
A Generalized Squared Euclidean Distance
Transform with Voronoi Maps

B. King, R. Döker, S. Meier, H. Shin, and M. Galanski

May 22, 2006

Department of Diagnostic Radiology
Hannover Medical School

Carl-Neuberg-Str. 1
D-30625 Hannover

Germany

Abstract

This document describes the implementation of an algorithm that computes a generalization of the dis-
tance transform with the squared euclidean metric.

The generalization allows for interesting image operators, e.g. a morphologic dilation with euclidean
ball structure elements that can vary in size across the image. Voronoi maps and the standard distance
transform can be computed as well.

The algorithm is provided as an image processing filter for ITK. Several example programs demon-
strate its applications.

Contents

1 Introduction 2

2 Generalized Distance Transforms of Sampled Functions 2
2.1 Squared Euclidean Distance . 3
2.2 Generalized Squared Euclidean Distance Transform of a Sampled Function 3

3 Implementation 5
3.1 itk::LowerEnvelopeOfParabolas . 5

Intersection of Parabolas . 6
Preventing Arithmetic Overflow . 6
Precision . 8

3.2 itk::GeneralizedDistanceTransformImageFilter . 8

4 Applications 8
4.1 Euclidean Distance Transform . 8
4.2 Voronoi Map . 9
4.3 Vector Map . 10
4.4 Signed Euclidean Distance Transform . 10
4.5 Union of Spheres . 10

2

5 Performance 12
5.1 Time . 12
5.2 Cache . 14

6 Discussion and Future Work 14

1 Introduction

Distance transforms are versatile image processing operators rich in applications. They are used in level set
segmentation, watershed segmentation, skeletonization, and medial axis transform, for example [Sethian,
1996, Roerdink and Meijster, 2000, Toriwaki and Mori, 2001, Ge and Fitzpatrick, 1996]. They can also
be applied to compute dilations and erosions for spherical structure elements in mathematical morphol-
ogy [Cuisenaire, 2006].

Since the seminal paper by Danielsson [1980], the canonical solution to efficient distance transforms is the
algorithm described therein. ITK provides an N-dimensional implementation that computes a Voronoi map
and a vector distance map as well.

There are quite a few algorithms for computing a distance transform some of which are in the same com-
plexity class as the one by Danielsson while also achieving better precision. Cuisenaire [1999] gives an
excellent survey in his PhD thesis. Recently, a fast algorithm by Maurer et al. [2003] has been implemented
in ITK by Tustison et al. [2006].

In search of an algorithm that can compute the union of many spheres efficiently, we discovered a general-
ization of the distance transform which fits to that problem rather nicely [Felzenszwalb and Huttenlocher,
2004]. The algorithm has linear complexity in the number of voxels in the image: O(NM N) for an N-
dimensional image with MN voxels. Felzenszwalb and Huttenlocher [2004] provide an implementation in
C.

We implemented this algorithm as an itk::ImageToImageFilter and added the possibility to generate
Voronoi maps.

The remainder of this paper is structured as follows: First, we will define the generalized distance transform
and explain the algorithm. Next, we will present our implementation and subsequently give examples for its
use. This is followed by an analysis of runtime and memory performance and by closing remarks.

In addition to the image filter itself, we distribute all other code and data that took part in creation of this
paper.

2 Generalized Distance Transforms of Sampled Functions

Given an image domain D ⊂ R
N , a segmented object S ⊂ D, and a metric d : D×D → R, the distance

transform DTS of S is defined as:

DTS :

{

D → R

x 7→ mins∈S(d(x,s))
(1)

http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html

2.1 Squared Euclidean Distance 3

An alternative is to provide S in form of an indicator function iS : D →{0,∞}:

iS(x) :=

{

0 if x ∈ S,

∞ otherwise.
(2)

The distance transform of such a function is then given by:

DTiS(x) := min
y∈D

(d(x,y)+ iS(y)) (3)

Felzenszwalb and Huttenlocher [2004] generalize this concept by allowing arbitrary functions f : D → R∪
{∞} in place of iS.

2.1 Squared Euclidean Distance

One algorithm described in [Felzenszwalb and Huttenlocher, 2004] uses the squared euclidean distance met-
ric d(x,y) = (x− y)2. It is of importance, because in multidimensional images, it allows for an iterative
solution where each step is one-dimensional. The following example is formulated for D = R

2 but extends
to arbitrary dimension:

DT f ((x1,x2))

= min
(s1,s2)∈R2

((s1 − x1)
2 +(s2 − x2)

2 + f (s1,s2))

=min
s2∈R

((s2 − x2)
2 + min

s1∈R

((s1 − x1)
2 + f (s1,s2)))

=min
s2∈R

((s2 − x2)
2 +DT f |s2

(x1))

(4)

DT f |s2
(x1) is the one-dimensional distance transform restricted to row s2.

Hence, the distance transform of an N-dimensional image can be computed by iterating over the dimensions
and performing a one-dimensional transform for each scanline, using the result of the preceeding iteration
as function f .

For the next few sections, we restrict our discussion to the one-dimensional case.

2.2 Generalized Squared Euclidean Distance Transform of a Sampled Function

Let G = {0,s, . . . ,(n − 1)s} be a one-dimensional grid with spacing s and let f be a sampled function
f : G → R.

Then, DT f (x) = minx′∈G((x−x′)2 + f (x′)). The graph of the function px′(x) = (x−x′)2 + f (x′) is a parabola
with apex at (x′, f (x′)) and DT f (x) finds the lower envelope of all such parabolas (Figs. 1, 2).

This lower envelope is constructed by considering px′ for increasing x′:

Say we already have found the parabolas participating in the lower envelope for p0 up to pi−1 (Fig. 2). Let
the rightmost parabola in the envelope be pl .

2.2 Generalized Squared Euclidean Distance Transform of a Sampled Function 4

Figure 1: A distance transform with the squared euclidean distance for three points, visualized as a height field. It

becomes apparent that this is the minimum of paraboloids.

The next parabola pi has its apex to the right of any of the other parabolas and will thus be below all of them
from some point onwards. We find this point by intersecting pi with pl :

pi(x) = pl(x)

⇔ (x− i)2 + f (i) = (x− l)2 + f (l)

⇔ x2 −2xi+ i2 + f (i) = x2 −2xl + l2 + f (l)

⇔ x(2l −2i) = l2 − i2 + f (l)− f (i)

⇔ x =
l2 − i2 + f (l)− f (i)

2(l − i)

⇔ x =
1
2

(

l2 − i2

l− i
+

f (l)− f (i)
l− i

)

⇔ x =
1
2

(

l + i+
f (l)− f (i)

l − i

)

(5)

The new parabola pi will be strictly below pl in the interval (x,∞).

We define the dominance interval of a parabola as the region where it is strictly below all other parabolas.
If x is at or to the left of the dominance interval of pl , then pl does not participate in the lower envelope
anymore. It has to be removed and the intersection has to be repeated with the parabola preceeding p l . This
process terminates eventually, because the dominance interval of p0 starts at −∞.

Each parabola will be inserted excactly once and will be removed at most once. Therefore the algorithm has
linear complexity.

5

p0

p1

p2

p3

p4

p4

Figure 2: Three of the four black parabolas p0, . . . , p3 participate in the lower envelope. If we added the green parabola

p4 with the high apex next, we would not have to delete p3 from the envelope. If we added the red parabola p4 with the

low apex instead, p3 would have to be removed from the lower envelope.

When the lower envelope is completed, it represents the continuous distance transform of the sampled
function f . Uniform sampling of the envelope at points in G has linear complexity as well.

For further details and proofs, we refer the reader to [Meijster et al., 2000, Felzenszwalb and Huttenlocher,
2004].

3 Implementation

We implemented the algorithm as an itk::ImageToImageFilter and extended it with the option to create
a Voronoi map as well.

To make some optimizations available at compile time, template variables can switch off the use of image
spacing and the creation of a Voronoi map. In code, this is implemented by ifs whose unused branch
is optimized by the compiler during dead-code elimination. This makes it easy to create an alternative
implementation which can switch behaviour at runtime.

3.1 itk::LowerEnvelopeOfParabolas

This class template implements the algorithm described in 2.2. Its template parameters are:

bool UseSpacing Indicates whether image spacing should be respected or assumed to be 1.

http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html

3.1 itk::LowerEnvelopeOfParabolas 6

class TSpacingType Represents image positions in world coordinates. It must have at least the range
of the other numerical types.

unsigned char MinimalSpacingPrecision Number of decimal places for the image spacing
that can be used with this class.

bool CreateVoronoiMap Indicates whether a Voronoi map should be created during computation of
the distance transform.

class TLabelType Represents voxels in the Voronoi map. If Voronoi maps are used, parabolas are
carrying a value of type TLabelType with them. During the uniform sampling of the lower envelope,
these values are written to the Voronoi map.

class TAbscissaIndexType The abscissas of parabola apexes and dominance region borders are
stored in this signed type. They are only converted to world coordinates when necessary by multipli-
cation with the spacing. In this way, most of the computation can be carried out in integer arithmetic.

class TApexHeightType The ordinates of parabola values are stored in this signed type. In
itk::GeneralizedDistanceTransformImageFilter this is the type of voxels in the distance im-
age.

Intersection of Parabolas

In section 2.2 we have derived the following formula for the intersection of two parabolas p i(x) = (x− i)2 +
f (i) and pl(x) = (x− l)2 + f (l):

x =
1
2

(

l + i+
f (l)− f (i)

l− i

)

(6)

First of all, we carry out all computations on the grid G with uniform spacing s. Let ã := a
s for a ∈ R in

order to let us define parabola apex abscissas in integers:

x =
1
2

(

l + i+
f (l)− f (i)

l− i

)

⇔ x̃ s =
1
2

(

s(l̃ + ĩ)+
f (l)− f (i)

s(l̃ − ĩ)

)

⇔ x̃ =
1
2

(

l̃ + ĩ +
f (l)− f (i)

s2(l̃ − ĩ)

)

(7)

If l̃ > ĩ , then pl is below pi in the interval (x̃ s,∞).

Preventing Arithmetic Overflow

itk::LowerEnvelopeOfParabolas defines the static class variables minimalSpacing, maxAbscissa, and
maxApexHeight that are used to prevent arithmetic overflows.

minimalSpacing is set by the user indirectly via the number of required decimal places. This is spec-
ified by the template parameter MinimalSpacingPrecision. To prevent floating point underflow and a

http://www.itk.org/Doxygen/html/classitk_1_1GeneralizedDistanceTransformImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1LowerEnvelopeOfParabolas.html

3.1 itk::LowerEnvelopeOfParabolas 7

division by zero in the intersection computation, we assert that SpacingType can represent the square of
minimalSpacing:

assert(0 < minimalSpacing * minimalSpacing)

The addition and subtraction of the abscissa indices ĩ and l̃ in equation 7 is carried out in
AbscissaIndexType. To prevent overflows we set

maxAbscissa = numeric_limits<AbscissaIndexType>::max() / 2

and assert that all index coordinates are in the range [−maxAbscissa,maxAbscissa].

The subtraction f (l)− f (i) in equation 7 is carried out in ApexHeightType and therefore we have an analog
upper bound for maxApexHeight. But since the rest of the computation is carried out in SpacingType, there
is another bound to be met.

In order to simplify the derivation of maxApexHeight, we introduce the following abbreviations:

S = numeric_limits<SpacingType>::max()
m = minimalSpacing
A = numeric_limits<AbscissaIndexType>::max()
a = maxAbscissa = A/2
H = numeric_limits<ApexHeightType>::max()
h = maxApexHeight

Then we have:

1
2

(

l̃ + ĩ +
f (l)− f (i)

s2(l̃ − ĩ)

)

≤ a+a+
h− (−h)

m2 ≤ S

⇔ 2a+
2h
m2 ≤ S

⇔ h ≤
m2(S−2a)

2

(8)

and can set

maxApexHeight = min(H/2, (S-2*a)*mˆ2/2)

These constraints are enforced with assert() and have no additional runtime cost in production code.

While arithmetic overflows and underflows can be successfully prevented in the intersection of parabolas,
overflows can still happen during the sampling of the lower envelope, causing a wraparound of distance
values. If this should be avoided, the user has to provide a SpacingType that can hold the largest expected
distance value for the images in her application.

3.2 itk::GeneralizedDistanceTransformImageFilter 8

Precision

Let us review the intersection formula again:

x̃ =
1
2

(

l̃ + ĩ +
f (l)− f (i)

s2(l̃ − ĩ)

)

(9)

The envelope is sampled only at G. Since (x̃ s,∞)∩G = (bx̃cs,∞)∩G, the left interval border index can be
represented with the integer bx̃c instead of x̃ .

If AbscissaIndexType, ApexHeightType and SpacingType are integer types, then all arithmetic opera-
tions will be carried out in integer. Hence, we have

bx̃c =

⌊

1
2

(

a+
b
c

)⌋

(10)

for integers a, b, and c. If we are rounding b
c by truncation, the result can be off by -1. This happens if b

c < 0
and a+

⌈

b
c

⌉

is even.

This error is hardly noticeable in the image, and we did not dedicate special logic to correct it. A floating
point type should be chosen as SpacingType if full precision is needed.

3.2 itk::GeneralizedDistanceTransformImageFilter

This class template iterates over all dimensions and computes the generalized distance trans-
form for each scanline with itk::LowerEnvelopeOfParabolas . The template parameters of
itk::LowerEnvelopeOfParabolas are exposed to the user. The only mandatory parameters are the types
of the input image TFunctionImage and output image TDistanceImage. All other parameters are either
derived from those or have reasonable default values.

The input image is the function whose distance transform will be computed.

If Voronoi maps are generated, which is the default, a second input image must be provided that contains a
label for each voxel. See the next sections for examples.

itk::GeneralizedDistanceTransformImageFilter is a straightforward implementation of the follow-
ing pseudocode:

for each dimension d:
for each scanline l:
l = generalizedDistanceTransform(l)

4 Applications

4.1 Euclidean Distance Transform

The algorithm computes the squared euclidean distance transform of a set S if we use the indicator function
iS (see section 2).

http://www.itk.org/Doxygen/html/classitk_1_1LowerEnvelopeOfParabolas.html
http://www.itk.org/Doxygen/html/classitk_1_1LowerEnvelopeOfParabolas.html
http://www.itk.org/Doxygen/html/classitk_1_1GeneralizedDistanceTransformImageFilter.html

4.2 Voronoi Map 9

In the example program euclideanDistanceTransform.cxx, an itk::BinaryThresholdImageFilter
transforms an input image with background value 0 into such an indicator function.

Figure 3 shows the processing pipeline and the result for a test image.

Input image

Indicator: f(x) = (x == 0 ? infinity : 0)

Generalized distance transform

Square root: f(x) = sqrt(x)

Write euclidean distance

(a) (b) (c)

Figure 3: The pipeline in 3(a) shows how the euclidean distance transform of an image with background value 0 is

computed. The input image 3(b) with three foreground voxels is converted to 3(c).

4.2 Voronoi Map

In this example, we add the computation of a Voronoi map. Conceptually, nothing changes except that
the second input image is provided and the second result image is written. Figure 4 shows the processing
pipeline and the result for a test image.

Input image

Indicator: f(x) = (x == 0 ? infinity : 0)

Generalized distance transform

Label image

Square root: f(x) = sqrt(x) Write Voronoi map

Write euclidean distance

(a) (b) (c)

Figure 4: The pipeline in 4(a) shows how the Voronoi map of an image with background value 0 is computed. The

input image 4(b) has three foreground voxels. The label image assigns a scalar value to each of them, symolized by

their grey value. The resulting Voronoi map 4(c) is created simultaneously to the distance transform.

http://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html

4.3 Vector Map 10

4.3 Vector Map

Sometimes not only the distance to the next foreground voxel is important but also its position. This infor-
mation is generated by itk::GeneralizedDistanceTransformImageFilter if the identity transform of
the image domain D ⊂ R

N is provided as a label map:

g :

{

D → D

x 7→ x
(11)

If V is the resulting Voronoi map, V −g is a map of offsets to the closest voxel.

Figure 5 shows the processing pipeline and the result for a test image.

Input image

Indicator: f(x) = (x == 0 ? infinity : 0)

Generalized distance transform

Grid position image

Offset: f(x,y) = y-xSquare root: f(x) = sqrt(x)

Write euclidean distance Write vector map

(a) (b) (c)

Figure 5: The pipeline in 5(a) shows how a map of offset vectors to the closest foreground voxels can be computed

with the Voronoi mapping facility. The result for the test image 5(b) is visualized in 5(c), superimposed on the euclidean

distance transform. Please note that the length of an arrow in 5(c) is only one tenth of the length of the corresponding

offset vector. All offset vectors actually reach to one of the three foreground voxels.

4.4 Signed Euclidean Distance Transform

Level set segmenation needs a signed euclidean distance transform of a set S, defined by the sum DTS−DTS.
Computation of a distance transform of the border of S and negation of the result inside of S yields the same
result. This is the method used in itk::SignedMaurerDistanceMapImageFilter , for example.

In the example program signedEuclideanDistanceTransform.cxx, the image border is defined by the
eroded voxels of a segmentation mask. We provide an itk::Functor::NegateInMask in order to perform
the negation after the distance transform.

Figure 6 shows the processing pipeline and the result for the test image from Tustison et al. [2006].

4.5 Union of Spheres

Our inital motivation was to create an image filter that computes the union of spheres with different and large
radii efficiently. To define the spheres, we wanted to provide an input image r in which the value r(s) ≥ 0

http://www.itk.org/Doxygen/html/classitk_1_1GeneralizedDistanceTransformImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SignedMaurerDistanceMapImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1Functor::NegateInMask.html

4.5 Union of Spheres 11

Input image

Binarize: f(x) = (x == 0 ? 0 : 1)

Erode

Border: f(x,y) = y - x

Negate in mask: f(x,y) = y ? -x : x

Indicator: f(x) = (x == 0 ? infinity : 0)

Generalized distance transform

Square root: f(x) = sqrt(x)

Write signed euclidean distance

(a) (b) (c)

Figure 6: The pipeline in 6(a) shows how the signed euclidean distance transform of an image with background value

0 is computed. The input image 6(b) with a rectangular foreground area is converted to 6(c).

of a voxel s is the radius of a sphere centered at s. This is an application of the dilation operator in group
morphology with an euclidean sphere structure element and an arbitrary radius function [Cuisenaire, 2006].

The generalized distance transform computes the lower envelope of paraboloids over the image domain
D (Fig. 1). The 0-level set of a paraboloid ps(x) = (x− s)2 − r(s)2 with apex abscissa s and apex height
−r(s)2 is equivalent to the border of the sphere {x | |x− s| = r}.

This leads to the idea of thresholding DT−r2 for values ≤ 0. This does not quite work, however, because the
positions s with r(s) = 0 would contribute to the lower envelope. To remove them, the apex height has to be
set to ∞:

f (s) :=

{

∞ if r(s) = 0

−r(s)2 otherwise
(12)

This completes the computation of the union of spheres:

[

s∈D

{x | |x− s| ≤ r(s)} = {x | DT f (x) ≤ 0} (13)

Figure 7 shows the pipeline and result for a test image.

We implemented two itk::Accessors that are combined in order to create f . itk::MinusSqrAccessor
converts a value x to −x2 and itk::IndicatorAccessor changes each 0 to a value that represents ∞.

http://www.itk.org/Doxygen/html/classitk_1_1Accessor.html
http://www.itk.org/Doxygen/html/classitk_1_1MinusSqrAccessor.html
http://www.itk.org/Doxygen/html/classitk_1_1IndicatorAccessor.html

12

The user of itk::GeneralizedDistanceTransformImageFilter has access to the instance of
itk::LowerEnvelopeOfParabolas and especially to the constant maxApexHeight. This value should
be used as an indicator for background voxels in equation 12.

Please note that the runtime varies linearly with the number of voxels in the input image and does not depend
on the number or radii of the spheres.

Radius image

Square and negate: f(x) = -x*x

Indicator: f(x) = (x == 0 ? infinity : x)

Generalized distance transform

Label image

Non-positive values: f(x) = (x <= 0 ? 1 : 0) Write Voronoi map

Write union of spheres

(a) (b) (c)

Figure 7: Figure 7(a) shows the pipeline for computing a union of labeled spheres that are defined by a radius image

and a label image. The three foreground voxels in the test image 7(b) have the associated radii 15, 20, and 27. The

result 7(c) shows the union of the respective spheres superimposed on their Voronoi regions.

5 Performance

We compare the speed of our implementation with itk::DanielssonDistanceMapImageFilter for three
different image sizes. This may be unequable, because itk::DanielssonDistanceMapImageFilter al-
ways computes Voronoi and vector distance maps and can switch the use of spacing information at runtime
in contrast to itk::GeneralizedDistanceTransformImageFilter . We consider this a main feature of
our implementation, however, because in our applications we often do not need Voronoi or vector distance
maps and were not able to avoid the runtime and memory overhead before.

All performance testing was done on a 2.8 GHz Intel Pentium 4 CPU with a cache of 512 KB running
Gentoo Linux. We used gcc-3.4.4 with compile flags -O3 -fomit-frame-pointer.

We tested the performance with dataset sizes 136×136×121, 256×256×165, and 512×512×348 (Fig. 8).
The datasets are from the pool of cases that we use for the development of clinical applications. The test
programs and datasets are distributed with this paper.

5.1 Time

For testing the runtime of our implementation, we loaded a dataset and used it as input for either
itk::DanielssonDistanceMapImageFilter or itk::BinaryThresholdImageFilter that acts as an
indicator function for itk::GeneralizedDistanceTransformImageFilter .

http://www.itk.org/Doxygen/html/classitk_1_1GeneralizedDistanceTransformImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1LowerEnvelopeOfParabolas.html
http://www.itk.org/Doxygen/html/classitk_1_1DanielssonDistanceMapImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1DanielssonDistanceMapImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GeneralizedDistanceTransformImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1DanielssonDistanceMapImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GeneralizedDistanceTransformImageFilter.html

5.1 Time 13

(a) Small dataset with an interme-
diate result in lung segmentation.

(b) Medium dataset with structures
containing air. Connected compo-
nents have unique labels.

(c) Full size dataset of a thresh-
olded polytrauma scan.

Figure 8: Datasets for performance tests

After updating the image reader we measured the time it takes to update the distance filter as well. For the
itk::GeneralizedDistanceTransformImageFilter , this includes the update of the indicator function.

We tested the influence of using spacing information and generating Voronoi maps. Each test has been
performed 10 times on an otherwise idle system.

Table 1 details the mean runtime and speedup with respect to
itk::DanielssonDistanceMapImageFilter. The speedup with Voronoi map generation is between 3.23
and 7.51. If Voronoi maps are disabled, the speedup is between 5.84 and 10.49.

We also measured the time needed by itk::SignedMaurerDistanceMapImageFilter , which
was recently introduced into ITK by Tustison et al. [2006]. Please note that it computes the
signed distance transform and should not be compared directly to the other two filters for
this reason. See example 4.4 for a method to compute the signed distance transform with
itk::GeneralizedDistanceTransformImageFilter .

Image size
136×136×121 256×256×165 512×512×348

Filter time (s) speedup time (s) speedup time (s) speedup

Spacing enabled Danielsson 7.37 35.2 306.4
Signed Maurer 4.03 16.0 177.5

Generalized + V. map 0.98 7.51 7.2 4.87 82.8 3.70
Generalized 0.81 9.06 5.6 6.28 48.7 6.29

Spacing disabled Danielsson 6.18 29.6 256.7
Signed Maurer 3.29 11.6 140.8

Generalized + V. map 0.85 7.25 6.7 4.38 79.4 3.23
Generalized 0.59 10.49 5.1 5.84 43.4 5.92

Table 1: Runtime and speedup with resepect to itk::DanielssonDistanceMapImageFilter . The times for

itk::SignedMaurerDistanceMapImageFilter are only for orientation and can not be compared directly to the other

filters.

http://www.itk.org/Doxygen/html/classitk_1_1GeneralizedDistanceTransformImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1DanielssonDistanceMapImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SignedMaurerDistanceMapImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GeneralizedDistanceTransformImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1DanielssonDistanceMapImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SignedMaurerDistanceMapImageFilter.html

5.2 Cache 14

5.2 Cache

The algorithm traverses all scanlines in all dimensions. This can lead to cache misses due to non-local
memory access.

In order to test the impact of cache misses on our implementation, we have temporarily modified
itk::GeneralizedDistanceTransformImageFilter to only traverse the scanlines of a single dimen-
sion. Table 2 shows the time of traversal for the individual dimensions. For the small dataset, no significant
difference in runtime can be observed. For the dataset of medium size, the last iteration takes three times
longer than the first. For the big dataset, the second and third iteration both take about three times longer
than the first.

We assume that this is due to cache misses. We have used the non-intrusive performance monitoring tool
OProfile [Levon et al.] to get an approximization of the L2 and L3 cache misses on our processor. It is
apparent from table 3 that an increase in cache misses is correlated with an increase in runtime of our
algorithm.

For the big dataset, about 60 % of the runtime can be amounted to inefficient memory access.

Dimension 0 1 2
Small dataset 0.29 0.3 0.34

Medium dataset 1.37 1.45 3.99
Big dataset 11.29 32.76 39.21

Table 2: The time it takes to process all scanlines along a single dimension given in seconds

Dimension 0 1 2
Small dataset 8 84 84

Medium dataset 66 692 42565
Big dataset 392 368078 425517

Table 3: Misses of L2 and L3 cache as reported by OProfile in multiples of 1000

6 Discussion and Future Work

The algorithm to compute the generalized distance transform of a sampled function
by Felzenszwalb and Huttenlocher [2004] has been implemented in the ITK framework. Some as-
pects of the implementation can be tuned at compile time, such as the consideration of image spacing
or the creation of Voronoi maps. Our code is rich in comments and adheres to the general style of ITK.
Also provided are example programs that demonstrate the use of the filter. We compiled and tested our
implementation with Gentoo Linux, Mac OS X 10.3, Windows 2000, and Windows XP. We hope that this
minimizes the amount of work for the maintainers of ITK to include our code.

itk::GeneralizedDistanceTransformImageFilter computes a larger class of distance transforms than
itk::DanielssonDistanceMapImageFilter and achieves a speedup of up to 10.49 in our tests. Although
not reported in this paper, we could achieve even better speedups for a 1.5 GHz PowerPC G4 processor
with 512 KB cache. We are comfortable with this performance, but we also believe that more significant
improvements would be possible if the amount of non-local memory access could be reduced.

Our current and future lines of work are twofold:

http://www.itk.org/Doxygen/html/classitk_1_1GeneralizedDistanceTransformImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1GeneralizedDistanceTransformImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1DanielssonDistanceMapImageFilter.html

References 15

• We implemented two additional algorithms to compute the union of spheres, that both rest upon the
duality between a sphere and the 0-level set of a spherical paraboloid. The first one computes the
union of K spheres at arbitrary locations with a complexity of O(KM (N−1)) for an MN image. The
second one further expands this idea by also maximizing a constant value that is associated with the
spheres.

These algorithms have also been implemented within the context of ITK but not as
itk::ImageToImageFilters yet.

• Motivated by our observations regarding the memory access behaviour of our implementation, we are
currently considering different memory layouts for images than ITK’s default row-major order. This
might also prove beneficial for other algorithms with memory access patterns similar to ours, hence
we plan to implement an itk::ImageToImageFilter that can reorder images accordingly.

References

Olivier Cuisenaire. Distance Transformations: Fast Algorithms and Applications to Medical Image Process-
ing. PhD thesis, Laboratoire de Telecommunications et Teledetection, Université Catholique de Louvain,
1999. 1

Olivier Cuisenaire. Locally adaptable mathematical morphology using distance
transformations. Pattern Recognition, 39(3):405–416, March 2006. URL
http://lts1pc19.epfl.ch/repository/Cuisenaire2005_1276.pdf . 1, 4.5

P. E. Danielsson. Euclidean distance mapping. Computer Graphics and Image Processing, 14:227–248,
1980. 1

Pedro F Felzenszwalb and Daniel P Huttenlocher. Distance transforms of sampled functions. Technical
report, Cornell University, September 2004. 1, 2, 2.1, 2.2, 6

Y. Ge and J.M. Fitzpatrick. On the generation of skeletons from discrete euclidean distance maps. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 18:1055 – 1066, 1996. 1

John Levon et al. OProfile: A system-wide profiler for linux systems. URL
http://oprofile.sourceforge.net. 5.2

Calvin R. Maurer, Rensheng Qi, and Vijay Raghavan. A linear time algorithm for computing exact euclidean
distance transforms of binary images in arbitrary dimensions. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(2):265 – 270, 2003. 1

Arnold Meijster, Jos B.T.M. Roerdink, and Wim H. Hesselink. A general algorithm for computing distance
transforms in linear time. Mathematical Morphology and its Applications to Image and Signal Processing,
pages 331–340, 2000. 2.2

J. B. T. M. Roerdink and Arnold Meijster. The watershed transform: Definitions, algorithms and paralleliza-
tion strategies. Fundamenta Informaticae, 41(1 – 2):187 – 228, 2000. 1

J.A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, 1996. 1

Jun-ichiro Toriwaki and Kensaku Mori. Distance transformation and skeletonization of 3d pictures and their
applications to medical images. Digital and Image Geometry: Advanced Lectures, pages 412 – 428, 2001.
1

http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html
http://lts1pc19.epfl.ch/repository/Cuisenaire2005_1276.pdf
http://oprofile.sourceforge.net

References 16

Nicholas J. Tustison, Marcelo Siqueira, and James C. Gee. N-D linear time exact signed euclidean distance
transform. The Insight Journal, Feb 2006. 1, 4.4, 5.1

	Introduction
	Generalized Distance Transforms of Sampled Functions
	Squared Euclidean Distance
	Generalized Squared Euclidean Distance Transform of a Sampled Function

	Implementation
	itk::LowerEnvelopeOfParabolas
	Intersection of Parabolas
	Preventing Arithmetic Overflow
	Precision

	itk::GeneralizedDistanceTransformImageFilter

	Applications
	Euclidean Distance Transform
	Voronoi Map
	Vector Map
	Signed Euclidean Distance Transform
	Union of Spheres

	Performance
	Time
	Cache

	Discussion and Future Work

