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Abstract

Nonrigid image registration is an important, but resource demanding and time-consuming task in medical
image analysis. This limits its application in time-critical clinical routines. In this report we explore
acceleration of two time-consuming parts of a registrationalgorithm by means of parallel processing
using the GPU. We built upon the OpenCL-based GPU image processing framework of the recent ITK4
release, and implemented Gaussian multi-resolution strategies and a general resampling framework. We
evaluated the performance gain on two multi-core machines with NVidia GPUs, and compared to an
existing ITK4 CPU implementation. A speedup factor of∼ 2-4 was realized for the multi-resolution
strategies and a speedup factor of∼ 10-46 was achieved for resampling, for larger images (≈ 108 voxels).
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1 Introduction

Image registration is the process of aligning images, and can be defined as an optimization problem:

µ̂µµ= argmin
µµµ

C (IF , IM;µµµ), (1)

with IF andIM thed-dimensional fixed and moving image, respectively, andµµµ the vector of parameters of
sizeN that model the transformationTTT. The cost functionC consists of a similarity measureS(IF , IM;µµµ) that
defines the quality of alignment. Examples are the mean square difference (MSD), normalised correlation
(NC), and mutual information (MI) measure. Image registration is usually embedded in a multi-resolution
framework, and after the optimization procedure (1) has finished a resampling of the moving image is usually
desired to generate the registration resultIM(TTT µ̂µµ).

Currently existing nonrigid image registration methods have poor computationalperformance. The poor
computational performance is in contrast with the great demand for image registration in several time-
critical clinical applications. Compensation of this motion needs to be online, i.e. ina few seconds, but is
currently unavailable.

In this document we describe GPU-based solutions that address the run-time of two parts of the registration
framework: the Gaussian multi-resolution framework and the resampling framework. To develop GPU ac-
celeration of these two image registration steps, the open standard OpenCL (Open Computing Language)
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(a) resolution 0 (b) resolution 1 (c) resolution 2 (d) original

(e) resolution 0,σ = 8.0 (f) resolution 1,σ = 4.0 (g) resolution 2,σ= 2.0 (h) original

Figure 1: Two multi-resolution strategies using a Gaussian pyramid (σ = 8.0,4.0,2.0 voxels). The first
row shows multi-resolution with down-sampling (FixedRecursiveImagePyramid ), the second row with-
out (FixedSmoothingImagePyramid ). Note that in the first row, for each dimension, the image size is
halved every resolution, but that the voxel size increases with a factor 2, so physically the images are of the
same size every resolution.

was chosen because of its wide applicability on graphical cards (Intel, AMD, and NVIDIA). The Gaussian
pyramid implementation acted as a learning example to OpenCL, since it mostly consists of Gaussian blur-
ring, which is a straightforward filtering technique comparing to resampling. This work is addressed in the
context of the open source registration softwareelastix .

The remainder of the paper is organized as follows. We first provide moredetail on the pyramids and
resampling step in Section2. In addition, the rationale for the focus on these two components is given in
Section3. Then, the OpenCL architecture and the ITK4 GPU acceleration framework is revisited in Section
4. Section5 gives details on the GPU programming designs. The experiment results with real images are
given in Section6, and Section7 is the conclusion.

2 Methods

It is common to start the registration process (1) using images that have lower complexity, e.g., images that
are smoothed and optionally downsampled. This increases the chance of successful registration. After com-
putation of these lower complexity images, the core of the registration is started,i.e. Equation (1) is solved
by some optimization scheme (usually a gradient descent like scheme). At the end of this optimization the
resulting image is computed, using what is called a resampling step.

2.1 Multi-resolution: Gaussian image pyramids

There are several ways of computing the lower complexity images. A series of images with increasing
amount of smoothing is called a scale space. If the images are not only smoothed, but also downsampled,
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2.2 Image resampling 4

the data is not only less complex, but theamountof data is actually reduced. Several scale spaces or pyramids
are found in the literature, amongst others Gaussian and Laplacian pyramids, morphological scale space, and
spline and wavelet pyramids. The Gaussian pyramid is by far the most common one for image registration,
and the computation of this pyramid we target to accelerate. Figure1 shows the Gaussian pyramid with and
without downsampling. Inelastix we have three kinds of pyramids:

Gaussian pyramid: (FixedRecursiveImagePyramid and MovingRecursiveImagePyramid ) Applies
smoothing and down-sampling.

Gaussian scale space:(FixedSmoothingImagePyramid andMovingSmoothingImagePyramid ) Applies
smoothing andnodown-sampling.

Shrinking pyramid: (FixedShrinkingImagePyramid and MovingShrinkingImagePyramid ) Applies
nosmoothing, but only down-sampling.

2.2 Image resampling

Resampling is the process of computing the valueIM(TTT(xxx)) for every voxelxxx inside some domain. Usually,
the fixed image domainΩF is chosen, meaning that the computational complexity is linearly dependent
on the number of voxels in the fixed image. The procedure is simple: 1) loop over all voxelsxxx ∈ ΩF , 2)
compute its mapped positionyyy= TTT(xxx), 3) sinceyyy is generally a non-voxel position, intensity interpolation
of the moving image atyyy is needed, and 4) fill in this value atxxx in the output image.

Notice from above that the procedure is dependent on a choice of the interpolator and the transform. Several
methods for interpolation exist, varying in quality and speed. Examples also available inelastix are nearest
neighbor, linear and B-spline interpolation. Nearest neighbor interpolation is the most simple technique, low
in quality, requiring little resources. The intensity of the voxel nearest in distance is returned. The B-spline
interpolation quality and complexity depends on its order: 0 order equals nearest neighbor, 1-st order equals
linear interpolation, and higher order generally gives better quality. The higher the order, the higher the
computational complexity. For resampling usually an order of 3 is used. There are also many flavors of
transformations. The ones available inelastix in order of increasing flexibility, are the translation, the
rigid, the similarity, the affine, the nonrigid B-spline and the nonrigid thin-plate-spline-like transformations.

3 Preliminaries

3.1 Project focus

In this project we focus on accelerating the image registration procedure by means of parallelization of
certain components, exploiting the GPU. As this is our first encounter with GPUprogramming we identified
two independent components that are time-consuming and allow for parallelism:the Gaussian pyramids
and the resampling step. Both components are intrinsically parallellizable: The Gaussian filtering relies on
a line-by-line causal and anti-causal filtering, where all image scan lines can be independently processed;
The resampling step requires for every voxel the same independent operation (transformation followed by
interpolation). The Gaussian filtering does consume some time, but not really alot and is a good starting
point to learn GPU programming. Depending on the input images sizes, transformations and interpolation
the resampling part can take a considerable time of the total registration for large images, sometimes even
dominating the runtime. In this project we did not focus on the core of the registration algorithm.
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3.2 elastix , ITK and CMake 5

We aim for high quality software that is portable, open source, with the codeseparated into the distinct
components for maintainability.

3.2 elastix , ITK and CMake

Parallelization is performed in the context of the image registration software, calledelastix [7], available
at http://elastix.isi.uu.nl . The software is distributed as open source via periodic software releases
under a BSD license, which means that it can be used by other researchers and industry for free, without any
restrictions. The software consists of a collection of algorithms that are commonly used to solve (medical)
image registration problems. The modular design ofelastix allows the user to quickly configure, test,
and compare different registration methods for a specific application. A command-line interface enables
automated processing of large numbers of data sets, by means of scripting.

elastix is based on the open source Insight Segmentation and Registration Toolkit (ITK) [ 6] available at
www.itk.org . This library contains a lot of image processing functionality, and deliversan extremely well
tested coding framework. It is implemented in C++, nightly tested, has a rigorous collaboration process,
and works on many platforms and compilers. The use of the ITK inelastix implies that the low-level
functionality (image classes, memory allocation, etc.) is thoroughly tested. Naturally, all image formats
supported by the ITK are supported byelastix as well. elastix can be compiled on multiple operating
systems (Windows, Linux, Mac OS X), using various compilers (MS Visual Studio, GCC), and supports
both 32 and 64 bit systems.

Both elastix and ITK employ the CMake build system[3]. This amongst others allows easy incorporation
of external components on all the supported platforms, such as the OpenCL library.

The Kitware Wiki [2] provides information to understand the outline of the GPU acceleration framework.
Read more about OpenCL athttp://www.khronos.org/opencl/ .

3.3 GPU programming platform

There are two major programming frameworks for GPU computing, i.e. OpenCLand CUDA, which have
been competing in the developer community for the past few years. Until recently, CUDA has attracted
most of the attention from developers, especially in the high performance computing realm. However, the
OpenCL software has now matured to the point where developers are taking a second look.

Both OpenCL and CUDA provide a general-purpose model for data/task parallelism, but only OpenCL pro-
vides an open, industry-standard framework. As such, it has garnered support from nearly all processor
manufacturers including AMD, Intel, IBM and NVIDIA, as well as others that serve the mobile and embed-
ded computing markets. As a result, applications developed in OpenCL are now portable across a variety of
GPUs and CPUs.

In this project we decided to adopt OpenCL for algorithm implementation for tworeasons: i) OpenCL so-
lutions are independent of the GPU hardware vendor available at theelastix -user site, thereby broadening
the applicability of this work; ii) Our image registration packageelastix is largely based on the Insight
Toolkit (ITK) [ 6], who recently adopted OpenCL.
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4 GPU programming with OpenCL

4.1 GPUs

Multi-core computers and hyper-threading technology have enabled the acceleration of a wide variety of
computationally intensive applications. Nowadays, another type of hardware promises even higher com-
putational performance: the graphics processing unit (GPU). Originallyused to accelerate the building of
images in a frame buffer intended for output to a display, GPUs are increasingly applied to scientific cal-
culations. Unlike a traditional CPU, which includes no more than a few cores,a programmable GPU has
a highly parallel structure, as well as dedicated, high-speed memory. Thismakes them more effective than
general purpose CPUs for algorithms where processing of large blocks of data is done in parallel.

The increasing computing power of GPUs gives them considerably higherpeak computing power than
CPUs. For example, NVIDIAs GTX280 GPU provide 933 Gflop/s with 240 SIMD cores, the GeForce GTX
680 provides 1581 Gflop/s with 1536 SIMD cores while Intels Xeon processor X5675 (3.06GHz 6-cores)
reaches 144 Gflop/s. Intels next generation of graphics processorswill support more than 900 Gflop/s and
AMDs latest GPU HD7970 provides 3788 Gflop/s 2048 SIMD cores.

Writing parallel programs to take full advantage of this GPU power is still a big challenge. The execution
time of an application is sometimes dominated by the latency of memory instructions. Optimizing usage of
memory accesses, memory hierarchy, threads and clearly understandingvarious features of the underlying
architecture could improve application performance.

4.2 OpenCL

The OpenCL C programming language (http://www.khronos.org/opencl/ ) is used to create programs
that describe data-parallel kernels and tasks that can be executed on one or more heterogeneous devices
such as CPUs, GPUs, FPGAs and potentially other devices developed in thefuture. An OpenCL program
is similar to a dynamic library, and an OpenCL kernel is similar to an exported function from the dynamic
library. Applications cannot call an OpenCL kernel directly, but insteadqueue the execution of the kernel
to a command-queue created for a device. The kernel is executed asynchronously with the application code
running on the host CPU. OpenCL is based on the ISO/IEC 9899:1999 C language specification (referred
to in short as C99) with some restrictions and specific extensions to the language for parallelism. There is
a standard defined for the C++ Bindings but this is only to wrap the OpenCL 1.2 C API in classes. Note
that C++ on the kernels level is not supported by the standard, posing restrictions on the implementation of
kernels.

OpenCL is an open standard and was initially developed by Apple Inc., whichholds trademark rights,
and refined into an initial proposal in collaboration with technical teams at AMD, IBM, Intel, and NVidia.
OpenCL is maintained by the non-profit technology consortium Khronos Group. The latest OpenCL 1.2
specification has been released November 2011, the updated OpenCL 1.2specification revision 19, been
released November 14, 2012.

Availability

It is possible to install several OpenCL implementations (platforms) at the same system, to develop against
any one of them, and then choose at run time which devices from which platforms to use. There are five
OpenCL implementations available at this time: 1) AMD (supports both CPUs and AMD GPUs), 2) Apple
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4.2 OpenCL 7

(supports both CPU and GPU), 3) Intel (supports Intel CPUs and GPUs, Intel HD Graphics 4000/2500),
4) NVidia (supports only GPUs), 5) IBM (supports CPUs, IBM’s Powerprocessor). Our implementation
targets the first four systems.

The OpenCL Architecture

The OpenCL architecture has a strict specification and uses a hierarchyof four main ingredients (models):

Platform model: Defines the relationship between thehost and thedevice. An OpenCL application runs
on a host (CPU) and submits commands from the host to execute computations on the processing
elements within a device (GPU or CPU). Examples of available platforms are Intel, NVidia, AMD,
and within these platforms the availabledevices: NVidia with GeForce GTX 260, Quadro FX 1800;
AMD with Radeon HD6630M, HD7970 or the AMD Phenom II x4 CPU. The user or application
decides which device to use as an accelerator.

Execution model: Defines a flexible execution model that incorporates both task and data parallelism
which are coordinated viacommand queues. The command queues provide a general way of spec-
ifying relationships between tasks, ensuring that tasks are executed in-order or out-of-order. Using
this model the OpenCL application gets configured on the host and it is instructed how kernels are
executed on the device. This includes setting up an OpenCL context on the host for the execution of
the kernels, sets an memory objects visible to the host and the devices, and defines a command queue
(in-order execution, out-of-order execution) to coordinate the execution.

Memory model: Defines the memory hierarchy that kernels use, regardless the actual underlying mem-
ory architecture for the device. Four distinct memory regions exists (Global Memory, Local Mem-
ory, Constant Memory and Private Memory). Each compute device has a global memory, which is
the largest memory space available to the device, and typically resides in off-chip DRAM (NVidia
GeForce GTX 260 has 896MB). There is also a read-only, limited-size constant memory space
(NVidia GeForce GTX 260 has 64Kb), which allows for efficient reuse of read-only parameters in
a computation. Each compute unit on the device has a local memory (NVidia GeForce GTX 260 has
16Kb), which is typically on the processor die, and therefore has much higher bandwidth and lower
latency than global memory. Additionally, each processing element has private memory, which is
typically not used directly by programmers, but is used to hold data for eachwork-item that does not
fit in the processing elements registers. To achieve maximum performance of the application different
memories are used.

Programming model: The OpenCL execution model supports data parallel and task parallel programming
models. Synchronization is achieved using command queue barriers and waiting on events.

A typical OpenCL application starts by queueing available platforms (Intel/NVidia/AMD), and within each
platform the available devices (GeForce GTX 260, Quadro FX 1800; the user or the application decides
which device to use as an accelerator). The platform model defines this relationship between the host
and device. The application allocates and transfers memory from CPU to GPU, kernels allocate local or
private memory. The host and OpenCL device memory models are, for the most part, independent of each
other. The interaction occurs in one of two ways: by explicitly copying data or by mapping and unmapping
regions of a memory object. The OpenCL supports two patterns of memory access (Write/Execute/Read)
and (Unmap/Execute/Map). Choosing a pattern is based on application needs, the goal is to minimize
copies/allocations. If the application receives and sends buffers with varying addresses, choose read/writes,
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if the application processes the buffer (for example, analyze it), choosemap/unmap to avoid additional
memory allocation. All this happens within the memory model. Kernels have to be compiled or loaded from
binaries and subsequently set for the selected device. This happens atruntime and is necessary because
you may not know in advance just what sort of platform you’re going to target. In case of success, kernels
are scheduled to execute on the device. This gets controlled within the execution model. Finally, hardware
thread contexts that execute the kernel must be created and mapped to actual GPU hardware units. This is
done using the programming model.

4.3 ITK4 and GPU acceleration

The ITK4 GPU Acceleration module wraps the OpenCL 1.1 API in an ITK4-style API. It takes care
about the OpenCL initialization, program compilation, and kernel execution.It also provides conve-
nience classes for interfacing to ITK image classes and filtering pipeline such as itk::GPUImage ,
itk::GPUImageToImageFilter and itk::GPUInPlaceImageFilter . The ITK GPU acceleration is still
a work in progress, suggestions and patches are welcomed to make it better.

To enable GPU support within ITK4 you should enable theITK_USE_GPUflag during CMake configuration
of ITK. The core ITK4 OpenCL architecture (platform model, execution model, memory model, see Section
4.2) is presented by the following classes

• itk::GPUContextManager : Manages context and command queues.
• itk::GPUKernelManager : Load, setup, compile and run OpenCL kernels.
• itk::GPUDataManager : Provides functionalities for CPU-GPU data synchronization.

One of the core requirements of ITK is its ability to create data flow pipelines thatare capable of ingest-
ing, processing, analyzing and streaming data. ITK is organized arounddata objects and process ob-
jects. A pipeline is a series of process objects that operate on one or more data objects. The data objects
“flows” along the pipeline. The core pipeline classesitk::GPUImage , itk::GPUImageToImageFilter
and itk::GPUInPlaceImageFilter are responsible for combining CPU and GPU filters and efficient
CPU/GPU pipeline synchronization. The generic design of theitk::GPUImageToImageFilter allows
extending existing ITK filters for GPU implementation. ITK4 uses a commonly accepted design pattern to
instantiate GPU filters in a program using an object factory method.

In order to make a GPU filter you have to first inherit your filter fromitk::GPUImageToImageFilter ,
create OpenCL kernel code and register the GPU filter in your program.

4.4 Modifications to ITK4’s OpenCL support

For this project several enhancements to ITK4’s GPU code were needed.

Find OpenCL

To build ITK for your system the cross-platform, open-source build system CMake [3] is used. In order to
locate OpenCL on the system (CL/cl.h, OpenCL.lib) theFindOpenCL.cmake has to be defined. Currently
theFindOpenCL module is not part of CMake’s standard distribution due to the under development status.
For our work we modified an existing module [8]. The complete list of added functionality is found in
AppendixA.
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Figure 2: CMake OpenCL options to control platform, math intrinsics and optimization options.

We added support for a number of build options categorized as pre-processor options, options for math
intrinsics, options that control optimization and miscellaneous options. These CMake options are passed
to the clBuildProgram() command in the itk::GPUKernelManager to compile OpenCL kernels. In
this way we are able to control building and optimization of an OpenCL applicationsimilar to the compile
settingsCMAKE_<C,CXX>_FLAGSused for C/C++. The process of configuring is illustrated in Figure2. These
options allow us to develop under different platforms as well as control a number of optimizations.

Modifications to ITK core GPU classes

For our implementation we copied a number of classes from ITK 4.1.0 and introduced some changes. The
changes introduced to these copied classes may later be merged back to the ITK mainstream. Here is a
complete list of the copied files:

itkGPUContextManager.(cxx,h) itkGPUDataManager.(cxx, h)
itkGPUFunctorBase.h itkGPUImage.(txx,h)
itkGPUImageDataManager.(h,txx) itkGPUImageToImageFil ter.(h,txx)
itkGPUInPlaceImageFilter.(h,txx) itkGPUKernelManager .(cxx,h)
itkGPUUnaryFunctorImageFilter.(h.hxx) itkOclUtil.(cx x,h)

The following main functionality has been added:

• Support for Intel/AMD/NVidia OpenCL platforms. We extended theitk::GPUContextManager to
handle other platforms via CMake configuration.

• Possibility to Debug OpenCL kernels with Intel’s OpenCL implementation. The Intel SDK for
OpenCL supports Microsoft Visual Studio Debugger via a plug-in interface. This enables us to debug
into OpenCL kernels using the familiar graphical interface of the MicrosoftVisual Studio software
debugger [1].

• OpenCL execution profiling. Event objects can be used to capture profiling information that mea-
sure execution time of OpenCL commands. Profiling of OpenCL commands can be very handy in
understanding performance bottlenecks of GPU architectures.

• CMake math intrinsics and optimization options for OpenCL compilation (See section4.4). These
options controls the optimizations for floating-point arithmetic.

• Work-around for incorrectitk::GPUImage::Graft() implementation. The original implementation
[8] contains some logical error in one of the key ITK pipeline methods.
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• Some protected variables of theitk::GPUImage class have been made publicly accessible withGet -
methods (IndexToPhysicalPoint , PhysicalPointToIndex ). These functions are needed for the
resampler to convert from index to physical world.

• itk::GPUImageToImageFilter::GenerateData() has been modified to resemble CPU ITK
pipeline execution.

• The itk::OpenCLSize has been introduced toitk::GPUKernelManager ::LaunchKernel()
to support configurable kernel execution logic withglobal work size , local work size and
global work offset .

• Two new classesitk::OpenCLEvent and itk::OpenCLEventList were introduced. These event
objects are used to synchronize execution of multiple kernels, in case a filterrequires multiple kernels
to be scheduled.

• The signature of theitk::GPUKernelManager ::LaunchKernel() function was modified to return
itk::OpenCLEvent instead of simply a boolean.LaunchKernel() is basically an ITK wrap around
an OpenCL function that enqueues the kernel, but no guarantee is given about the order of execution.
Therefore, flavors ofLaunchKernel() were added that wait for an event list to have finished before
executing the current kernel. This is useful to support in-order execution of lists of kernels, which is
essential for complex OpenCL filtering operations like theitk::GPUResampleImageFilter .

• We added locking mechanisms foritk::GPUDataManager to prevent unnecessary updates of
CPU/GPU buffers.

• A number of modifications have been made to theitk::GPUKernelManager to improve design,
code, debugging support and integrate CMake OpenCL math and optimizationoptions.

The changes, bugs and other modifications has been reported to the ITK Jira bug tracking system, see
https://issues.itk.org/jira/browse/ITK .

4.5 OpenCL building program

We would like to highlight a particular issue you may encounter during developing. The final assembly code
from OpenCL kernels will be generated by the NVidia or AMD compiler at the momentclBuildProgram
is called. The compilation often happens from text strings constructed at runtime. The NVidia compiler will
cache assembly kernels in/AppData/Roaming/NVIDIA/ComputeCache (Windows) or˜ /.nv/ (Unix), so
that after the first time the program is called the cached binary can be used.Compiling a simple kernel could
take up to 0.5 s for the first time, while loading the same kernel from cache takes almost nothing (10−4 s).
Try to avoid defining kernels that may change at runtime due to a user setting such as the image properties,
constant variables (constant) or defines (#define). This may create unexpected performance bottlenecks in
your programm by triggering recompilation of the kernel every time a new image, parameters or definitions
are passed. Note that OpenCL also allows applications to create a programobject as a pre-built offline
binary. This was however not explored in this project.

5 Accelerating the two image registration components

5.1 Unify the existing Gaussian image pyramids

As described in Section2.1 there are three Gaussian pyramids available inelastix . Each of them has a
different way of dealing with smoothing and resizing of the data. The recursive pyramid smoothes according
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Figure 3: Multi-resolution pyramids with four levels. (a) The rescale and smoothing schedule are not used;
(b) Only a smoothing schedule is used; (c) Only the rescale schedule is used; (d) Both the rescale and
smoothing schedule are used; (e) Memory consumption option is used to create the image at level 1, while
other images have not been allocated.

to a schedule, and applies a fixed resizing derived from the smoothing schedule; The smoothing pyramid
smoothes and does not perform resizing; The shrinking pyramid does not perform smoothing and only per-
forms resizing according to a resizing schedule. As a first step in this project we unified the three Gaussian
pyramids to a single class that separately takes a smoothing schedule and a down-sampling schedule. The
new ‘generic’ pyramid is implemented in C++ in ITK style in a multi-threaded fashion, using the CPU. We
have dubbed this class theitk::GenericMultiResolutionGaussianImageFilter .

The multi-resolution rescale schedule is specified in terms of shrink factors (unit-less) at each multi-
resolution level for each dimension. The smoothing schedule defines the standard deviation of the Gaussian
kernel (in millimeters), again for each resolution level and for each dimension. As an additional feature, we
introduced an option to only compute the pyramid results for a given currentresolution level. The previous
pyramids computed the results for all levels, and stored all data in memory, thereby having a large memory
footprint. The filter results is illustrated at Figure3.

This new module was tested and is already integrated inelastix ; it can be found in the directories

src/Components/FixedImagePyramids/FixedGenericPyram id
src/Components/MovingImagePyramids/MovingGenericPyr amid

5.2 Gaussian pyramid GPU implementation

To implement the smoothing of images we have used theitk::RecursiveGaussianImageFilter avail-
able in ITK. The filter computes an infinite impulse response convolution with an approximation of the
Gaussian kernel

G(x;σ) =
1

σ
√

2π
exp

(

−
x2

2σ2

)

. (2)

So, it implements the recursive filtering method proposed by Dericheet al.[4]. The filter smoothes the image
in a single, user-defined direction only. It should be called for each direction in a sequence to perform full
smoothing. The main control methods areSetSigma() andSetDirection() ; the latter sets the direction
in which the filter is to be applied.

The filter takes an itk::Image as input, and produces a smootheditk::Image as output. The
filter is implemented as a subclass of theitk::InPlaceImageFilter and thus can be executed
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Figure 4:itk::GPURecursiveGaussianImageFilter threads alignment for the output image: (a) The 2D
image for directionx; (b) The 2D image for directiony; (c) The 3D image directionx.

in place, saving memory (not the default). Therefore, for the GPU implementation we derived our
itk::GPURecursiveGaussianImageFilter from itk::GPUInPlaceImageFilter to support this behav-
ior on the GPU as well.

To parallelize the work load, the image is split in several regions and each thread works on its own re-
gion. The itk::RecursiveGaussianImageFilter performs execution row-by-row for the directionx or
column-by-column for the directiony. All rows or columns can be processed independently, but columns
can only be processed when all rows have finished. Figure4 illustrates the process. The internal algorithm
implementation allocates an input and output buffer the size of the row or column, and additionally requires
a scratch buffer of the same size. The filtering kernel performs a causal and anti-causal pass, and the result
is copied to the output. This execution model is suitable for a GPU implementation, where several rows or
columns can be executed simultaneously.

To achieve maximum performance each thread uses the local GPU memory, although this introduces a
limitation on the input image size, since only 16kB is available (see Section4.2). The maximum supported
image size is then calculated as follows: there are three floating point buffers (input, scratch, output), the
maximum space per buffer is then 16kB divided by three, which equals a maximum of 1365 pixels. In other
words, the current implementation works for images of maximum size [1365,1365] or [1365,1365,1365].
This limitation could be avoided by changing the internal computation or by using other platforms with a
larger local memory (for example Intel’s OpenCL implementation allows 32kB).

5.3 Image resampling

As noted in Section2.2, resampling is the procedure to create a new version of the (moving) image that
is geometrically transformed and possibly has a different size and resolution. To perform this operation
elastix uses the itk::ResampleImageFilter from the ITK. This filter resamples an existing image
through a specified transform provided withSetTransform() and interpolate via some image function
provided withSetInterpolator() . There are many different transformation classes available (translation,
rigid, affine, B-spline)1, as well as a number of interpolation techniques (nearest neighbor, linear, B-spline)2.

1See the directoryITK/Modules/Core/Transform from the ITK repository for more examples
2See the directoryITK/Modules/Core/ImageFunction from the ITK repository for more examples
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Figure 5: Design for GPU Interpolators.

Figure 6: Design for GPU transforms.

Expanding this filter for GPU implementation, a set of GPU classes have been developed to resample images
within the ITK framework.

Currently, we implemented the following interpolators

• itk::GPUNearestNeighborInterpolateImageFunction

• itk::GPULinearInterpolateImageFunction

• itk::GPUBSplineInterpolateImageFunction

and the following transforms

• itk::GPUIdentityTransform

• itk::GPUTranslationTransform

• itk::GPUEuler2DTransform

• itk::GPUEuler3DTransform

• itk::GPUSimilarity2DTransform

• itk::GPUSimilarity3DTransform

• itk::GPUAffineTransform
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• itk::GPUBSplineTransform

• itk::GPUCompositeTransform

These are the most common choices. It is relatively easy to add implementations of other transform compo-
nents, since base functionality is in place. Note that the identity transform is used in the Gaussian pyramids
when shrinking is performed through the resampler instead of theitk::ShrinkImageFilter (an option
in the resample filter). Several classes are provided, that cover base implementations for the most common
usages of the transforms and interpolators:

• itk::GPUBSplineBaseTransform is a base class for theitk::GPUBSplineTransform .
• itk::GPUImageBase is the OpenCL definition of the ITK image properties such asdirection ,

spacing , origin , size , index to physical point and physical point to index . This
class also provides common coordinates transformation for OpenCL kernels identical to the
itk::ImageBase class.

• itk::GPUImageFunction is OpenCL implementation ofitk::ImageFunction .
• itk::GPUInterpolatorBase is a base class for all GPU interpolators.
• itk::GPUMatrixOffsetTransformBase is a base class for the following

transforms: itk::GPUEuler2DTransform , itk::GPUEuler3DTransform ,
itk::GPUSimilarity2DTransform , itk::GPUSimilarity3DTransform , and
itk::GPUAffineTransform .

• itk::GPUTransformBase is a base class for all GPU transforms.
• itk::GPUTranslationTransformBase is a base class for theitk::GPUTranslationTransform .
• itk::GPUInterpolateImageFunction contains some attributes related to theitk::Image coordi-

nate system definition.

The classesitk::GPUTransformBase and itk::GPUInterpolatorBase have been created to provide a
generic way of passing parameters to theitk::GPUResampleImageFilter from transforms and interpo-
lators with the functionGetParametersDataManager() . They also provide access to the OpenCL code
via a virtualGetSourceCode() function, which returns code as a string object. In addition, access to the
transformation matrixes performing conversion between pixel and physical coordinate systems is provided
by the itk::GPUInterpolateImageFunction with the functionGetParametersDataManager() . See
Figure5 and6 for an inheritance diagram.

In addition to the above classes, some other classes required a GPU version. In case of a B-spline in-
terpolator or transform, calculation of the B-spline coefficients of an image isrequired [10]. This action is
performed by theitk::BSplineDecompositionImageFilter . The ITK implementation of this filter does
not support multi-threading. This appeared to be a bottle-neck in the OpenCL code and therefore an OpenCL
implementation of this class was made called theitk::GPUBSplineDecompositionImageFilter . In ad-
dition, itk::GPUCastImageFilter and itk::GPUShrinkImageFilter were made, as they were used by
the resampler.

In the ITK CPU implementation the flexibility to use any transformation in combination withany inter-
polator is achieved using classes and virtual methods. This flexibility introduces a major challenge when
implementing a GPU version of this filter. As mentioned earlier, OpenCL is a simplifiedC language speci-
fication, which does not provide any way of implementing virtuality on kernels.In order to solve this issue,
we propose to split the final OpenCL kernel for theitk::GPUResampleImageFilter in three kernels and
use the enqueue mechanism with synchronization in combination with an intermediate deformation field:

Initialization: ResampleImageFilterPre is an OpenCL kernel responsible for the initialization of the
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Figure 7: Design ofitk::GPUResampleImageFilter::GPUGenerateData() . We select a chunk of the
output image, and for that chunk a series of transformationsTTTn(. . .TTT1(TTT0(xxx))) are computed and stored in
the deformation field. After these transformation kernels have finished, theinput image is interpolated and
the result is stored in the output image chunk. The we proceed to the next chunk.

deformation field buffer.

Transformation: ResampleImageFilterLoop is an OpenCL kernel performing the transformationTTT.

Interpolation: ResampleImageFilterPost is an OpenCL kernel performing the interpolationIM(TTT (xxx)).

The design is illustrated in Figure7.

The ResampleImageFilterPre kernel is compiled when the resample filter is constructed. The
ResampleImageFilterLoop kernel and theResampleImageFilterPost kernel are compiled when
GPUResampleImageFilter::SetTransform() and GPUResampleImageFilter::SetInterpolator()
are called, respectively. The code needed to compile these kernels is retrieved through the
GetSourceCode() functionality provided by the base classes. When a B-spline transform orB-spline in-
terpolator has been selected, we provide the additional parameters (B-spline coefficients) as images to the
ResampleImageFilterLoop kernel. At the moment theGPUGenerateData() method is called, all kernels
are ready for use.

As mentioned, next to the input and output images, we introduce an intermediatevector-typed image repre-
senting for each point the deformation (deformation field buffer). The input, output and intermediate vector
image are all stored in global memory. The input and output image are stored completely in GPU memory.
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In order to reduce memory consumption and to support larger image sizes only a part (chunk) of the defor-
mation field is stored in memory. This chunk is reused until the full image is resampled. For performance
these chunks should be as large as the GPU can fit. This chunk-procedure is only implemented for 3D, as
this is not needed in 2D.

The GPUResampleImageFilter::GPUGenerateData() function is mainly responsible for setting pa-
rameters to the kernels, splitting the deformation field buffer in chunks and scheduling of the kernels.
For the scheduling two dedicated classesOpenCLEvent andOpenCLEventList were developed, and the
GPUKernelManager was modified to support it.

The above described implementation of the resampling framework not only supports single transformations
TTT(xxx), but also any compositions of transformationsTTTn(. . .TTT1(TTT0(xxx))). This feature is frequently used
in image registration, for example when a rigid or affine registration is performed prior to a nonrigid B-
spline registration. Inelastix we always use these composed transformations, also when only a single
transformation is selected by the user. Anitk::GPUCompositeTransform was created to store all GPU
transformations. TheResampleImageFilterLoop kernel was then modified to sequentially schedule a list
of transformations, again exploiting the event lists.

A number of issues where encountered during developments and are documented here.

Kernel arguments The number of function arguments used in the kernel function appeared tobe limited
in NVidia OpenCL implementation (execution problem). Therefore, we minimized thisnumber by
grouping all parameters passed to theitk::GPUResampleImageFilter kernel in a struct and set it
in constant memory. This generalizes the implementation and solved the NVidia issue3.

Double vs float The current design of the ITKitk::BSplineTransform does not allow to store the co-
efficients parameter as afloat type. It is hardcoded to be of typedouble , which poses problems on
some GPUs. To overcome this problem we added an extra copy and cast operation from double to
float to the itk::GPUBSplineTransform , by defining theitk::GPUCastImageFilter . This poses
some unnecessary overhead when using B-spline interpolators and transforms.

6 Experimental results

6.1 Experimental setup

In our experiments we have used various images with different sizes together with two different computer
systems. Details of the systems are given in Table1. As can be seen, we have used NVidia’s GTX 260
and 480 graphical cards, while currently (end 2012) the 690 generation is available with much more GPU
acceleration power. In addition to GPU tests. The four images were of dimensions 2 and 3, with sizes:
a small 2D image of 256× 256 which has≈ 104 pixels, small 3D (100× 100× 100≈ 106), medium 3D
(256×256×256≈ 107) and large 3D (512×512×256≈ 108).

To evaluate the performance and accuracy of the OpenCL implementation, wecompared the results with
the original ITK CPU implementation. Two quality criteria were chosen. The speedup factor was used to
measure the performance gain. For evaluation of the accuracy we used the root mean square error (RMSE)

3We tried to get some explanation of this problem on NVidia’s forum, providing a minimal example illustrating the prob-
lem. We did however not get a reasonable explanation, leaving us with the conclusion that this is an NVidia driver issue. See
http://forums.nvidia.com/index.php?showtopic=215769 &st=0&p=1326194&hl=clEnqueueNDRangeKernel&fromsearc h=1&#entry1326194
Note that this issue did not occur on other OpenCL platforms.
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Table 1: Test systems details.

System 1 System 2

OS Windows 7, 64 bit Linux Ubuntu 10.04.3 LTS, 64 bit
CPU Intel Core i7, 4 cores @ 2.6 GHz Intel Xeon E5620, 8 cores @ 2.4 GHz
GPU Nvidia Geforce GTX 260 Nvidia Geforce GTX 480
Compiler MS VS2010 gcc 4.4.3
OpenCL version OpenCL 1.1 CUDA 5.0, driver 306.97 NVIDIA UNIXx86_64 Kernel Module 290.10

between the results of the ITK CPU implementation (which acts as a ground truth)and that of the GPU:

RMSE=

√

1
n

n

∑
i=0

(ICPU(xxxi)− IGPU(xxxi))
2 (3)

The test was considered to be successful if the RMSE was smaller than somethreshold.

All timings were measured on a second run of the program, where the pre-compiled GPU kernel is loaded
from cache. In the first run the GPU program is somewhat slower due to the run-time compilation.

6.2 Multi-resolution: Gaussian image pyramids

Several rescale and smoothing schedules were tested on the four datasets and compared with the CPU imple-
mentation. We have used four resolution levels to generate the Gaussian pyramid. A default scaling schedule
was used, which downsizes the images by a factor of 8, 4, 2 and 1 for the four resolutions, respectively. Also
a default smoothing schedule was used withσ = 4,2,1 and 0 for the four resolutions, respectively. Tables2
and3 shows the timing and accuracy results for the two test systems, respectively.

The accuracy as measured by the RMSE was quite small, meaning that the smoothing results were almost
exactly equal. We assume that the residual error is due to numerical differences between the CPU and the
GPU.

Moderate speedup factors in the range 2 - 4 were measured on both systems, for larger images. Small images
are actually slower on the GPU, because of the copying overhead involved. This could be partially hidden by
overlapping memory transfer with kernel execution, but this requires adaptations to the source code. Note
that the CPU implementation was already quite fast. Only the large image took more than 1s to process. For
that size of images, however, the GPU is beneficial.

Notice from the tables that when only smoothing is performed and no rescaling, a speedup of 3.0 - 3.7
was obtained, but when rescaling was added the performance droppedto 1.6 - 2.0. So, most acceleration
comes from smoothing and not from the rescaling operation. Further investigation is needed to find the
bottleneck related to the resizing operation. Also note from the tables that a further tweak is to completely
skip execution when no smoothing or no resizing is needed.
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Table 2: Results of the multi-resolution pyramid filter on System 1, which has 4 cores. Timings shown are
for all four levels in total. Failure was due to insufficient GPU memory for the large data sets, and was
marker as na.

image size CPU (s) GPU (s) ratio RMSE passed rescale smooth shrink

256x256 0.005 0.070 0.1 0.0000 Yes Off Off Off
256x256 0.013 0.193 0.1 0.0003 Yes Off On Off
256x256 0.003 0.060 0.1 0.0000 Yes On Off Off
256x256 0.007 0.151 0.0 0.0003 Yes On On Off
256x256 0.006 0.140 0.0 0.0003 Yes Off On On
256x256 0.002 0.068 0.0 0.0000 Yes On Off On
256x256 0.008 0.145 0.1 0.0003 Yes On On On

100x100x100 0.017 0.030 0.6 0.0000 Yes Off Off Off
100x100x100 0.063 0.225 0.3 0.0071 Yes Off On Off
100x100x100 0.018 0.030 0.6 0.0000 Yes On Off Off
100x100x100 0.077 0.245 0.3 0.0071 Yes On On Off
100x100x100 0.065 0.229 0.3 0.0071 Yes Off On On
100x100x100 0.012 0.025 0.5 0.0000 Yes On Off On
100x100x100 0.070 0.251 0.3 0.0071 Yes On On On

256x256x256 0.271 0.221 1.2 0.0000 Yes Off Off Off
256x256x256 1.461 0.660 2.2 0.0076 Yes Off On Off
256x256x256 0.318 0.197 1.6 0.0011 Yes On Off Off
256x256x256 1.930 0.706 2.7 0.0076 Yes On On Off
256x256x256 1.537 0.531 2.9 0.0076 Yes Off On On
256x256x256 0.185 0.144 1.3 0.0000 Yes On Off On
256x256x256 1.801 0.643 2.8 0.0076 Yes On On On

512x512x256 1.046 na na 0.0000 No Off Off Off
512x512x256 7.145 na na 0.0000 No Off On Off
512x512x256 1.941 0.500 3.9 0.0057 Yes On Off Off
512x512x256 9.208 na na 0.0000 No On On Off
512x512x256 7.173 na na 0.0000 No Off On On
512x512x256 0.837 0.367 2.3 0.0000 Yes On Off On
512x512x256 8.342 na na 0.0000 No On On On
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Table 3: Results of the multi-resolution pyramid filter on System 2, which has 8 cores. Timings shown are
for all four levels in total. Due to insufficient GPU memory two test failed, but they were rerun with the
memory conservation flag. These tests are marked with Yes*.

image size CPU (s) GPU (s) ratio RMSE passed rescale smooth shrink

256x256 0.002 0.002 0.7 0.0000 Yes Off Off Off
256x256 0.005 0.007 0.7 0.0000 Yes Off On Off
256x256 0.002 0.004 0.6 0.0000 Yes On Off Off
256x256 0.005 0.011 0.5 0.0000 Yes On On Off
256x256 0.006 0.007 0.9 0.0000 Yes Off On On
256x256 0.002 0.002 1.1 0.0000 Yes On Off On
256x256 0.005 0.008 0.7 0.0000 Yes On On On

100x100x100 0.009 0.024 0.4 0.0000 Yes Off Off Off
100x100x100 0.043 0.022 2.0 0.0007 Yes Off On Off
100x100x100 0.014 0.017 0.8 0.0000 Yes On Off Off
100x100x100 0.056 0.035 1.6 0.0007 Yes On On Off
100x100x100 0.043 0.021 2.0 0.0007 Yes Off On On
100x100x100 0.006 0.010 0.6 0.0000 Yes On Off On
100x100x100 0.045 0.028 1.6 0.0007 Yes On On On

256x256x256 0.086 0.226 0.4 0.0000 Yes Off Off Off
256x256x256 0.779 0.211 3.7 0.0010 Yes Off On Off
256x256x256 0.155 0.122 1.3 0.0010 Yes On Off Off
256x256x256 0.915 0.370 2.5 0.0010 Yes On On Off
256x256x256 0.792 0.210 3.8 0.0010 Yes Off On On
256x256x256 0.080 0.085 0.9 0.0000 Yes On Off On
256x256x256 0.847 0.329 2.6 0.0010 Yes On On On

512x512x256 0.308 0.783 0.4 0.0000 Yes Off Off Off
512x512x256 3.611 0.384 9.4 0.0000 Yes* Off On Off
512x512x256 0.759 0.432 1.8 0.0065 Yes On Off Off
512x512x256 4.264 1.404 3.0 0.0018 Yes On On Off
512x512x256 3.532 0.383 9.2 0.0000 Yes* Off On On
512x512x256 0.279 0.305 0.9 0.0000 Yes On Off On
512x512x256 3.756 1.252 3.0 0.0004 Yes On On On
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Table 4: Results of the resampling filter on System 1, which has 4 cores, the composite transform was not
used. Timings are shown in seconds.

image size CPU (s) GPU (s) ratio RMSE passed interpolator transform

100x100x100 0.015 0.022 0.7 40.2 Yes Nearest Translation
256x256x256 0.192 0.085 2.3 28.7 Yes Nearest Translation
512x512x256 0.488 0.271 1.8 0.0 Yes Nearest Translation
100x100x100 0.019 0.023 0.8 0.1 Yes Linear Translation
256x256x256 0.292 0.085 3.4 0.1 Yes Linear Translation
512x512x256 1.277 0.259 4.9 0.2 Yes Linear Translation
100x100x100 0.293 0.133 2.2 0.1 Yes BSpline Translation
256x256x256 5.279 1.075 4.9 0.2 Yes BSpline Translation
512x512x256 23.164 5.223 4.4 0.2 Yes BSpline Translation

100x100x100 0.008 0.017 0.5 1.1 Yes Nearest Affine
256x256x256 0.131 0.077 1.7 2.5 Yes Nearest Affine
512x512x256 0.519 0.247 2.1 6.3 Yes Nearest Affine
100x100x100 0.029 0.019 1.5 0.1 Yes Linear Affine
256x256x256 0.342 0.086 4.0 0.2 Yes Linear Affine
512x512x256 1.293 0.263 4.9 0.6 Yes Linear Affine
100x100x100 0.285 0.134 2.1 0.1 Yes BSpline Affine
256x256x256 5.216 1.098 4.8 0.2 Yes BSpline Affine
512x512x256 24.147 5.130 4.7 0.7 Yes BSpline Affine

100x100x100 0.968 0.053 18.3 0.2 Yes Nearest BSpline
256x256x256 11.015 0.475 23.2 0.6 Yes Nearest BSpline
512x512x256 43.053 1.643 26.2 0.5 Yes Nearest BSpline
100x100x100 0.677 0.053 12.7 0.0 Yes Linear BSpline
256x256x256 10.980 0.490 22.4 0.0 Yes Linear BSpline
512x512x256 43.276 1.624 26.6 0.0 Yes Linear BSpline
100x100x100 0.927 0.164 5.6 0.1 Yes BSpline BSpline
256x256x256 16.017 1.473 10.9 0.2 Yes BSpline BSpline
512x512x256 65.470 6.278 10.4 0.0 Yes BSpline BSpline

6.3 Image resampling

We tested the GPU resampling filter with different combinations of interpolators and transformations. For
the B-spline interpolator and B-spline transform we have used third ordersplines. Detailed results are
shown in Tables4 and5 for system 1 and6, and7 for system 2. Tables4 and6 show the results for a single
transformation not using theitk::GPUCompositeTransform , and Tables5 and7 show the results for the
composite transformations. Finally, in Figure8 we show the speedup more graphically. In the figure and
in the tables sometimes the following abbreviations were used: Affine =A, Translation =T, B-spline =B,
Euler3D =E and Similarity3D =S.

The results for resampling were very close in terms of RMSE to the output produced by ITK. The differences
were due to floating point differences, but they were acceptable. The GPU implementation is particularly
beneficial on the larger images, where the algorithm performs very slow even on modern systems. On
smaller images the performance gain was less dramatic, or sometimes even smaller than 1. For large images,
using a B-spline interpolator and transform the execution time was up to 1.5 minuteon the CPU, while with
a two generation old graphic card this was reduced to about 2 s. Speedups of 10 - 46 were achieved in those
cases.
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Figure 8: Speedup factors. Left and right column show results for system 1 and 2, respectively. First, second
and third row show results for the nearest neighbor, linear and B-splineinterpolator, respectively. Square
brackets indicates that the composite transformitk::GPUCompositeTransform is used.
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Table 5: Results of the resampling filter on System 1, which has 4 cores, the composite transform was used.
Timings are shown in seconds.

image size CPU (s) GPU (s) ratio RMSE passed interpolator transform

100x100x100 0.01 0.02 0.4 40.2 Yes Nearest [Translation]
256x256x256 0.19 0.08 2.4 28.7 Yes Nearest [Translation]
512x512x256 0.49 0.37 1.3 0.0 Yes Nearest [Translation]
100x100x100 0.02 0.02 0.8 0.1 Yes Linear [Translation]
256x256x256 0.31 0.08 3.7 0.1 Yes Linear [Translation]
512x512x256 1.27 0.25 5.0 0.2 Yes Linear [Translation]
100x100x100 0.29 0.13 2.2 0.1 Yes BSpline [Translation]
256x256x256 5.25 1.06 4.9 0.2 Yes BSpline [Translation]
512x512x256 23.20 5.03 4.6 0.2 Yes BSpline [Translation]

100x100x100 0.01 0.02 0.5 1.1 Yes Nearest [Affine]
256x256x256 0.19 0.09 2.2 2.5 Yes Nearest [Affine]
512x512x256 0.51 0.29 1.8 6.3 Yes Nearest [Affine]
100x100x100 0.02 0.02 0.9 0.1 Yes Linear [Affine]
256x256x256 0.32 0.08 3.8 0.2 Yes Linear [Affine]
512x512x256 1.32 0.26 5.1 0.6 Yes Linear [Affine]
100x100x100 0.29 0.13 2.2 0.1 Yes BSpline [Affine]
256x256x256 5.20 1.10 4.7 0.2 Yes BSpline [Affine]
512x512x256 22.87 4.92 4.6 0.7 Yes BSpline [Affine]

100x100x100 0.75 0.05 13.9 0.2 Yes Nearest [BSpline]
256x256x256 10.88 0.48 22.7 0.6 Yes Nearest [BSpline]
512x512x256 44.04 1.65 26.7 0.5 Yes Nearest [BSpline]
100x100x100 0.68 0.06 12.3 0.0 Yes Linear [BSpline]
256x256x256 11.16 0.49 22.7 0.0 Yes Linear [BSpline]
512x512x256 44.93 1.63 27.6 0.0 Yes Linear [BSpline]
100x100x100 0.95 0.17 5.5 0.1 Yes BSpline [BSpline]
256x256x256 16.20 1.48 10.9 0.2 Yes BSpline [BSpline]
512x512x256 66.69 6.00 11.1 0.0 Yes BSpline [BSpline]

100x100x100 0.84 0.06 15.0 0.1 Yes Nearest [A◦B]
256x256x256 11.10 0.50 22.3 0.3 Yes Nearest [A◦B]
512x512x256 44.17 1.73 25.6 0.5 Yes Nearest [A◦B]
100x100x100 0.68 0.06 11.8 0.0 Yes Linear [A◦B]
256x256x256 11.24 0.50 22.3 0.0 Yes Linear [A◦B]
512x512x256 45.52 1.67 27.3 0.0 Yes Linear [A◦B]
100x100x100 0.97 0.17 5.8 0.1 Yes BSpline [A◦B]
256x256x256 16.23 1.51 10.8 0.2 Yes BSpline [A◦B]
512x512x256 70.59 6.26 11.3 0.0 Yes BSpline [A◦B]

100x100x100 0.77 0.06 13.3 0.1 Yes Nearest [T ◦A◦B◦E ◦S]
256x256x256 10.03 0.47 21.2 0.3 Yes Nearest [T ◦A◦B◦E ◦S]
512x512x256 42.34 1.66 25.5 0.5 Yes Nearest [T ◦A◦B◦E ◦S]
100x100x100 0.62 0.06 10.9 0.0 Yes Linear [T ◦A◦B◦E ◦S]
256x256x256 10.35 0.53 19.7 0.0 Yes Linear [T ◦A◦B◦E ◦S]
512x512x256 43.34 1.73 25.0 0.0 Yes Linear [T ◦A◦B◦E ◦S]
100x100x100 0.87 0.18 4.9 0.1 Yes BSpline [T ◦A◦B◦E ◦S]
256x256x256 14.97 1.70 8.8 0.1 Yes BSpline [T ◦A◦B◦E ◦S]
512x512x256 64.94 6.66 9.7 0.0 Yes BSpline [T ◦A◦B◦E ◦S]
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Table 6: Results of the resampling filter on System 2, which has 8 cores, the composite transform was not
used. Timings are shown in seconds.

image size CPU (s) GPU (s) ratio RMSE passed interpolator transform

100x100x100 0.01 0.00 1.0 40.2 Yes Nearest Translation
256x256x256 0.05 0.05 1.1 28.7 Yes Nearest Translation
512x512x256 0.19 0.18 1.1 0.0 Yes Nearest Translation
100x100x100 0.01 0.01 2.6 0.1 Yes Linear Translation
256x256x256 0.16 0.05 3.3 0.1 Yes Linear Translation
512x512x256 0.69 0.18 3.8 0.2 Yes Linear Translation
100x100x100 0.22 0.03 8.1 0.1 Yes BSpline Translation
256x256x256 4.09 0.43 9.6 0.2 Yes BSpline Translation
512x512x256 16.77 1.48 11.3 0.2 Yes BSpline Translation

100x100x100 0.00 0.00 0.9 1.1 Yes Nearest Affine
256x256x256 0.05 0.05 1.1 2.3 Yes Nearest Affine
512x512x256 0.20 0.18 1.1 6.5 Yes Nearest Affine
100x100x100 0.01 0.01 2.1 0.1 Yes Linear Affine
256x256x256 0.17 0.05 3.4 0.1 Yes Linear Affine
512x512x256 0.68 0.18 3.7 0.6 Yes Linear Affine
100x100x100 0.22 0.03 7.5 0.1 Yes BSpline Affine
256x256x256 3.91 na na 0.0 No BSpline Affine
512x512x256 16.92 1.57 10.8 0.7 Yes BSpline Affine

100x100x100 0.37 na na 0.0 No Nearest BSpline
256x256x256 5.74 0.13 43.1 0.6 Yes Nearest BSpline
512x512x256 21.23 0.48 43.9 0.5 Yes Nearest BSpline
100x100x100 0.38 0.01 36.4 0.0 Yes Linear BSpline
256x256x256 5.95 0.14 43.2 0.0 Yes Linear BSpline
512x512x256 22.64 0.49 46.2 0.0 Yes Linear BSpline
100x100x100 0.59 0.03 18.5 0.1 Yes BSpline BSpline
256x256x256 10.44 0.52 20.2 0.2 Yes BSpline BSpline
512x512x256 42.61 1.79 23.8 0.0 Yes BSpline BSpline

Another interesting point is that the linear interpolator showed a larger performance gain than the B-spline
interpolator. This is surprising, since commonly more complex operations givemore speedup. It may
be due to the fact that the B-spline GPU implementation required additional casting and memory transfer
operations, or that the GPU code is suboptimal compared to the CPU code, orthe more heavily (random)
memory access required by the B-spline get penalized more by a GPU.

Profiling the resampler

The execution time was sub-divided into its parts using profiling. The more detailed results are given in
Table8. The B-spline interpolator and transform work with an underlying B-splinecoefficient image. This
image is hard-coded on the CPU to be of typedouble and requires converting tofloat and copying to the
GPU, taking almost 20% of the time. Execution of the kernel consumed 75% of the time. This means that
when a form of memory transfer hiding is employed the run time can be reducesto about 1.5s, which would
result in a speedup of 30 instead of 23, only a minor gain in this case.
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Table 7: Results of the resampling filter on System 2, which has 8 cores, the composite transform was used.
Timings are shown in seconds. Failure was due to exception and was markeras na.

image size CPU (s) GPU (s) ratio RMSE passed interpolator transform

100x100x100 0.01 0.00 1.0 40.2 Yes Nearest [Translation]
256x256x256 0.05 0.05 1.1 28.7 Yes Nearest [Translation]
512x512x256 0.19 0.18 1.1 0.0 Yes Nearest [Translation]
100x100x100 0.01 0.01 2.6 0.1 Yes Linear [Translation]
256x256x256 0.16 0.05 3.3 0.1 Yes Linear [Translation]
512x512x256 0.68 0.19 3.7 0.2 Yes Linear [Translation]
100x100x100 0.23 0.03 8.5 0.1 Yes BSpline [Translation]
256x256x256 4.25 0.43 10.0 0.2 Yes BSpline [Translation]
512x512x256 19.79 1.47 13.5 0.2 Yes BSpline [Translation]

100x100x100 0.01 0.01 1.1 1.1 Yes Nearest [Affine]
256x256x256 0.05 0.05 1.1 2.3 Yes Nearest [Affine]
512x512x256 0.20 0.18 1.2 6.5 Yes Nearest [Affine]
100x100x100 0.01 0.01 2.0 0.1 Yes Linear [Affine]
256x256x256 0.17 0.05 3.5 0.1 Yes Linear [Affine]
512x512x256 0.69 0.18 3.8 0.6 Yes Linear [Affine]
100x100x100 0.22 0.03 7.7 0.1 Yes BSpline [Affine]
256x256x256 4.23 0.45 9.5 0.2 Yes BSpline [Affine]
512x512x256 16.98 na na 0.0 No BSpline [Affine]

100x100x100 0.39 0.01 38.1 0.4 Yes Nearest [BSpline]
256x256x256 5.92 0.14 43.5 0.6 Yes Nearest [BSpline]
512x512x256 21.39 0.48 44.3 0.5 Yes Nearest [BSpline]
100x100x100 0.38 0.01 35.2 0.0 Yes Linear [BSpline]
256x256x256 5.86 0.14 42.3 0.0 Yes Linear [BSpline]
512x512x256 22.91 0.49 46.5 0.0 Yes Linear [BSpline]
100x100x100 0.64 0.03 20.0 0.1 Yes BSpline [BSpline]
256x256x256 10.06 0.51 19.6 0.2 Yes BSpline [BSpline]
512x512x256 38.42 1.79 21.5 0.0 Yes BSpline [BSpline]

100x100x100 0.38 0.01 36.1 0.1 Yes Nearest [A◦B]
256x256x256 5.84 0.14 42.3 0.0 No Nearest [A◦B]
512x512x256 22.39 0.50 45.0 0.5 Yes Nearest [A◦B]
100x100x100 0.38 na na 0.0 No Linear [A◦B]
256x256x256 6.62 na na 0.0 No Linear [A◦B]
512x512x256 22.17 na na 0.0 No Linear [A◦B]
100x100x100 0.68 0.03 19.9 0.1 Yes BSpline [A◦B]
256x256x256 9.77 0.54 18.1 0.0 No BSpline [A◦B]
512x512x256 39.06 1.89 20.7 0.0 Yes BSpline [A◦B]

100x100x100 0.33 0.01 28.5 0.1 Yes Nearest [T ◦A◦B◦E ◦S]
256x256x256 5.11 0.13 38.2 0.3 Yes Nearest [T ◦A◦B◦E ◦S]
512x512x256 20.77 na na 0.0 No Nearest [T ◦A◦B◦E ◦S]
100x100x100 0.33 na na 0.0 No Linear [T ◦A◦B◦E ◦S]
256x256x256 5.08 na na 0.0 No Linear [T ◦A◦B◦E ◦S]
512x512x256 21.35 0.53 40.0 0.0 Yes Linear [T ◦A◦B◦E ◦S]
100x100x100 0.53 0.04 14.7 0.1 Yes BSpline [T ◦A◦B◦E ◦S]
256x256x256 8.79 na na 0.0 No BSpline [T ◦A◦B◦E ◦S]
512x512x256 37.94 1.80 21.1 0.0 Yes BSpline [T ◦A◦B◦E ◦S]
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Table 8: Detailed execution of theitk::GPUResampleImageFilter on the 512x512x256 image using a
B-spline transform and a B-spline interpolator (both third order), on system 2. The B-spline related entries
consist of double-float casting and transfer to the GPU.

Operation Time (s) %

B-spline interpolator 0.086 4.8
B-spline transform 0.243 13.6
CPU→ GPU copying 0.027 1.5
Executing OpenCL kernel 1.341 75.0
GPU→ CPU copying 0.084 4.7
Other operations 0.009 0.5

Total time 1.788 100

Comparison to previous results

We compared the resampling performance gain with our previous result [5], where the resample algorithm
was implemented using CUDA. There we reported a speedup of 10 - 65, which is a bit higher that we cur-
rently achieved with OpenCL. This is mostly contributed to a special CUDA implementation [9] used for
the B-spline computation, where the 3rd order splines are decomposed in a number of 1st order splines, i.e.
linear interpolation. Linear interpolation is hardwired on the GPU, leading to a considerable performance
gain. This was not implemented in OpenCL. Further comparing the two implementations, the CUDA resam-
pler only supports 3D images, using 3rd order B-spline interpolation and transformation, while the OpenCL
code is much more generic, supporting several dimensions, interpolators and transformations. In addition,
OpenCL runs on all kinds of GPUs, while CUDA only supports NVidia ones.See detailed speed up graphs
8.

7 Conclusion and Discussion

7.1 Conclusions

We developed a generic OpenCL framework to create pyramids and resamplers on the GPU, exploiting the
ITK GPU acceleration design. The generic architecture and close integration with ITK will easy adoption by
the medical image processing community. The decision to use OpenCL allows targeting most of the graph-
ical devices available today. The developed code is generic and allows extension to other transformations
usage during image registration.

We obtained speedup factors of 2 - 4 for the image pyramids and 10 - 46 forthe resampling, on larger images,
using a Geforce GTX 480 (two new generations of GPUs have since shipped). This shows that the GPU is
an efficient computing device for these tasks. The specific kernels wereimplemented in a straightforward
manner, leaving room for performance improvement in future work. Detailsof the possibilities are given
below.

In conclusion, two time consuming parts of the registration algorithm were accelerated using GPU program-
ming. The knowledge obtained in this project and the resulting OpenCL codingdesigns, will be of direct
benefit in future work, where the core of the registration algorithm can also be accelerated using the GPU.
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7.2 Limitations and future work

There are several areas in which our work can be improved and extended. We subdivided them in several
categories: transfer the work to the community, performance improvements, coding improvements, and
miscellaneous. We detail them in the list below.

Community adoption

1. elastix integration. The GPU extensions are currently only initially integrated inelastix .
The source code is there, and many GPU tests are in place. Outside the tests itis not yet used.
Code needs to be added that supports good user experience. The latterincludes robust detection
OpenCL existence on the system, whether a suitable GPU is installed, and registering the GPU
factories toelastix . In addition, one could think of some helper functionality that predicts if
either the CPU or the GPU will give the best performance, and subsequently selects the fastest
option.

2. Synchronization with the ITK. During development we significantly extended the ITK GPU
design and fixed some bugs. These changes need to be transferred back to the ITK repository.
This process will also generate feedback, thereby improving the code see4.4.

Optimizations

1. Find and investigate the current bottlenecks with GPU profilers.

2. Using specialized hardware functions, such as themad functions that gives hardware access to
the operation ‘a×b+c’. Related to the CMake flagOPENCL\_OPTIMIZATION\_MAD\_ENABLE

3. Investigate the usage of the different types of memory. We took a straightforward implemen-
tation approach, but these memory-related choices are known to have a large effect on perfor-
mance.

4. Experiment with different setups of the warps and the local size, etc.

5. Hide the memory transfer overhead. In the current design, we copy the data from CPU to GPU,
perform the processing on the GPU, and copy the result back. In an a-synchronous implemen-
tation, the data copying can be partially hidden by already starting kernel execution on the data
that has already been copied, and proceed as data enters the GPU.

6. Circumvent B-spline coefficient image overhead by enabling afloat typed image on the host.

7. Transfer the special B-spline interpolation CUDA code [9] to OpenCL.

8. In OpenCL, compilation is frequently performed at run-time. This however introduces overhead
of the compilation at run-time, especially for more complicated and extended pieces of code. It
is possible however to compile before run-time, which is to be investigated.

Coding improvements

1. Split ResampleImageFilterPost kernel into two kernels: a general one and one specific for the
B-spline interpolator.

2. Add extrapolation support, seeitk::ResampleImageFilter::SetExtrapolator() .

3. Improve ITK’s CPU-GPU synchronization. It is not always needed.

4. The new classesitk::OpenCLEvent and itk::OpenCLEventList have to be more deeply
integrated in the logic of the GPU processing pipeline to achieve better controlover the order of
the kernel execution.
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5. In the current implementation, filters use theitk::GPUKernelManager to start kernels by call-
ing LaunchKernel() . In OpenCL launching kernels does not necessary mean that they will be
executed immediately. Instead, the command is queued for execution. Therefore, the functions
OpenCLEvent::WaitForFinished() or OpenCLEventList::WaitForFinished() have to be
used more consistently. This has to be properly resolved to achieve correct executions of ITK
OpenCL pipelines, which usually implicitly assume synchronous execution.

6. After kernel pipeline execution, the GPU memory, OpenCL kernels, the device and other re-
sources have to be properly released or stopped, which is currently not done. The func-
tions free(clDevices) , clReleaseEvent() , clReleaseKernel() , clReleaseProgram() ,
clReleaseCommandQueue() , clReleaseContext() , clReleaseMemObject() , etc, can be
used for that.

Miscellaneous

1. Add AMD graphical card experimental results.

2. We experienced some stability problems when running the code using a Linux NVidia OpenCL
driver. These are marked as na in the experimental results. We are not sure about its cause. It
could be that our code has some issues that were only revealed on this specific platform, or that
current Linux NVidia OpenCL drivers are not correctly implemented. Future investigations are
needed.
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A Find OpenCL extensions

The following functionality has been added.

• Support for Intel/AMD/NVidia OpenCL platforms, and the ability to switch between these platforms.
In case of an AMD or Intel platform, the CMake variableOPENCL_USE_PLATFORM_AMD_GPU_CPUor
OPENCL_USE_PLATFORM_INTEL_GPU_CPUcontrols the CPU or GPU device selection.

• OpenCL Math Intrinsics options. These options control compiler behavior regarding floating-point
arithmetic. These options trade off between speed and correctness.

– OPENCL_MATH_SINGLE_PRECISION_CONSTANTTreat double precision floating-point constant as
single precision constant.

– OPENCL_MATH_DENORMS_ARE_ZEROThis option controls how single precision and double preci-
sion de-normalized numbers are handled.

• OpenCL Optimization options. These options control various sorts of optimizations. Turning on
optimization makes the compiler attempt to improve the performance and/or code size at the expense
of compilation time and possibly the ability to debug the program.
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– OPENCL_OPTIMIZATION_OPT_DISABLEThis option disables all optimizations. The default is
optimizations are enabled.

– OPENCL_OPTIMIZATION_STRICT_ALIASING This option allows the compiler to assume the
strictest aliasing rules.

– OPENCL_OPTIMIZATION_MAD_ENABLEAllow a * b + c to be replaced by a mad. The mad com-
putes a * b + c with reduced accuracy.

– OPENCL_OPTIMIZATION_NO_SIGNED_ZEROSAllow optimizations for floating-point arithmetic
that ignore the signedness of zero.

– OPENCL_OPTIMIZATION_UNSAFE_MATH_OPTIMIZATIONSAllow optimizations for floating-
point arithmetic.

– OPENCL_OPTIMIZATION_FINITE_MATH_ONLYAllow optimizations for floating-point arithmetic
that assume that arguments and results are not NaNs or +-infinity.

– OPENCL_OPTIMIZATION_FAST_RELAXED_MATHSets the optimization options -cl-finite-math-
only and -cl-unsafe-math-optimizations.

• OpenCL profilingOPENCL_PROFILINGwith CL_QUEUE_PROFILING_ENABLE. With this option event
objects can be used to capture profiling information that measure execution timeof a command.

• OpenCL options to request or suppress warnings.

– OPENCL_WARNINGS_DISABLEThis option inhibit all warning messages.

– OPENCL_WARNINGS_AS_ERRORSThis option make all warnings into errors.

• OpenCL options controlling the OpenCL C version.

– OPENCL_C_VERSION_1_1This option determine the OpenCL C language version to use. Support
all OpenCL C programs that use the OpenCL C language 1.1 specification.

– OPENCL_C_VERSION_1_2This option determine the OpenCL C language version to use. Support
all OpenCL C programs that use the OpenCL C language 1.2 specification.
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