Geodesic Computations on Surfaces
Karthik Krishnan

June 27, 2013

Abstract

The computation of geodesic distances on a triangle mesh has many applications in geometry pro-
cessing. The fast marching method provides an approximation of the true geodesic distance field. We
provide VTK classes to compute geodesics on triangulated surface meshes. This includes classes for
computing the geodesic distance field from a set of seeds and to compute the geodesic curve between
source and destination point(s) by back-tracking along the gradient of the distance field. The fast march-
ing toolkit [3] is internally used. A variety of options are exposed to guide front propagation including
the ability to specify propagation weights, constrain to a region, specify exclusion regions, and distance
based termination criteria. Interpolators that plug into a contour widget, are provided to enable interactive
tracing of paths on meshes.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]
Distributed under Creative Commons Attribution License

Contents
1 Theoretical background 2
2 VTK Interface 2
2.1 Geodesic distances - vikFastMarchingGeodesicDistance 2
Propagation weights L 3
Exclusion Regions e 3
Termination Criteria e 3
Events e e 3
Miscellaneous e 3
2.2 Tracinggeodesicpaths L 3
2.3 Computationtime 4
3 Examples 5
3.1 Computing Geodesic distance 5
3.2 Specifying distance termination criteria Lo 5
3.3 Propagation Weights L 6
3.4 Exclusion Regions/Boundaries L e 6

3.5 Tracinggeodesicpaths e 7

http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

1 Theoretical background

The computation of geodesic distances on a triangle mesh has many applications in geometry processing.
The fast marching method provides an approximation of the true geodesic distance field. This geodesic
distance to a collection of points satisfies a non-linear differential equation, namely the Eikonal equation. The
viscosity solution ¢(x,y) of the Eikonal equation given by

Vol =F (1)

is a weighted distance map from a set of initial (seed) points, where the value of ¢ is provided, or typically
assumed to be 0. The weights are given by the function F(x,y) which is a scalar positive function. In the
special case where the function F(x,y) is a constant, ¢ can be interpreted as the distance function to the
set of seeds. The level set curve, C;, defined as points on the front of the function ¢ at time ¢ propagates
following the evolution equation

o Ny
gCt(xhy) - P(x,y) (2)

where n,, is the exterior unit normal vector to the curve at the point (x,y). The function F(x,y) = 1/P(x,y)
is the propagation speed of the front, C;.

Efficient numerical solutions were introduced by Sethian [4] and adapted by Kimmel [1] on triangulated man-
ifolds:

IVuo|| =F (3)

where V¢ is the gradient on the manifold, M. For further details, the reader is referred to [4, 1, 3].

A geodesic path between two points may be computed from the distance map, ¢ to one of the points, by
performing a gradient descent on the function ¢.

2 VTK Interface

The VTK classes utilize the fast marching library [2] from Gabriel Peyre provided under a BSD license. The
VTK classes act as a wrapper around the library providing the bridge between datastructures and callbacks
in both libraries. This section serves as a user guide for the VTK classes.

2.1 Geodesic distances - vtkFastMarchingGeodesicDistance

In the simplest use case, vtkFastMarchingGeodesicDistance takes in a vtkPolyData reprsentative of a triangle
mesh and produces as output the same polydata with point attributes containing the distance field from a seed, or
set of seeds. It derives from an abstract base class vtkPolyDataGeodesicDistance, which inturn derives from
vtkPolyDataAlgorithm.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]
Distributed under Creative Commons Attribution License

www.vtk.org/doc/nightly/html/classvtkPolyData.html
www.vtk.org/doc/nightly/html/classvtkPolyDataAlgorithm.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

2.2 Tracing geodesic paths 3

Propagation weights

By default the filter assumes a constant propagation speed. However propagation weights may be explicitly specified
by the user using SetPropagationWeights. This takes as argument, a float/double array, with as many entries as the
number of vertices on the mesh. For instance the the mesh curvature may be used to propagate quickly in areas of low
curvature and slowly in areas of high curvature. Note that the propagation weights specified must be strictly positive for
fast marching to be numerically stable.

Exclusion Regions

Optionally, exclusion regions may be specified via SetExclusionPointIds (vtkIdList*). Vertices with ids that are
in the exclusion list are ommitted from inclusion in the fast marching front. This can be used to prevent bleeding into
certain regions. If the specified point ids form a closed, fully connected loop, this effectively serves as an exclusion
region boundary. Conversely, it can be used to confine fast marching to a specific region.

Termination Criteria
The fast marching may be prematurely terminated via any of the following optional stopping criteria. These are:

e Distance stop criterion: Propagation stops if any portion of the front has traversed more than the specified
distance from the seed(s). See SetDistanceStopCriterion (float).

e Destination vertex stop criterion: Propagation stops if any point in the front arrives at the user supplied desti-
nation vertex id(s). See SetDestinationVertexStopCriterion (vtkIdList*). This strategy is used when
computing the geodesic path interactively using the contour line interpolator (described later).

e Boundaries: If a boundary is specified via SetExclusionPointIds forming a closed boundary around the
seeds, propagation terminates when all vertices contained within the boundary have been visited.

Events

The filter reports lterationEvents. It does not report progress events, since its not possible to determine when the front
might terminate.

Miscellaneous

Other options include (a) querying the maximum distance marched by the front (b) setting the outside value (for vertices
that may not been visited) (c) specifying the distance field name and the ability to turn off its generation (for instance
computing the path need not allocate storage for a field on each vertex)

2.2 Tracing geodesic paths

The class vtkFastMarchingGeodesicPath (fig. 1(a)) computes geodesic paths on triangle meshes. It takes as input
a triangle mesh, a set of destination vertex ids and a source vertex id. The geodesic path is generated by traversing
along the gradient of the distance field to arrive at a destination vertex.

Internally an instance of vtkFastMarchingGeodesicDistance is used, and the same options that guide/control front
propagation can be used when computing the path. The distance field computation is performed such that it terminates
when the target seed has been reached so that it is localized and fast enough for interactive tracing. The path extraction
alone has an O(N) complexity, where N is the number of vertices in the path. The front propagation takes O(mlogm)
where m is the number of vertices contained in a circular patch of radius spanning the distance between the source and

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

2.3 Computation time 4

vikPolyDataAlgorithm vitkContourLineInterpolator
vtkGeodesicPath vtkBezier.. yt/kDi j kstra}ql age.. vtkLinear..
vtkPolygonalSurface.. vtkTerrain..

vtkFastMarchingGeodesicPath| |vtkDijkstraGraphGeodesicPath

(a) Geodesic paths may be computed from a single source (b) The vtkPolygonalSurfaceContourLinelnterpolator2 is an
to destination vertices using the Dijkstra algorithm or by gra- interpolator that can be used by a contour widget to trace
dient backtracking of the distance field generated by fast paths on surfaces. These can use either instance of the
marching. geodesic path shown on the left.

Figure 1

destination vertex. When the source and destination points are no more than a few thousand vertices apart the path
extraction is done in milliseconds and is suitable for real time tracing and editing of paths on meshes.

Paths may be generated so that they traverse between mesh vertices (linear interpolation) or may be constrained on
mesh vertices. The method Set InterpolationOrder allows one set the path interpolation order. A zeroth order path
passes through vertices of the mesh. A first order path passes in between vertices (linear interpolation is performed on
the triangle edges). Each point in the first order path is guarenteed to lie on a triangle edge.

A maximum path length may optionally be specified, in which case, the gradient based back-tracking may stop prema-
turely (once the specified length is exceeded).

The point ids of the vertices on the mesh (in case of zeroth order interpolation) or closest vertices on the mesh (in
case of first order interpolation) that connect the source to the destination point may be queried. This can be used for
interactive surface clipping.

The class vtkPolygonalSurfaceContourLineInterpolator2 enables interactive tracing on polygonal sur-
faces. It is one of a growing family (see fig. 1(b)) of contour line interpolators that make the
vtkContourWidget a powerful tool enabling contouring subject to a variety of constraints. It can replace
vtkPolygonalSurfaceContourLineInterpolator, since it retains its public APl but provides added functionality.

This interpolator is meant to be used in conjunction with a vtkPolygonalSurfacePointPlacer which constrains
nodes dropped using a contour widget to vertices that lie on the surface of the mesh. As points are interactively placed
using the widget, it computes the path joining these nodes on the 2D manifold. There is a weak coupling between
the classes allowing the picked point id to be queried by the interpolator from the placer, so that picking (which for
large meshes can be expensive) may be performed only once. The path may internally be generated using the Dijkstra
algorithm, or by fast marching as described above. Fast marching with first order interpolation, unlike Dijkstra, allows
the generation of smooth paths. Weighted constraints (as described above) may be used to preferentially displace the
path based on features on the surface.

2.3 Computation time

The complexity of this method is O(NlogN), where N is the number of mesh vertices. Hoppes et. al. compare, the
runtime performance of this implementation with their and other implementations. The results are available in Table 1
[5]. On a mesh with 10000 vertices, fast marching using this method is reported to take 3.5s on a Pentium M 1.6GHz
with 1GB RAM.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]
Distributed under Creative Commons Attribution License

www.vtk.org/doc/nightly/html/classvtkContourWidget.html
www.vtk.org/doc/nightly/html/classvtkPolygonalSurfaceContourLineInterpolator.html
www.vtk.org/doc/nightly/html/classvtkPolygonalSurfacePointPlacer.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

FMMDist
0.18318

FMMDist
1.89377

Figure 2: Geodesic distance using fast marching.

3 Examples

A subset of the scenarios discussed above are illustrated below with examples, included with this package. The Stanford
Bunny (provided with this package) is used for all examples.

3.1 Computing Geodesic distance

The program GeodesicDistanceExample.cxx uses the vtkFastMarchingGeodesicDistance to compute a
geodesic distance field on a surface. Run it with the arguments

Bunny.vtp BunnyWithDistField.vtp
Pick any point on the displayed surface. The resulting image is the geodesic distance from the chosen point (see Fig. 2)
colored by the distance from the chosen point. The point data array FMMDi st is populated with the distances.

vtkFastMarchingGeodesicDistance *gd = vtkFastMarchingGeodesicDistance::New ();
gd->SetInputConnection (polydata);
gd->SetFieldDataName ("FMMDist");

3.2 Specifying distance termination criteria

Run the example as before but with the arguments

Bunny.vtp out.vtp --maxDist 0.7

This specifies distance threshold to terminate the front propagation by adding a line to the effect of

gd->SetDistanceStopCriterion (0.7);

The result is as shown in Fig. 3(a). The strategy can also be used to extract the surface within a given distance of the
seed(s).

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

3.3 Propagation Weights 6

(b) Propagation weights are specified as the curvature of
the point ids. This is observed in the assymetry in the iso-
(a) Fast marching upto a distance lines, which travel faster to the shorter axis of the point of
threshold of 0.7 mm least curvature on the ellipsoid.

Figure 3

3.3 Propagation Weights

Propagation weights may be specified as a data array. For instance one can pass the mesh through the vtkCurvatures
filter and specify the curvature data array as the propagation weight for the vertices.

gd->SetPropagationWeights (dataArray);

Run the same example with the arguments

Ellipsoid.vtp output.vtp --propagationWts CurvWt

This result is shown in Fig. 3(b). Note that, as expected, the field traverses faster towards the left than towards the right.

3.4 Exclusion Regions / Boundaries

Exclusion regions may be specified via a list of Pointlds comprising the exclusion regions. Note that if the exclusion
regions, comprise a closed loop, around the seeds, this effectively becomes a boundary for the front. The following
example demonstrates this. We run the same example with the arguments

Bunny.vtp output.vtp --exclusionContour

Once the render window comes up, drop points on the surface to trace a contour, looping back t to the first one, so as
to close the contour. After, the contour is closed, pick any point on the surface within the contour. Here we extract the
bunny’s head (see Fig. 4 by tracing a contour around its neck and then pass these point ids as the exclusion region :

// Query the traced contour’s point ids
dijkstraContourInterp->GetContourPointIds (contourRepresentation, exclusionPtIds);
gd->SetExclusionPointIds (ids); // Provide the ids as an exclusion region

You may peruse the example which also demonstates the use of a vtkContourWidget in conjunction with a
vtkDijkstraContourLineInterpolator to trace the boundary contour.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]
Distributed under Creative Commons Attribution License

www.vtk.org/doc/nightly/html/classvtkCurvatures.html
www.vtk.org/doc/nightly/html/classvtkContourWidget.html
www.vtk.org/doc/nightly/html/classvtkDijkstraContourLineInterpolator.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

3.5 Tracing geodesic paths 7

FMMDist
1.15

Figure 4: Exclusion regions or boundaries may be specified.

3.5 Tracing geodesic paths

The program GeodesicPathExample.cxx demonstrates tracing a path interactively using a vtkContourWidget on a
surface mesh. Its arguments are

surface.vtp [Method (0=Dijkstra,l=FastMarching)] [InterpOrder (0=NN,l=Linear)] [heightOffset]

Fig. 5 shows the paths generated using various methods. Typically, the path computed using linear interpolation with
fast marching is shorter than that computed with zeroth order interpolation using Dijkstra or with fast marching. Note that
the zeroth order paths using both methods (Dijkstra or FastMarching) need not be identical (as may also be observed
in the figure). The Dijkstra method provides the true shortest zeroth order path, while that obtained from fast marching
is (a) an approximation (b) clamps the first order path to its closest vertices and could be longer. The computation times
of both methods are nearly the same. The heightOffset argument allows one to displace the path in the direction of the
surface normal.

vtkNew<vtkPolygonalSurfaceContourLineInterpolator2> interpolator;

// Add all the surfaces to which the path is to be constrained
interpolator->GetPolys () ->AddItem(surfaceMesh);

// Set the method to compute the geodesic (fast marching or dijkstra)
interpolator->SetGeodesicMethodToFastMarching () ;
interpolator->SetInterpolationOrder (1); // use first order interp
rep->Setlinelnterpolator (interpolator.GetPointer ());

// Setup the point placer used to constrain picking on the surface
vtkNew<vtkPolygonalSurfacePointPlacer> pointPlacer;
pointPlacer ->AddProp (actor.GetPointer ());
pointPlacer->GetPolys () ->AddItem(surfaceMesh);
rep->SetPointPlacer (pointPlacer.GetPointer ());

// Snap the contour nodes to the closest vertices on the mesh
pointPlacer->SnapToClosestPointOn () ;

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]
Distributed under Creative Commons Attribution License

www.vtk.org/doc/nightly/html/classvtkContourWidget.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

References 8

(a) Fast marching first order interpo- (b) Fast marching zeroth order in- (c) Dijkstra (zeroth order interpola-
lation terpolation tion)

Figure 5: Geodesic paths generated using various methods

References

[1] R. Kimmel and J. Sethian. Computing geodesic paths on manifolds. In Procedings of the National Academy of
Sciences, volume 95, July 1998. 1, 1

[2] G. Peyre. http://geodesicsdmeshes.googlecode.com. 2

[3] Gabriel Peyre and Laurent D. Cohen. Geodesic remeshing using front propagation. International Journal of Com-
puter Vision, pages 145-156, 2006. (document), 1

[4] J. A. Sethian. Fast marching methods. SIAM Review, 41:199-235, 1998. 1, 1

[5] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. Gortler, and H. Hoppe. Computing geodesic paths on manifolds. 24,
2005. http://research.microsoft.com/en-us/um/people/hoppe/geodesics.pdf. 2.3

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3415]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3415
http://creativecommons.org/licenses/by/3.0/us/

	Theoretical background
	VTK Interface
	Geodesic distances - vtkFastMarchingGeodesicDistance
	Propagation weights
	Exclusion Regions
	Termination Criteria
	Events
	Miscellaneous

	Tracing geodesic paths
	Computation time

	Examples
	Computing Geodesic distance
	Specifying distance termination criteria
	Propagation Weights
	Exclusion Regions / Boundaries
	Tracing geodesic paths

