
Geodesic Computations on Surfaces

Karthik Krishnan

June 27, 2013

Abstract

The computation of geodesic distances on a triangle mesh has many applications in geometry pro-

cessing. The fast marching method provides an approximation of the true geodesic distance field. We

provide VTK classes to compute geodesics on triangulated surface meshes. This includes classes for

computing the geodesic distance field from a set of seeds and to compute the geodesic curve between

source and destination point(s) by back-tracking along the gradient of the distance field. The fast march-

ing toolkit [3] is internally used. A variety of options are exposed to guide front propagation including

the ability to specify propagation weights, constrain to a region, specify exclusion regions, and distance

based termination criteria. Interpolators that plug into a contour widget, are provided to enable interactive

tracing of paths on meshes.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]

Distributed under Creative Commons Attribution License

Contents

1 Theoretical background 2

2 VTK Interface 2

2.1 Geodesic distances - vtkFastMarchingGeodesicDistance . 2

Propagation weights . 3

Exclusion Regions . 3

Termination Criteria . 3

Events . 3

Miscellaneous . 3

2.2 Tracing geodesic paths . 3

2.3 Computation time . 4

3 Examples 5

3.1 Computing Geodesic distance . 5

3.2 Specifying distance termination criteria . 5

3.3 Propagation Weights . 6

3.4 Exclusion Regions / Boundaries . 6

3.5 Tracing geodesic paths . 7

http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

2

1 Theoretical background

The computation of geodesic distances on a triangle mesh has many applications in geometry processing.

The fast marching method provides an approximation of the true geodesic distance field. This geodesic

distance to a collection of points satisfies a non-linear differential equation, namely the Eikonal equation. The

viscosity solution φ(x,y) of the Eikonal equation given by

||∇φ||= F (1)

is a weighted distance map from a set of initial (seed) points, where the value of φ is provided, or typically

assumed to be 0. The weights are given by the function F(x,y) which is a scalar positive function. In the

special case where the function F(x,y) is a constant, φ can be interpreted as the distance function to the

set of seeds. The level set curve, Ct , defined as points on the front of the function φ at time t propagates

following the evolution equation

δ

δt
Ct(x,y) =

nxy

P(x,y)
(2)

where nxy is the exterior unit normal vector to the curve at the point (x,y). The function F(x,y) = 1/P(x,y)
is the propagation speed of the front, Ct .

Efficient numerical solutions were introduced by Sethian [4] and adapted by Kimmel [1] on triangulated man-

ifolds:

||∇Mφ||= F (3)

where ∇Mφ is the gradient on the manifold, M. For further details, the reader is referred to [4, 1, 3].

A geodesic path between two points may be computed from the distance map, φ to one of the points, by

performing a gradient descent on the function φ.

2 VTK Interface

The VTK classes utilize the fast marching library [2] from Gabriel Peyre provided under a BSD license. The

VTK classes act as a wrapper around the library providing the bridge between datastructures and callbacks

in both libraries. This section serves as a user guide for the VTK classes.

2.1 Geodesic distances - vtkFastMarchingGeodesicDistance

In the simplest use case, vtkFastMarchingGeodesicDistance takes in a vtkPolyData reprsentative of a triangle

mesh and produces as output the same polydata with point attributes containing the distance field from a seed, or

set of seeds. It derives from an abstract base class vtkPolyDataGeodesicDistance, which inturn derives from

vtkPolyDataAlgorithm.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]

Distributed under Creative Commons Attribution License

www.vtk.org/doc/nightly/html/classvtkPolyData.html
www.vtk.org/doc/nightly/html/classvtkPolyDataAlgorithm.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

2.2 Tracing geodesic paths 3

Propagation weights

By default the filter assumes a constant propagation speed. However propagation weights may be explicitly specified

by the user using SetPropagationWeights. This takes as argument, a float/double array, with as many entries as the

number of vertices on the mesh. For instance the the mesh curvature may be used to propagate quickly in areas of low

curvature and slowly in areas of high curvature. Note that the propagation weights specified must be strictly positive for

fast marching to be numerically stable.

Exclusion Regions

Optionally, exclusion regions may be specified via SetExclusionPointIds(vtkIdList*). Vertices with ids that are

in the exclusion list are ommitted from inclusion in the fast marching front. This can be used to prevent bleeding into

certain regions. If the specified point ids form a closed, fully connected loop, this effectively serves as an exclusion

region boundary. Conversely, it can be used to confine fast marching to a specific region.

Termination Criteria

The fast marching may be prematurely terminated via any of the following optional stopping criteria. These are:

• Distance stop criterion: Propagation stops if any portion of the front has traversed more than the specified

distance from the seed(s). See SetDistanceStopCriterion(float).

• Destination vertex stop criterion: Propagation stops if any point in the front arrives at the user supplied desti-

nation vertex id(s). See SetDestinationVertexStopCriterion(vtkIdList*). This strategy is used when

computing the geodesic path interactively using the contour line interpolator (described later).

• Boundaries: If a boundary is specified via SetExclusionPointIds forming a closed boundary around the

seeds, propagation terminates when all vertices contained within the boundary have been visited.

Events

The filter reports IterationEvents. It does not report progress events, since its not possible to determine when the front

might terminate.

Miscellaneous

Other options include (a) querying the maximum distance marched by the front (b) setting the outside value (for vertices

that may not been visited) (c) specifying the distance field name and the ability to turn off its generation (for instance

computing the path need not allocate storage for a field on each vertex)

2.2 Tracing geodesic paths

The class vtkFastMarchingGeodesicPath (fig. 1(a)) computes geodesic paths on triangle meshes. It takes as input

a triangle mesh, a set of destination vertex ids and a source vertex id. The geodesic path is generated by traversing

along the gradient of the distance field to arrive at a destination vertex.

Internally an instance of vtkFastMarchingGeodesicDistance is used, and the same options that guide/control front

propagation can be used when computing the path. The distance field computation is performed such that it terminates

when the target seed has been reached so that it is localized and fast enough for interactive tracing. The path extraction

alone has an O(N) complexity, where N is the number of vertices in the path. The front propagation takes O(mlogm)
where m is the number of vertices contained in a circular patch of radius spanning the distance between the source and

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

2.3 Computation time 4

(a) Geodesic paths may be computed from a single source

to destination vertices using the Dijkstra algorithm or by gra-

dient backtracking of the distance field generated by fast

marching.

(b) The vtkPolygonalSurfaceContourLineInterpolator2 is an

interpolator that can be used by a contour widget to trace

paths on surfaces. These can use either instance of the

geodesic path shown on the left.

Figure 1

destination vertex. When the source and destination points are no more than a few thousand vertices apart the path

extraction is done in milliseconds and is suitable for real time tracing and editing of paths on meshes.

Paths may be generated so that they traverse between mesh vertices (linear interpolation) or may be constrained on

mesh vertices. The method SetInterpolationOrder allows one set the path interpolation order. A zeroth order path

passes through vertices of the mesh. A first order path passes in between vertices (linear interpolation is performed on

the triangle edges). Each point in the first order path is guarenteed to lie on a triangle edge.

A maximum path length may optionally be specified, in which case, the gradient based back-tracking may stop prema-

turely (once the specified length is exceeded).

The point ids of the vertices on the mesh (in case of zeroth order interpolation) or closest vertices on the mesh (in

case of first order interpolation) that connect the source to the destination point may be queried. This can be used for

interactive surface clipping.

The class vtkPolygonalSurfaceContourLineInterpolator2 enables interactive tracing on polygonal sur-

faces. It is one of a growing family (see fig. 1(b)) of contour line interpolators that make the

vtkContourWidget a powerful tool enabling contouring subject to a variety of constraints. It can replace

vtkPolygonalSurfaceContourLineInterpolator, since it retains its public API but provides added functionality.

This interpolator is meant to be used in conjunction with a vtkPolygonalSurfacePointPlacer which constrains

nodes dropped using a contour widget to vertices that lie on the surface of the mesh. As points are interactively placed

using the widget, it computes the path joining these nodes on the 2D manifold. There is a weak coupling between

the classes allowing the picked point id to be queried by the interpolator from the placer, so that picking (which for

large meshes can be expensive) may be performed only once. The path may internally be generated using the Dijkstra

algorithm, or by fast marching as described above. Fast marching with first order interpolation, unlike Dijkstra, allows

the generation of smooth paths. Weighted constraints (as described above) may be used to preferentially displace the

path based on features on the surface.

2.3 Computation time

The complexity of this method is O(NlogN), where N is the number of mesh vertices. Hoppes et. al. compare, the

runtime performance of this implementation with their and other implementations. The results are available in Table 1

[5]. On a mesh with 10000 vertices, fast marching using this method is reported to take 3.5s on a Pentium M 1.6GHz

with 1GB RAM.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]

Distributed under Creative Commons Attribution License

www.vtk.org/doc/nightly/html/classvtkContourWidget.html
www.vtk.org/doc/nightly/html/classvtkPolygonalSurfaceContourLineInterpolator.html
www.vtk.org/doc/nightly/html/classvtkPolygonalSurfacePointPlacer.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

5

Figure 2: Geodesic distance using fast marching.

3 Examples

A subset of the scenarios discussed above are illustrated below with examples, included with this package. The Stanford

Bunny (provided with this package) is used for all examples.

3.1 Computing Geodesic distance

The program GeodesicDistanceExample.cxx uses the vtkFastMarchingGeodesicDistance to compute a

geodesic distance field on a surface. Run it with the arguments

Bunny.vtp BunnyWithDistField.vtp

Pick any point on the displayed surface. The resulting image is the geodesic distance from the chosen point (see Fig. 2)

colored by the distance from the chosen point. The point data array FMMDist is populated with the distances.

vtkFastMarchingGeodesicDistance *gd = vtkFastMarchingGeodesicDistance::New();

gd->SetInputConnection(polydata);

gd->SetFieldDataName("FMMDist");

3.2 Specifying distance termination criteria

Run the example as before but with the arguments

Bunny.vtp out.vtp --maxDist 0.7

This specifies distance threshold to terminate the front propagation by adding a line to the effect of

gd->SetDistanceStopCriterion (0.7);

The result is as shown in Fig. 3(a). The strategy can also be used to extract the surface within a given distance of the

seed(s).

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

3.3 Propagation Weights 6

(a) Fast marching upto a distance

threshold of 0.7 mm

(b) Propagation weights are specified as the curvature of

the point ids. This is observed in the assymetry in the iso-

lines, which travel faster to the shorter axis of the point of

least curvature on the ellipsoid.

Figure 3

3.3 Propagation Weights

Propagation weights may be specified as a data array. For instance one can pass the mesh through the vtkCurvatures

filter and specify the curvature data array as the propagation weight for the vertices.

gd->SetPropagationWeights(dataArray);

Run the same example with the arguments

Ellipsoid.vtp output.vtp --propagationWts CurvWt

This result is shown in Fig. 3(b). Note that, as expected, the field traverses faster towards the left than towards the right.

3.4 Exclusion Regions / Boundaries

Exclusion regions may be specified via a list of PointIds comprising the exclusion regions. Note that if the exclusion

regions, comprise a closed loop, around the seeds, this effectively becomes a boundary for the front. The following

example demonstrates this. We run the same example with the arguments

Bunny.vtp output.vtp --exclusionContour

Once the render window comes up, drop points on the surface to trace a contour, looping back t to the first one, so as

to close the contour. After, the contour is closed, pick any point on the surface within the contour. Here we extract the

bunny’s head (see Fig. 4 by tracing a contour around its neck and then pass these point ids as the exclusion region :

// Query the traced contour’s point ids

dijkstraContourInterp ->GetContourPointIds(contourRepresentation , exclusionPtIds);

gd->SetExclusionPointIds(ids); // Provide the ids as an exclusion region

You may peruse the example which also demonstates the use of a vtkContourWidget in conjunction with a

vtkDijkstraContourLineInterpolator to trace the boundary contour.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]

Distributed under Creative Commons Attribution License

www.vtk.org/doc/nightly/html/classvtkCurvatures.html
www.vtk.org/doc/nightly/html/classvtkContourWidget.html
www.vtk.org/doc/nightly/html/classvtkDijkstraContourLineInterpolator.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

3.5 Tracing geodesic paths 7

Figure 4: Exclusion regions or boundaries may be specified.

3.5 Tracing geodesic paths

The program GeodesicPathExample.cxx demonstrates tracing a path interactively using a vtkContourWidget on a

surface mesh. Its arguments are

surface.vtp [Method (0=Dijkstra ,1=FastMarching)] [InterpOrder (0=NN ,1=Linear)] [heightOffset]

Fig. 5 shows the paths generated using various methods. Typically, the path computed using linear interpolation with

fast marching is shorter than that computed with zeroth order interpolation using Dijkstra or with fast marching. Note that

the zeroth order paths using both methods (Dijkstra or FastMarching) need not be identical (as may also be observed

in the figure). The Dijkstra method provides the true shortest zeroth order path, while that obtained from fast marching

is (a) an approximation (b) clamps the first order path to its closest vertices and could be longer. The computation times

of both methods are nearly the same. The heightOffset argument allows one to displace the path in the direction of the

surface normal.

vtkNew <vtkPolygonalSurfaceContourLineInterpolator2 > interpolator;

// Add all the surfaces to which the path is to be constrained

interpolator ->GetPolys()->AddItem(surfaceMesh);

// Set the method to compute the geodesic (fast marching or dijkstra)

interpolator ->SetGeodesicMethodToFastMarching ();

interpolator ->SetInterpolationOrder(1); // use first order interp

rep ->SetLineInterpolator(interpolator.GetPointer());

// Setup the point placer used to constrain picking on the surface

vtkNew <vtkPolygonalSurfacePointPlacer > pointPlacer;

pointPlacer ->AddProp(actor.GetPointer());

pointPlacer ->GetPolys()->AddItem(surfaceMesh);

rep ->SetPointPlacer(pointPlacer.GetPointer());

// Snap the contour nodes to the closest vertices on the mesh

pointPlacer ->SnapToClosestPointOn ();

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]

Distributed under Creative Commons Attribution License

www.vtk.org/doc/nightly/html/classvtkContourWidget.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

References 8

(a) Fast marching first order interpo-

lation

(b) Fast marching zeroth order in-

terpolation

(c) Dijkstra (zeroth order interpola-

tion)

Figure 5: Geodesic paths generated using various methods

References

[1] R. Kimmel and J. Sethian. Computing geodesic paths on manifolds. In Procedings of the National Academy of

Sciences, volume 95, July 1998. 1, 1

[2] G. Peyre. http://geodesics4meshes.googlecode.com. 2

[3] Gabriel Peyre and Laurent D. Cohen. Geodesic remeshing using front propagation. International Journal of Com-

puter Vision, pages 145–156, 2006. (document), 1

[4] J. A. Sethian. Fast marching methods. SIAM Review, 41:199–235, 1998. 1, 1

[5] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. Gortler, and H. Hoppe. Computing geodesic paths on manifolds. 24,

2005. http://research.microsoft.com/en-us/um/people/hoppe/geodesics.pdf. 2.3

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

	Theoretical background
	VTK Interface
	Geodesic distances - vtkFastMarchingGeodesicDistance
	Propagation weights
	Exclusion Regions
	Termination Criteria
	Events
	Miscellaneous

	Tracing geodesic paths
	Computation time

	Examples
	Computing Geodesic distance
	Specifying distance termination criteria
	Propagation Weights
	Exclusion Regions / Boundaries
	Tracing geodesic paths

