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Abstract. In this paper we applied one of our regularly used processing pipe-
lines for fully automated brain tissue segmentation. Brain tissue was segmented
in cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM). Our al-
gorithms for skull stripping, tissue segmentation and white matter lesion
(WML) detection were slightly adapted and applied to twelve data sets within
the MRBrainS13 brain tissue segmentation challenge. Skull stripping is per-
formed using non-rigid registration of 5 atlas masks. Our tissue segmentation is
based on an automatically trained kNN-classifier. Training samples were ob-
tained by non-rigid registration of 5 manually labeled scans followed by a prun-
ing step in feature space to remove any residual erroneously sampled tissue
voxels. The kNN-classification incorporates voxel intensities from a T1-
weighted scan and a FLAIR scan. The white matter lesion detection is based on
an automatically determined threshold on the FLAIR scan. The application of
the algorithms on the data from the MRBrainS13 Challenge showed that our
pipeline produces acceptable segmentations. Average resulting Dice scores
were 77.86 (CSF), 81.22 (GM), 87.27 (WM), 93.78 (total parenchyma), and
96.26 (all intracranial structures). Total processing time was about 2 hours per
subject.
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1 Introduction

The segmentation of magnetic resonance (MR) images in white matter (WM), gray
matter (GM) and cerebrospinal fluid (CSF) is one of the classic neuroimage analysis
challenges. Brain tissue volume measurements are used in studies on ageing and neu-
rodegenerative diseases [1,2]. These segmentations are also commonly employed as
regions of interest for other neuroimage analyses, including cortical thickness meas-
urements [3], voxel-based morphometry [4], and connectivity analyses [5].

Given the relevance of brain tissue segmentation, many automated different seg-
mentation methods have been proposed over the years. Almost all of these methods
rely on a supervised or unsupervised voxel classifier. Supervised methods use manu-
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ally segmented training data to learn the typical distribution of intensity or appearance
features for the tissue classes [6]. This has the advantage that the classifier explicitly
follows the manual segmentation protocol and it allows the use of large amounts of
features. Supervised methods, however, also require that the training data resembles
the unlabeled target scan. Since the manual segmentation of a few MR images is very
time- and labor-intensive suitable training data is not allows available.

Unsupervised methods, particularly those based on expectation maximization
(EM), do not require training data and are therefore more widely used than supervised
methods. EM-based methods start with an initial segmentation, which is often based
on a probabilistic brain tissue atlas that is registered to the unlabeled target scan. From
this initialization, class-specific Gaussian intensity distributions are estimated. This
intensity model can then be used to update the segmentation and this process is re-
peated until the segmentation converges.

The main reason for its popularity is that several EM-based methods are publicly
available [7,8], as standalone application or as part of a neuroimaging analysis pack-
age like SPM [9,10] and FSL [11]. But the EM framework is also attractive from a
methodological perspective. In particular, the segmentation procedure can be easily
enhanced with features like bias field estimation, Markov Random Field (MRF) regu-
larization, and an iteratively updated atlas registration.

In this paper we validate an alternative fully automated and unsupervised segmen-
tation method, originally introduced in Cocosco et al. [12] and later expanded in
Vrooman et al. [13] and De Boer et al. [14]. This automatically trained k-Nearest-
Neighbors segmentation method (auto-kNN) uses a similar strategy of initialization,
estimation, and segmentation but offers two advantages over the previously men-
tioned EM-based methods: it uses a non-parametric kNN-classifier that can model
more complex decision boundaries than a Gaussian intensity model; and it uses multi-
atlas registration to estimate the intensity model which is known to be more accurate
and robust than single atlas registration [15].

2 Methods

The core of the method used in this Grand Segmentation Challenge was previously
described in De Boer et. al. [14]. This section will provide a summary of this tech-
nique. We did make some minor changes in the pre- and post-processing, which will
also be outlined below.

2.1 Data

All experiments were performed on multi-sequence MR imaging data made available
for this challenge. The scans were acquired at the UMC Utrecht (the Netherlands) in
patients with diabetes and matched controls (with increased cardiovascular risk). In
this work we used the following sequences: a T1-weighted scan (T1w), a T1-weighted
inversion recovery scan (IR), and a fluid attenuation inversion recovery scan
(FLAIR). All images had a voxel size of 0.958mm x 0.958mm x 3.0mm and were



corrected for MR bias field artifacts. The IR and FLAIR images were also co-
registered to the T1w.

Five manually segmented datasets were available for training and parameter tun-
ing. Labels were provided for the background, cortical GM, basal ganglia, WM, white
matter lesions (WML), cortical CSF, ventricular CSF, cerebellum, and the brain stem.
Twelve datasets were supplied to test the proposed method. For these datasets manual
labels were held back for unbiased testing. Segmentations were evaluated on three
tissue classes GM (cortical GM and basal ganglia), WM (WM and WMLs), and CSF
(cortical CSF, cistern CSF and ventricles). Cerebellum and brainstem voxels were
ignored during validation. All manual segmentations were performed by one of two
trained observers on the T1w using a contouring tool.

2.2 Preprocessing

Preprocessing consisted of two steps: masking and intensity normalization. For the
training images masks were obtained by binarizing the manual segmentations. For the
test images, masks were computed using a multi-atlas segmentation method. As atlas-
es we used the Tlw training images, both in the original and in a left-right-flipped
version, and their associated brain masks. Each atlas image was registered to the un-
labeled test images using Niftyreg [16]; the registration was applied by computing an
affine transformation, followed by a non-rigid deformation (using a Smm B-spline
grid and normalized mutual information). A final mask was then computed using
STEPS [17]. This method deforms both atlas images and labels, selects per voxel
location the five most similar atlases (based on local normalized cross correlation),
and fuses their labels using STAPLE [18]. The masking procedure was different from
De Boer et al. [14] in which a single atlas was used to obtain the intracranial space.
Intensity normalization was performed for all images by a linear mapping obtained by
setting the lower and upper 4th percentile intensities to zero and one, and interpolat-
ing the values in between.

2.3 Tissue segmentation

The tissue segmentation is initialized by constructing GM, WM, and CSF tissue prob-
ability maps in the unlabeled target image coordinate frame using multi-atlas registra-
tion. These maps are then used as a mask to sample multi-modal intensities from the
target image. To correct for residual misregistration a pruning operation is performed
using a clustering method. Finally, the resulting target-specific samples are used to
train a kNN classifier that can be used to segment the target image.

For the challenge data, the tissue probability maps were constructed using the five
manually labeled T1w training images. GM, WM, and CSF segmentations were cre-
ated by fusing the eight available labels as described above. The atlases were first
affinely registered to the target images, followed by a non-rigid B-spline registration.
The deformations were computed with Elastix [19] using mutual information as simi-
larity measure and a 5 mm B-spline grid. The tissue probability maps were then ob-
tained by deforming the atlas labels and averaging them.



Multi-dimensional intensity brain tissue samples were then extracted from all im-
ages of the each target subject by thresholding the GM, WM, and CSF probability
maps at 0.7 and randomly choosing 7500 voxels per class. These settings were based
on previously published parameter tuning experiments on different data [13, 14]. This
procedure allowed us to benefit from the well-documented ability of multi-atlas regis-
tration to compensate for registration errors. To remove any residual erroneously
sampled tissue voxels a pruning step was performed. This was done by mapping the
samples in the multi-dimensional feature space defined by the intensities of all scans
and computing a minimum spanning tree. The tree was then iteratively pruned by
removing connections for which its length exceeds a threshold of a constant times the
average length of the other connections of a sample. This process is repeated until
three large clusters remain that predominantly contain a single tissue class. All minor-
ity tissue samples in these three clusters were then removed, as well as any uncon-
nected smaller clusters.

After this pruning step a k-Nearest-Neighbor classifier with a k-value of 45 was
trained in the same feature space as the minimum spanning tree. The value for k was
again based on previous experiments [13]. Finally, a segmentation was obtained by
applying this classifier to the target subject images.

2.4 White matter lesion segmentation and post-processing

The white matter lesion detection step was based on an automatically-selected thresh-
old on the FLAIR scan [14]. First the tissue segmentation from the previous step was
used to localize the GM voxels in the FLAIR scan. Assuming that the voxels with the
highest intensity in the histogram of these voxels are WML candidates, a threshold
was set on 2.3 standard deviations higher than the location of the top of the smoothed
histogram. This parameter was set based on previous experiments. The WML seg-
mentation was further refined using two minor morphological operations [14].

Based on the visual inspection of the test results, two ad-hoc morphological opera-
tions were included to refine the results. Firstly, small local minima were relabeled as
the surrounding class (MevisLab®: itkGrayscaleFillholeImageFilter), especially to fill
small areas (< 3x3x3 voxels) in CSF that were labeled as background voxels. Since
the brain masks had the tendency to overestimate the intracranial space, they included
parts of the dura or bone marrow that were labeled as GM. Therefore, we applied a
second post-processing step, in which GM voxels that directly bordered the back-
ground were relabeled as background. These operations were both not included in the
work of de Boer et al. [14].

3 Experiments and results

3.1 Parameter tuning

To tune our processing pipeline for the challenge date, we created brain masks for
the five training subjects by binarizing the corresponding label images
(CSF+GM+WM) as said in Section 2.2. The probability maps for background, CSF,



GM and WM were created using a non-rigid registration (as described in Section 2.3)
of the label images using a leave-one-out-procedure. For each of the five training
subjects the label images of the other four were used as atlases.

For the application of our automatically trained kNN-classifier, we tested different
combinations of input sequences. In Table 1, the resulting Dice factors for three com-
binations are shown: 1) T1w + IR; 2) T1w + FLAIR; and 3) T1w + FLAIR +IR. Since
the combination of the Tlw and FLAIR scans yielded the best scores, we used that
combination to segment the test subjects.

Input Sequences Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5
Tiw+ IR

CSF Dice (%) 86.71 80.54 82.58 88.14 80.66
GM Dice (%) 81.74 77.89 80.94 83.14 84.43
WM Dice (%) 86.18 80.84 87.80 86.75 88.92

Tlw + FLAIR
CSF Dice (%) 87.40 87.86 86.88 88.89 87.30
GM Dice (%) 80.93 82.59 81.72 83.78 86.18
WM Dice (%) 85.95 83.45 88.21 87.16 90.28

Tlw + IR + FLAIR
CSF Dice (%) 84.91 86.23 84.27 88.27 85.91
GM Dice (%) 80.69 81.33 81.70 83.73 86.14
WM Dice (%) 86.73 81.84 87.61 86.69 89.75

Table 1. The resulting Dice factors (%) for the segmentation of CSF, GM, and WM in the
training subjects, using different combinations of input scans (T1w + IR, TIw + FLAIR, and
Tlw + IR + FLAIR) for the kNN-classifier. With the second combination (T1w + FLAIR) we
obtained the highest Dice scores during tuning.

As a second tuning step, we varied a number of parameters for the kNN-classifier.
However, changing the number of samples, the k-value or the threshold for the proba-
bility maps didn’t change the outcome scores in a significant way. We decided to use
the default values as described in Section 2.3. Also for the WML detection, further
tuning of the parameters did not improve the training results. In our opinion, this
shows that our WML detection and our automatically trained kNN-classifier are rea-
sonably robust when applied to different cohorts.



3.2  Challenge data segmentation

We applied the method to the twelve test images. Results were visually inspected and
compared to the manual segmentations by the Challenge organizers. The accuracy
was evaluated using the following measures:

— Dice coefficient (DC) [20]
— Modified Hausdorff distance (MHD) [21]
— Absolute volumetric difference (AVD) [22]

In Table 2, the mean and standard deviation (Std) of the final scores for the twelve
test subjects, as computed by the Challenge organizers, are shown. Five tissues were
evaluated: GM, WM, CSF, brain (WM + GM), and all intracranial structures (WM +
GM + CSF). From the three brain tissue classes, WM scored the best. Overall, CSF
had the lowest evaluation scores.

Dice (%) HD (mm) AVD (%)

Structure Mean Std Mean Std Mean Std

Gray matter 81.22 1.80 3.86 0.88 6.58 4.53

White matter | 87.27 0.96 3.02 0.41 7.57 421

Cerebrospinal |, o 4.98 321 064 1788 1573
fluid

Brain | 93.78 0.75 4.94 131 3.93 2.41

Allintracra- | o ¢ 126 3.99 1.04 3.79 2.95
nial structures

Table 2. The resulting scores for the twelve challenge training subjects, as calculated by the
MRBrainS13 Challenge Board.

In Figure 1, the tissue segmentation for test subject 3 is shown including the WML
detection. Subject 3 has a large number of white matter lesions and Figure 1 shows
that our WML detection is able to detect the white matter lesions in an acceptable
way. For this challenge, only CSF, GM, and WM were required. Therefore, we rela-
beled the white matter lesions to WM to obtain the final segmentation results.



Fig. 1. Segmentation result for Subject 3 (slice 29). Three data sets are shown: the TIw scan
(left), the FLAIR scan (middle) and the final segmentation including the detection of WML
(right). Subject 3 had a large number of relatively large WML. The result shows that our pipe-
line is able to detect the WML with high accuracy.

In Figure 2, the resulting tissue segmentation for three test subjects are shown. We
noticed by visual inspection that probably two aspects had a slightly negative influ-
ence on our results. In the first place, since the brain masks had the tendency to over-
estimate the intracranial space, it seems that in some cases there is too much CSF
labeled in the upper-front part of the intracranial space. Furthermore, parts of the dura
or bone marrow were labeled as GM.

As described in Section 2.4, we applied two extra post-processing steps to diminish
these artifacts. These steps improved the segmentations a lot, but it was not possible
to cover this issue completely with the currently applied processing pipeline. Second-
ly, in some cases the thalamus and the globus pallidus are not segmented completely
into GM. This is a well-known limitation of our current processing pipeline and can in
our opinion be improved in the future by using the registration of appropriate atlases
to the subject of interest.

The total runtime of our pipeline was about 2 hours per test subject. The creation of
the mask needed 10 non-rigid registrations (8 minutes each). Registration of the 5
manual labeled images followed by the computation of the probability maps took 30
minutes. The application of the kINN-classifier, the WML detection, and the post-
processing steps were done in about 5 minutes. The registrations for the image mask
and probability maps were computed on a cluster with AMD Opteron 2216 2.4GHz
nodes without multi-threading, the kNN-classifier, the WML detection and the post-
processing were implemented in MevisLab® and computed on a machine with an
Intel® Xeon® E5620 2.40 GHz CPU, 12 GB of installed memory and 64-bit Win-
dows 7 Operating System.

4 Discussion

In this paper, we showed the results of our brain tissue segmentation pipeline, applied
to twelve subjects within the MRBrainS13 tissue segmentation challenge. We applied
one of our regularly used processing pipelines. We have presented an algorithm for
automated brain extraction and brain tissue segmentation. The skull stripping algo-



rithm is based on multi-atlas segmentation utilizing the STEPS [14] algorithm; for
tissue classification we used an automatically trained kNN-classifier with voxel inten-
sities obtained from the T1w scan and FLAIR scan as input features. WML detection
was based on an automatically set threshold on the intensities in the FLAIR scan.

Fig. 2. Segmentation results for three subjects (8, 9 and 10). For all subjects slice 21 is shown
above. Three data sets are shown: the T1w scan (left), the FLAIR scan (middle) and the final
segmentation (right). Subject 8 (top) had the highest average scores. Subject 9 (middle) is an
average result. Subject 10 (bottom) had the lowest evaluation scores. The misclassification in
the frontal CSF and the under-segmentation of the thalamus are visible especially in Subject 10.
The under-segmentation of the globus pallidus is visible in all subjects.

The main advantage of our approach, is that training data is not needed for tissue
classification. The training samples are extracted from the subject data itself, after



non-rigid registration of brain tissue atlases. Therefore, our segmentation pipeline
works robust and accurate on data obtained from different scanners and with different
scan protocols. Our in-house tissue atlases can be used for several, different popula-
tions. We have noticed, however, that using atlases matching the population better
gives slightly better results.

In our opinion, we obtained reasonable segmentation results on the challenge data,
with a slightly adapted pipeline. The segmentation results are sometimes a little bit
more noisy than segmentation results published elsewhere, since we don’t use for
example a Markov Random Field or morphologic post-processing steps (smoothing of
kNN posteriors) to clean up or smooth the segmentation result. We are planning to
incorporate this step in the future, although we expect volume measures not to be
influenced significantly by such a processing step.

Another issue is that our algorithm sometimes does not detect the total amount of
GM in the globus pallidus and thalamus as can clearly be seen in Figure 2. This is a
well-known problem with brain tissue segmentation. The globus pallidus derives its
name from its pallid appearance in fresh unstained specimen. It is traversed by nu-
merous bundles of heavily myelinated fibers, which give a relatively high intensity on
a Tlw scan and distinguish it from the dark appearance of for example the corpus
striatum, the putamen and the caudate nucleus, which are generally better segmented.
We have seen in previous cases that other type of scans, i.e. a T2w scan can improve
the segmentation of the basal ganglia. Another possibility is the registration of atlases
containing the manual segmentation of specific brain structures.

Looking at the final evaluation scores delivered by the challenge board, it is obvi-
ous that most errors were made on the CSF. In our opinion, this is mainly due to the
fact that the created brain mask was sometimes crossing the intracranial border due to
slight misregistration of the mask atlases. In previous applications of our segmenta-
tion pipeline only the cerebrum was involved. Since for this challenge also the CSF
around cerebellum and brain stem had to be segmented, we needed to create and reg-
ister new brain masks. The skull stripping is in our opinion still one of the most diffi-
cult steps in segmentation pipelines in general, leading to subsequent errors in the
classification process. The applied post-processing steps could improve our results but
not completely eliminate the errors. Our evaluation scores for intracranial volume are
reasonable, for example compared to a publication of Iglesias [23]. Since the CSF,
however, is a relatively small set of voxels within the mask, the influence of mask
errors on CSF segmentation is substantial. We are planning to improve the skull strip-
ping step in the near future to deal with this overestimation of CSF.

In this challenge, a set of five training sets (including labels) were made available.
We like to mention that if no manual segmentations are at hand, our processing pipe-
line can also be used using other atlases obtained from other institutions or build in-
house. In the last few years we are applying our brain segmentation pipeline on dif-
ferent cohorts (scanned on several types of scanners and with varying scan protocols).
In most cases we achieve acceptable results using our in-house set of brain atlases.

The total runtime of our algorithm was about 2 hours per subjects. Most of the
time was needed for the 15 non-rigid registrations involved. We are currently working
on a parallelization of the Elastix code to reduce processing times. Another possibility



to increase computation speed is the integration of the registration needed for skull
stripping and for the creation of tissue probability maps. Speeding up the processing
pipeline is especially relevant for the translation of our processing pipeline to a radio-
logic workstation in the clinic. For large population studies, increasing the speed of
the pipeline is less urgent, since in that case we process large cohorts of patients or
healthy subjects in parallel on a multi-core computing cluster.

We believe that if the limitations mentioned above are further investigated and

solved, our fully automated brain tissue segmentation pipeline can be applied to a
diverse set of cohorts with an accuracy and reproducibility that are comparable human
raters.
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