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Abstract. In this paper we applied one of our regularly used processing pipe-
lines for fully automated brain tissue segmentation. Brain tissue was segmented 
in cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM). Our al-
gorithms for skull stripping, tissue segmentation and white matter lesion 
(WML) detection were slightly adapted and applied to twelve data sets within 
the MRBrainS13 brain tissue segmentation challenge. Skull stripping is per-
formed using non-rigid registration of 5 atlas masks. Our tissue segmentation is 
based on an automatically trained kNN-classifier. Training samples were ob-
tained by non-rigid registration of 5 manually labeled scans followed by a prun-
ing step in feature space to remove any residual erroneously sampled tissue 
voxels. The kNN-classification incorporates voxel intensities from a T1-
weighted scan and a FLAIR scan. The white matter lesion detection is based on 
an automatically determined threshold on the FLAIR scan. The application of 
the algorithms on the data from the MRBrainS13 Challenge showed that our 
pipeline produces acceptable segmentations. Average resulting Dice scores 
were 77.86 (CSF), 81.22 (GM), 87.27 (WM), 93.78 (total parenchyma), and 
96.26 (all intracranial structures). Total processing time was about 2 hours per 
subject.  
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1 Introduction 

The segmentation of magnetic resonance (MR) images in white matter (WM), gray 
matter (GM) and cerebrospinal fluid (CSF) is one of the classic neuroimage analysis 
challenges. Brain tissue volume measurements are used in studies on ageing and neu-
rodegenerative diseases [1,2]. These segmentations are also commonly employed as 
regions of interest for other neuroimage analyses, including cortical thickness meas-
urements [3], voxel-based morphometry [4], and connectivity analyses [5].  

Given the relevance of brain tissue segmentation, many automated different seg-
mentation methods have been proposed over the years. Almost all of these methods 
rely on a supervised or unsupervised voxel classifier. Supervised methods use manu-



ally segmented training data to learn the typical distribution of intensity or appearance 
features for the tissue classes [6]. This has the advantage that the classifier explicitly 
follows the manual segmentation protocol and it allows the use of large amounts of 
features. Supervised methods, however, also require that the training data resembles 
the unlabeled target scan. Since the manual segmentation of a few MR images is very 
time- and labor-intensive suitable training data is not allows available.  

Unsupervised methods, particularly those based on expectation maximization 
(EM), do not require training data and are therefore more widely used than supervised 
methods. EM-based methods start with an initial segmentation, which is often based 
on a probabilistic brain tissue atlas that is registered to the unlabeled target scan. From 
this initialization, class-specific Gaussian intensity distributions are estimated. This 
intensity model can then be used to update the segmentation and this process is re-
peated until the segmentation converges.  

The main reason for its popularity is that several EM-based methods are publicly 
available [7,8], as standalone application or as part of a neuroimaging analysis pack-
age like SPM [9,10] and FSL [11]. But the EM framework is also attractive from a 
methodological perspective. In particular, the segmentation procedure can be easily 
enhanced with features like bias field estimation, Markov Random Field (MRF) regu-
larization, and an iteratively updated atlas registration. 

In this paper we validate an alternative fully automated and unsupervised segmen-
tation method, originally introduced in Cocosco et al. [12] and later expanded in 
Vrooman et al. [13] and De Boer et al. [14]. This automatically trained k-Nearest-
Neighbors segmentation method (auto-kNN) uses a similar strategy of initialization, 
estimation, and segmentation but offers two advantages over the previously men-
tioned EM-based methods: it uses a non-parametric kNN-classifier that can model 
more complex decision boundaries than a Gaussian intensity model; and it uses multi-
atlas registration to estimate the intensity model which is known to be more accurate 
and robust than single atlas registration [15]. 

2 Methods 

The core of the method used in this Grand Segmentation Challenge was previously 
described in De Boer et. al. [14]. This section will provide a summary of this tech-
nique. We did make some minor changes in the pre- and post-processing, which will 
also be outlined below. 

2.1 Data 

All experiments were performed on multi-sequence MR imaging data made available 
for this challenge. The scans were acquired at the UMC Utrecht (the Netherlands) in 
patients with diabetes and matched controls (with increased cardiovascular risk). In 
this work we used the following sequences: a T1-weighted scan (T1w), a T1-weighted 
inversion recovery scan (IR), and a fluid attenuation inversion recovery scan 
(FLAIR). All images had a  voxel size of 0.958mm x 0.958mm x 3.0mm and were 



corrected for MR bias field artifacts. The IR and FLAIR images were also co-
registered to the T1w. 

Five manually segmented datasets were available for training and parameter tun-
ing. Labels were provided for the background, cortical GM, basal ganglia, WM, white 
matter lesions (WML), cortical CSF, ventricular CSF, cerebellum, and the brain stem. 
Twelve datasets were supplied to test the proposed method. For these datasets manual 
labels were held back for unbiased testing. Segmentations were evaluated on three 
tissue classes GM (cortical GM and basal ganglia), WM (WM and WMLs), and CSF 
(cortical CSF, cistern CSF and ventricles). Cerebellum and brainstem voxels were 
ignored during validation. All manual segmentations were performed by one of two 
trained observers on the T1w using a contouring tool.   

2.2 Preprocessing 

Preprocessing consisted of two steps: masking and intensity normalization. For the 
training images masks were obtained by binarizing the manual segmentations. For the 
test images, masks were computed using a multi-atlas segmentation method. As atlas-
es we used the T1w training images, both in the original and in a left-right-flipped 
version, and their associated brain masks. Each atlas image was registered to the un-
labeled test images using Niftyreg [16]; the registration was applied by computing an 
affine transformation, followed by a non-rigid deformation (using a 5mm B-spline 
grid and normalized mutual information). A final mask was then computed using 
STEPS [17]. This method deforms both atlas images and labels, selects per voxel 
location the five most similar atlases (based on local normalized cross correlation), 
and fuses their labels using STAPLE [18]. The masking procedure was different from 
De Boer et al. [14] in which a single atlas was used to obtain the intracranial space. 
Intensity normalization was performed for all images by a linear mapping obtained by 
setting the lower and upper 4th percentile intensities to zero and one, and interpolat-
ing the values in between.  

2.3 Tissue segmentation 

The tissue segmentation is initialized by constructing GM, WM, and CSF tissue prob-
ability maps in the unlabeled target image coordinate frame using multi-atlas registra-
tion. These maps are then used as a mask to sample multi-modal intensities from the 
target image. To correct for residual misregistration a pruning operation is performed 
using a clustering method. Finally, the resulting target-specific samples are used to 
train a kNN classifier that can be used to segment the target image.  

For the challenge data, the tissue probability maps were constructed using the five 
manually labeled T1w training images. GM, WM, and CSF segmentations were cre-
ated by fusing the eight available labels as described above. The atlases were first 
affinely registered to the target images, followed by a non-rigid B-spline registration. 
The deformations were computed with Elastix [19] using mutual information as simi-
larity measure and a 5 mm B-spline grid. The tissue probability maps were then ob-
tained by deforming the atlas labels and averaging them. 



Multi-dimensional intensity brain tissue samples were then extracted from all im-
ages of the each target subject by thresholding the GM, WM, and CSF probability 
maps at 0.7 and randomly choosing 7500 voxels per class. These settings were based 
on previously published parameter tuning experiments on different data [13, 14]. This 
procedure allowed us to benefit from the well-documented ability of multi-atlas regis-
tration to compensate for registration errors. To remove any residual erroneously 
sampled tissue voxels a pruning step was performed. This was done by mapping the 
samples in the multi-dimensional feature space defined by the intensities of all scans 
and computing a minimum spanning tree. The tree was then iteratively pruned by 
removing connections for which its length exceeds a threshold of a constant times the 
average length of the other connections of a sample. This process is repeated until 
three large clusters remain that predominantly contain a single tissue class. All minor-
ity tissue samples in these three clusters were then removed, as well as any uncon-
nected smaller clusters. 

After this pruning step a k-Nearest-Neighbor classifier with a k-value of 45 was 
trained in the same feature space as the minimum spanning tree. The value for k was 
again based on previous experiments [13]. Finally, a segmentation was obtained by 
applying this classifier to the target subject images.   

2.4 White matter lesion segmentation and post-processing 

The white matter lesion detection step was based on an automatically-selected thresh-
old on the FLAIR scan [14]. First the tissue segmentation from the previous step was 
used to localize the GM voxels in the FLAIR scan. Assuming that the voxels with the 
highest intensity in the histogram of these voxels are WML candidates, a threshold 
was set on 2.3 standard deviations higher than the location of the top of the smoothed 
histogram. This parameter was set based on previous experiments. The WML seg-
mentation was further refined using two minor morphological operations [14]. 

Based on the visual inspection of the test results, two ad-hoc morphological opera-
tions were included to refine the results. Firstly, small local minima were relabeled as 
the surrounding class (MevisLab®: itkGrayscaleFillholeImageFilter), especially to fill 
small areas (< 3x3x3 voxels) in CSF that were labeled as background voxels. Since 
the brain masks had the tendency to overestimate the intracranial space, they included 
parts of the dura or bone marrow that were labeled as GM. Therefore, we applied a 
second post-processing step, in which GM voxels that directly bordered the back-
ground were relabeled as background. These operations were both not included in the 
work of de Boer et al. [14]. 

3 Experiments and results 

3.1 Parameter tuning  

To tune our processing pipeline for the challenge date, we created brain masks for 
the five training subjects by binarizing the corresponding label images 
(CSF+GM+WM) as said in Section 2.2. The probability maps for background, CSF, 



GM and WM were created using a non-rigid registration (as described in Section 2.3) 
of the label images using a leave-one-out-procedure. For each of the five training 
subjects the label images of the other four were used as atlases. 

For the application of our automatically trained kNN-classifier, we tested different 
combinations of input sequences. In Table 1, the resulting Dice factors for three com-
binations are shown: 1) T1w + IR; 2) T1w + FLAIR; and 3) T1w + FLAIR +IR. Since 
the combination of the T1w and FLAIR scans yielded the best scores, we used that 
combination to segment the test subjects. 

 

Input Sequences Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 

T1w + IR 

CSF Dice (%) 86.71 80.54 82.58 88.14 80.66 

GM Dice (%) 81.74 77.89 80.94 83.14 84.43 

WM Dice (%) 86.18 80.84 87.80 86.75 88.92 

      

T1w + FLAIR 

CSF Dice (%) 87.40 87.86 86.88 88.89 87.30 

GM Dice (%) 80.93 82.59 81.72 83.78 86.18 

WM Dice (%) 85.95 83.45 88.21 87.16 90.28 

T1w + IR + FLAIR      

CSF Dice (%) 84.91 86.23 84.27 88.27 85.91 

GM Dice (%) 80.69 81.33 81.70 83.73 86.14 

WM Dice (%) 86.73 81.84 87.61 86.69 89.75 

Table 1. The resulting Dice factors (%) for the segmentation of CSF, GM, and WM in the 
training subjects, using different combinations of input scans (T1w + IR, T1w + FLAIR, and 
T1w + IR + FLAIR) for the kNN-classifier. With the second combination (T1w + FLAIR) we 
obtained the highest Dice scores during tuning. 

As a second tuning step, we varied a number of parameters for the kNN-classifier. 
However, changing the number of samples, the k-value or the threshold for the proba-
bility maps didn’t change the outcome scores in a significant way. We decided to use 
the default values as described in Section 2.3. Also for the WML detection, further 
tuning of the parameters did not improve the training results. In our opinion, this 
shows that our WML detection and our automatically trained kNN-classifier are rea-
sonably robust when applied to different cohorts. 



3.2 Challenge data segmentation 

We applied the method to the twelve test images. Results were visually inspected and 
compared to the manual segmentations by the Challenge organizers. The accuracy 
was evaluated using the following measures: 

─ Dice coefficient (DC) [20] 
─ Modified Hausdorff distance (MHD) [21] 
─ Absolute volumetric difference (AVD) [22] 

In Table 2, the mean and standard deviation (Std) of the final scores for the twelve 
test subjects, as computed by the Challenge organizers, are shown. Five tissues were 
evaluated: GM, WM, CSF, brain (WM + GM), and all intracranial structures (WM + 
GM + CSF). From the three brain tissue classes, WM scored the best. Overall, CSF 
had the lowest evaluation scores.  

 
  
  
  

Dice (%) HD (mm) AVD (%) 

Structure Mean Std Mean Std Mean Std 

Gray matter 81.22 1.80 3.86 0.88 6.58 4.53 

White matter 87.27 0.96 3.02 0.41 7.57 4.21 

Cerebrospinal 
fluid 

77.86 4.98 3.21 0.64 17.88 15.73 

Brain 93.78 0.75 4.94 1.31 3.93 2.41 

All intracra-
nial structures 

96.26 1.26 3.99 1.04 3.79 2.95 

Table 2. The resulting scores for the twelve challenge training subjects, as calculated by the 
MRBrainS13 Challenge Board. 

In Figure 1, the tissue segmentation for test subject 3 is shown including the WML 
detection. Subject 3 has a large number of white matter lesions and Figure 1 shows 
that our WML detection is able to detect the white matter lesions in an acceptable 
way. For this challenge, only CSF, GM, and WM were required. Therefore, we rela-
beled the white matter lesions to WM to obtain the final segmentation results. 
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non-rigid registration of brain tissue atlases. Therefore, our segmentation pipeline 
works robust and accurate on data obtained from different scanners and with different 
scan protocols. Our in-house tissue atlases can be used for several, different popula-
tions. We have noticed, however, that using atlases matching the population better 
gives slightly better results.      

In our opinion, we obtained reasonable segmentation results on the challenge data, 
with a slightly adapted pipeline. The segmentation results are sometimes a little bit 
more noisy than segmentation results published elsewhere, since we don’t use for 
example a Markov Random Field or morphologic post-processing steps (smoothing of 
kNN posteriors) to clean up or smooth the segmentation result. We are planning to 
incorporate this step in the future, although we expect volume measures not to be 
influenced significantly by such a processing step.  

Another issue is that our algorithm sometimes does not detect the total amount of 
GM in the globus pallidus and thalamus as can clearly be seen in Figure 2. This is a 
well-known problem with brain tissue segmentation. The globus pallidus derives its 
name from its pallid appearance in fresh unstained specimen. It is traversed by nu-
merous bundles of heavily myelinated fibers, which give a relatively high intensity on 
a T1w scan and distinguish it from the dark appearance of for example the corpus 
striatum, the putamen and the caudate nucleus, which are generally better segmented. 
We have seen in previous cases that other type of scans, i.e. a T2w scan can improve 
the segmentation of the basal ganglia. Another possibility is the registration of atlases 
containing the manual segmentation of specific brain structures. 

Looking at the final evaluation scores delivered  by the challenge board, it is obvi-
ous that most errors were made on the CSF. In our opinion, this is mainly due to the 
fact that the created brain mask was sometimes crossing the intracranial border due to 
slight misregistration of the mask atlases. In previous applications of our segmenta-
tion pipeline only the cerebrum was involved. Since for this challenge also the CSF 
around cerebellum and brain stem had to be segmented, we needed to create and reg-
ister new brain masks. The skull stripping is in our opinion still one of the most diffi-
cult steps in segmentation pipelines in general, leading to subsequent errors in the 
classification process. The applied post-processing steps could improve our results but 
not completely eliminate the errors. Our evaluation scores for intracranial volume are 
reasonable, for example compared to a publication of Iglesias [23]. Since the CSF, 
however, is a relatively small set of voxels within the mask, the influence of mask 
errors on CSF segmentation is substantial. We are planning to improve the skull strip-
ping step in the near future to deal with this overestimation of CSF. 

In this challenge, a set of five training sets (including labels) were made available. 
We like to mention that if no manual segmentations are at hand, our processing pipe-
line can also be used using other atlases obtained from other institutions or build in-
house. In the last few years we are applying our brain segmentation pipeline on dif-
ferent cohorts (scanned on several types of scanners and with varying scan protocols). 
In most cases we achieve acceptable results using our in-house set of brain atlases. 

 The total runtime of our algorithm was about 2 hours per subjects. Most of the 
time was needed for the 15 non-rigid registrations involved. We are currently working 
on a parallelization of the Elastix code to reduce processing times. Another possibility 



to increase computation speed is the integration of the registration needed for skull 
stripping and for the creation of tissue probability maps. Speeding up the processing 
pipeline is especially relevant for the translation of our processing pipeline to a radio-
logic workstation in the clinic. For large population studies, increasing the speed of 
the pipeline is less urgent, since in that case we process large cohorts of patients or 
healthy subjects in parallel on a multi-core computing cluster. 

We believe that if the limitations mentioned above are further investigated and 
solved, our fully automated brain tissue segmentation pipeline can be applied to a 
diverse set of cohorts with an accuracy and reproducibility that are comparable human 
raters. 
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