overhead. In the current design, we cematia from CPU to GPU,

perform the processing on the GPU, and copy the result back. Insgncronous implemen-
tation, the data copying can be partially hidden by already starting keraeligan on the data
that has already been copied, and proceed as data enters the GPU.

. Circumvent B-spline coefficient image overhead by enablifip  typed image on the host.
. Transfer the special B-spline interpolation CUDA cofletd OpenCL.
. In OpenCL, compilation is frequently performed at run-time. This howeneduces overhead

of the compilation at run-time, especially for more complicated and extendeglsppécode. It
is possible however to compile before run-time, which is to be investigated.

Coding improvements

1. Split ResamplelmageFilterPost kernel into two kernels: a generalrmheree specific for the
B-spline interpolator.

2. Add extrapolation support, set::ResamplelmageFilter::SetExtrapolator()

3. Improve ITK’'s CPU-GPU synchronization. It is not always needed

4. The new classestk::OpenCLEvent  and itk::OpenCLEventList have to be more deeply
integrated in the logic of the GPU processing pipeline to achieve better comeothe order of
the kernel execution.
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5. Inthe current implementation, filters use title:GPUKernelManager to start kernels by call-

ing LaunchKernel() . In OpenCL launching kernels does not necessary mean that they will be
executed immediately. Instead, the command is queued for execution. dreetée functions
OpenCLEvent::WaitForFinished() or OpenCLEventList::WaitForFinished() have to be

used more consistently. This has to be properly resolved to achievetcexexutions of ITK
OpenCL pipelines, which usually implicitly assume synchronous execution.

6. After kernel pipeline execution, the GPU memory, OpenCL kernels, ¢hiEe and other re-
sources have to be properly released or stopped, which is currertlgone. The func-
tions free(clDevices) , CIReleaseEvent() , cIReleaseKernel() , CIReleaseProgram()
clReleaseCommandQueue() , clReleaseContext() , ClReleaseMemObject() , etc, can be
used for that.

Miscellaneous

1. Add AMD graphical card experimental results.

2. We experienced some stability problems when running the code usingxallifidia OpenCL
driver. These are marked as na in the experimental results. We araradlsout its cause. It
could be that our code has some issues that were only revealed on tifscggatform, or that
current Linux NVidia OpenCL drivers are not correctly implemented. futovestigations are
needed.
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A Find OpenCL extensions

The following functionality has been added.

e Support for Intel/AMD/NVidia OpenCL platforms, and the ability to switch betw#eese platforms.
In case of an AMD or Intel platform, the CMake variald€ENCL_USE_PLATFORM_AMD_GPU_0OPU
OPENCL_USE_PLATFORM_INTEL_GPU_Cebntrols the CPU or GPU device selection.

e OpenCL Math Intrinsics options. These options control compiler behaggarding floating-point
arithmetic. These options trade off between speed and correctness.

— OPENCL_MATH_SINGLE_PRECISION_CONSTANeat double precision floating-point constant as
single precision constant.

— OPENCL_MATH_DENORMS_ARE_ZHR( option controls how single precision and double preci-
sion de-normalized numbers are handled.

e OpenCL Optimization options. These options control various sorts of optimimatidurning on
optimization makes the compiler attempt to improve the performance and/or codé thigeegpense
of compilation time and possibly the ability to debug the program.
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— OPENCL_OPTIMIZATION_OPT_DISABLEThis option disables all optimizations. The default is
optimizations are enabled.

— OPENCL_OPTIMIZATION_STRICT_ALIASING This option allows the compiler to assume the
strictest aliasing rules.

— OPENCL_OPTIMIZATION_MAD_ENABLAIlow a * b + c to be replaced by a mad. The mad com-
putes a * b + ¢ with reduced accuracy.

— OPENCL_OPTIMIZATION_NO_SIGNED_ZEROSAIlow optimizations for floating-point arithmetic
that ignore the signedness of zero.

— OPENCL_OPTIMIZATION_UNSAFE_MATH_OPTIMIZATIONSAllow optimizations for floating-
point arithmetic.

— OPENCL_OPTIMIZATION_FINITE_MATH_ONLYAllow optimizations for floating-point arithmetic
that assume that arguments and results are not NaNs or +-infinity.

— OPENCL_OPTIMIZATION_FAST_RELAXED MATBets the optimization options -cl-finite-math-
only and -cl-unsafe-math-optimizations.

e OpenCL profilingOPENCL_PROFILINGwith CL_QUEUE_PROFILING_ENABLEWiIth this option event
objects can be used to capture profiling information that measure executiooftan®mmand.

e OpenCL options to request or suppress warnings.

— OPENCL_WARNINGS_DISABLEhis option inhibit all warning messages.
— OPENCL_WARNINGS_AS_ERROR@s option make all warnings into errors.

e OpenCL options controlling the OpenCL C version.

— OPENCL_C_VERSION_1_This option determine the OpenCL C language version to use. Support
all OpenCL C programs that use the OpenCL C language 1.1 specification.

— OPENCL_C _VERSION_1 Zhis option determine the OpenCL C language version to use. Support
all OpenCL C programs that use the OpenCL C language 1.2 specification.
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