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Abstract. This study investigates a method for brain tissue segmen-
tation from 3D T1 weighted (T1lw) MR images via convex relaxation
with a hierarchical ordering constraint. It employs a multi-atlas-based
initialization from 5 training images and is tested on 12 T1w MR images
provided by the MICCAI 2013 MRBrainS segmentation challenge. The
registered atlas images, fully segmented into eight different brain struc-
tures, are used to formulate shape and intensity priors for a Maximum
A-Posteriori (MAP) energy that is subsequently minimized with a dual
hierarchical max-flow computation. The algorithm makes use of a hier-
archical label ordering constraint to regularize label families individually
and its inherently globally optimal results guarantee robust segmenta-
tions. Major parts of the image processing pipeline are implemented using
General-Purpose Programming on Graphics Processing Units (GPGPU)
for a substantial increase in computation speed.

1 Introduction

Markov Random Field modeling has been of increasing interest to the medical
imaging community for the last decade [1-5]. Specifically for multi-region image
segmentation, there exist several computationally inexpensive solvers approx-
imating global optimality. A commonly studied model for representing multi-
region segmentation is the convex relaxation to Potts model [6], minimizing the
following energy functional:
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where uy (z) represents a probabilistic segmentation of the image based on a
priori data terms, Dy (z), and regularization term, S(z) and a parameter, « to
weight the respective contributions.
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However, these models have been shown to have difficulty in managing multi-
region segmentation problems in which several regions have individual regular-
ization requirements not fully representative by a single smoothness term ap-
plied to all labels. In a former study [7], we proposed a method based on a
partially ordered Potts model to group labels into families and regularize each
family individually. This approach allows labels to be grouped and regularized
together and can thus treat label groups with different smoothness constraints. In
a dual formulation to the partially-ordered Potts model, Hierarchical Maz-Flow
(HMF) computation, the employed solver amounts to a rapid optimization tech-
nique, which can be readily implemented using General-Purpose Programming
on Graphics Processing Units (GPGPU) and can be used with commercially
available hardware configurations to achieve a substantial increase in compu-
tation speed. The application of this method towards brain segmentation is
natural considering the inherent hierarchical nature of brain anatomy. Using
fully-annotated training data we can take full advantage of differing require-
ments in smoothness that exist across the cortical gray matter, subcortical, and
mid-brain structures.

2 Methods

In this study, we propose a fully-automatic multi-atlas initialized segmentation
algorithm for brain tissue segmentation using T1 weighted (T1w) MR images.
The method is fully automated and major components of the image process-
ing pipeline are implemented using GPGPU. A general overview of the image
processing pipeline is depicted in Figure 2.
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Fig. 1. Image processing pipeline for the proposed multi-atlas initialized HMF method
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2.1 Materials

Data was provided by the MRBrainS challenge organizers and consisted of 17
3T MRI datasets: 5 for training, and 12 for testing. Each dataset included a
thin-slice T1w image (1mm isotropic), and thick slice T1 inversion recovery (T1
IR) and T2 FLAIR sequences (0.958x0.958x3mm). The thick-slice scans were
co-registered and all images were bias-corrected.

2.2 Pre-processing and Multi-Atlas initialization

Computations were performed in the T1w 1lmm space, thus all images and labels
were initially resampled to this 1mm isotropic resolution. Multi-atlas segmen-
tation with the set of five training subjects was used to provide initial label
estimates for the test data. Registration of the training data to the test sub-
jects was carried out with the T1 images using an initial affine block-matching
approach [8] (default parameters) followed by fast free-form deformable registra-
tion (spline spacing 8mm, bending energy 0.005) as implemented using GPGPU
in the nifty reg package [9]. Training labels (with white matter lesions labels
combined with white matter) were then propagated to each test subject. The
deformed training labels are used i) as seeds for sampling intensities for the
intensity prior and ii) as probilistic shape prior in the dataterm D(x) (3).

2.3 Brain masking

The T1w images do not possess sufficient contrast between dural matter and
CSF thus defining this boundary based solely on these images is difficult. Instead
we make use of the T1 IR images to provide the brain mask using atlas-based
registration. Deformation maps generated from the multi-atlas registration of
T1w images were used to initialize an additional deformable registration update
(spline spacing 5mm, bending energy 0.005) to align the training T1 inversion
recovery (IR) images with the target T1 IR in the subject image space. A regis-
tration cost-function mask (based on the existing T'1 registration) is used during
this registration to avoid influence of the non-uniform background in the IR
images.

2.4 Energy formulation and HMF optimization

The algorithm minimizes a maximum a-posteriori (MAP) energy functional via
a dual convex relaxation approach using a hierarchical label ordering constraint.
The data term D(x)(3) is formulated as presented in [10] and the provided train-
ing labels (Background, brainstem, cerebellum, external CSF, white matter, cor-
tical gray matter, basal ganglia, ventricles) are used as shape information in the
energy functional (1): Note that this segmentation is performed without skull-
stripping to avoid potential over-stripping of the brain. Given an isotropically
resampled T1w image I with training labels T', an energy E(u) (1) is minimized
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such that hierarchical label ordering constraints (2).

The proposed energy functional minimized can be formulated as

Bw) =Y / (Di(2)ur(z) + ar.pSp.p(x)|Vur (z)| do (1)
ve 79
s.t.
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(2)
The parameters, (1,, weight the contribution from the intensity prior and the
labeling prior for each label, L in the data term D(z):

Dy(z) = —pL log P(I(z)|L) —(1—pL) log(P(TL(x))*G(x)), BL € [0,1]; (3)

A2

S(z) =M + 1+ ers (IVI@)—Aa) )

The T1lw image was used to determine the intensity priors in form of log-
likelihood data terms for each label in the training dataset. Histograms with 128
bins were used to calculate the probability P(I(z)|L). The registered probabilis-
tic labeling P(Ty(z)) was Gaussian smoothed with a standard deviation of 0.5 to
account for the variability in the cortical folds. The function S(z) was designed
to locally weight regularization by gradient information from the input (4). The
hierarchical label ordering is depicted in Figure 2.4 along with the corresponding
regularization («) and log-likelihood () weighting parameters.

A GPGPU-accelerated hierarchical max-flow optimizer was used to minimize
the provided energy equation given the hierarchy. The product of this optimizer
is a probabilistic labeling which combines the effects of the data terms, discour-
aging edges in regions with higher a.S(x) values identified as being less likely to
include boundaries between labels due to having low gradient magnitude.

All segmentation parameters used to generate the results were determined
heuristically from segmentations on the provided 5 training datasets. First the
minimum label agreement for the seeds of the intensity prior was determined
without regularization, then the respective regularization weights o were ad-
justed to achieve a maximum Dice Similarity Coefficient on the training images.
Lastly the contribution of the shape prior was added by lowering S for labels
where leakage could be prevented with increased priors.

2.5 Post-processing

The images were resampled to the thick slice format required at submission
by resampling the probabilistic labeling then voting to create the discrete la-
bels into the required background, CSF, white matter, and grey matter regions.
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Fig. 2. Hierarchical graph with source (S) terminal, parent nodes (light blue) and leaf
nodes (green): Background (Bg), corticospinal fluid (CSF), brain stem (BS), cerebel-
lum (CB), cortical gray matter (GM), white matter (WM), basal ganglia (BG) and
ventricles (V). All source flows (dashed arrows) are of unconstrained capacity. Each
leaf and parent node state the used « (regularization) and S (data term) weighting
parameters, respectively.

After discretization, the T1 IR-based brain masks were multiplied with the fi-
nal segmentations to mask out dura and non-brain regions that may have been
segmented using the T1 alone.

2.6 Computing Specifications and Run Times

Computations were carried out on a Tesla C2070 GPU (NVIDIA, St. Clara, CA)
with Ubuntu 12.04 machine and 144 GB RAM, where each HMF computation
took approximately 65 seconds. Each pairwise registration from training to tar-
get subject was made up of a rigid/affine registration (no GPU acceleration, 2.5
minutes), T1 deformable registration (GPU, 15 seconds) and T1 IR deformable
registration for brain masking (GPU, 15 seconds). Post-processing took approx-
imately 5 second per image. Thus with 5 atlases (training data) a given test
subject requires approximately 16:10 to complete the entire pipeline.

3 Results & Discussion

The computed results were sent to the MRBrainS challenge organization team
and evaluated in terms of label accuracy using the Dice Similarity Coefficient
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(Dice), modified Hausdorff distance (Mod. HD) defined as 95 percentile HD and
an absolute volume difference. Table 1 contains the numerical accuracy results
and example segmentations can be found in Figure 3. The effect of the post-
processing step is depicted in Figure 3 for the testing dataset 10.

The Dice overlaps for all three structures were generally high, with the white
matter overlap being highest on average. However, the Hausdorff distance showed
a different trend, with white matter having the highest distance error. We believe
these lower scores to be related to over-smoothing of the anatomy in the cortical
ribbon. Further tuning of the regularization parameters for the cortical regions
(including white matter and external CSF) would be required to address this.
Another issue with the accuracy results is the high degree of volume errors,
most notably in the CSF. This can partly be attributed to the aforementioned
issue of regularization in the cortex, however, another source of error could be
the external boundary of the brain in the inferior regions. This is problematic
because of reduced contrast in the T1lw and apparent slice intensity artifacts
in the T1 IR images. Future work could better couple the use of the T1 and
T1 IR to avoid these issues and better resolve the brain mask in these inferior
regions. Other issues could be related to registration errors, especially in cases
where brain images have significant morphological differences such as enlarged
ventricles. The use of atlas selection or weighting schemes in addition to use of
a larger training set could address these issues and improve the shape priors.

Fig. 3. Effects of brain masking on the CSF region: a) resulting labels after HMF
optimization and b) after brain masking
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Table 1. Accuracy results for the MRBrainS test database (Nrest = 12): Dice Sim-
ilarity coefficient (Dice), modified Haussdorff distance (Mod. HD), absolute volume
differences (Abs. VD)

Dice Coeff. (%)| Mod. HD (mm)|Abs. VD (%)
Structure Mean £+ SD Mean + SD Mean £+ SD
Gray matter 80.49 £ 1.93 1.95 £ 0.09 7.26 £ 5.62
White matter 85.88 £ 1.03 3.19 £ 0.37 7.64 + 6.37
Cerebrospinal fluid 81.15 £ 3.42 2.53 + 0.41 16.22 + 9.06
Brain 93.83 £ 0.57 2.66 + 0.40 6.51 + 2.48
All intracranial structures| 97.92 £ 0.28 2.57 £ 0.43 0.74 £ 0.42
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Fig. 4. Example axial results for worst (left, Nrgs7[1]) and best case (right, Nresr(8])
results determined by overall Dice Coefficient for CSF, GM and WM.
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Segmentation methods that can take advantage of multi-sequence MRI data
can potentially provide more accurate results because of the complementary in-
formation that these sequences provide. The T1 IR images for instance provide
contrast critical to defining the outer boundary of the brain, however, exploiting
this information with existing tools proved challenging because the background
intensities overlapped with the brain intensities. Our approach used the IR im-
ages in a refinement registration step (with a brain-based cost-function mask) to
generate an updated brain mask. Another option for including multi-sequence
information would involve adding additional data log-likelihood terms to the
segmentation cost function. Our initial experiments found this to be less accu-
rate, likely due to the reduced contrast and sometimes blurred boundaries in the
thick-slice images, thus we did not apply this approach in our final submission.

The generalized hierarchical framework we applied has several benefits with
respect to flexibility in parameters for different label groups, however, with this
added flexibility the challenge then becomes how to efficiently select, or tune,
these parameters. The approach outlined here employed a heuristic determina-
tion of parameters, thus much improvement could be gained with automating
this procedure, which we plan to address in future work.

4 Conclusion

We developed an automated method to segment brain tissue from Tlw MR
images. It makes use of a partially-ordered Potts model label configuration that
allows to regularize label groups individually. The proposed pipeline is able to
generate fast and approximate globally optimal results and can be implemented
using commerically available hardware.
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