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Abstract. Segmentation of the human cerebrum from magnetic res-
onance images (MRI) into its component tissues has been a defining
problem in medical imaging. Until recently, this has been solved as the
tissue classification of the Ti-weighted (7Th-w) MRI, with numerous so-
lutions for this problem having appeared in the literature. The clinical
demands of understanding lesions, which are indistinguishable from gray
matter in 77 -w images, has necessitated the incorporation of Tx-weighted
Fluid Attenuated Inversion Recovery (FLAIR) images to improve seg-
mentation of the cerebrum. Many of the existing methods fail to handle
the second data channel gracefully, because of assumptions about their
model. In our new approach, we explore a model free algorithm which
uses a classification technique based on ensembles of decision trees to
learn the mapping from an image feature to the corresponding tissue
label. We use corresponding image patches from a registered set of T7-w
and FLAIR images with a manual segmentation to construct our decision
tree ensembles. Our method is efficient, taking less than two minutes on
a 240 x 240 x 48 volume. We conduct experiments on five training sets
in a leave-one-out fashion, as well as validation on an additional twelve
subjects, and a landmark validation experiment on another cohort of five
subjects.
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1 Introduction

The segmentation of magnetic resonance images (MRI) of the whole head into
just the primary cerebrum tissues of cerebrospinal fluid (CSF), gray matter (GM),
and white matter (WM) has been one of the core challenges of the neuroimaging
community for the past twenty years. The majority of existing solutions are con-
ceived as a pipeline, with several preprocessing steps used to isolate the cerebrum
before it is segmented. These include inhomogeneity correction—the most well
known being N3 [26]—followed or preceded by skull stripping—see Table 1 in [24]
for a recent overview—and then either an image intensity standardization tech-
nique or directly into the segmentation task. The segmentations approaches that
have been employed for this three class problem include: Gaussian distribution
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based such as Expectation Maximization Segmentation (EMS) [27], unified seg-
mentation [1], and FMRIB’s Automated Segmentation Tool (FAST) [28]; Fuzzy
c-means (FCM) approaches such as FANTASM [13] and several others [8,9,
17]; and more recently the Rician based distributions [19]. Newer methods have
tended to include one of these distributions at their core while incorporating
statistical [1] and topology [3] atlases to help improve their accuracy.

These approaches assume that there are nice reasonable distributions that
can approximate all given data, regardless of the patients pathology. In this work
we want to explore the possibility of a distribution free model, that can provide
rapid tissue segmentations. We have chosen to use random decision forests [11, 4]
which provide a model free framework that can learn a complicated distribution
that would otherwise be poorly approximated by a fixed distribution choice.
Our method uses some existing software tools to isolate the cerebrum in the
whole head MRI, by removing the skull [7,6] and the cerebellum [3]. We then
use a decision tree ensemble to generate a hard classification of the tissues in the
cerebrum. The approach is inspired in part by the patch matching literature,
which has been used for image synthesis [23, 21, 20], super-resolution [20, 14, 16],
inhomogeneity correction [18], segmentation [15, 22]. We extend these ideas with
the framework of regression based image reconstruction [12] to reconstruct a
segmentation of an unseen input image.

2 Method

We use T1-w and FLAIR images which have been co-registered and bias cor-
rected in our algorithm. We use {It(T),It(F),It(C)},t =1,...,5, to denote the
t* training subject, which correspond to the Tj-w, FLAIR, and manual seg-
mentation image respectively. The class image has labels, 1,2, 3, which are CSF,
GM, and WM respectively. The training data images also have white matter
lesions (WML), which have the appearance of GM in It(T), though we wish to
segment them as WM.

2.1 Preprocessing Training Data

Fig. 1 provides a flowchart of our algorithm. The training data images are skull
stripped and manually labeled using the contour segmentation objects (CSO)
tool in MeVisLab. The T;-w (It(T)) images are linearly scaled so that their mean
WM intensities are at 1000, the mean WM intensity is found by fitting a three-
class Gaussian Mixture Model (GMM) to the intensity histograms. The FLAIR
images (It(F)) are linearly scaled so that the mode of WM intensities is 1000,
the WM mode is obtained from the intensity histogram, smoothed by a kernel
density estimator.
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Fig. 1. A overview of our algorithm. The input training data is converted into patches
which are fed into our random forest. This outputs a learned patch ensemble of decision
trees, which are used on the test data to predict a subjects segmentation.

2.2 Training and Prediction

At each voxel i of the t*! training data (It(T),IgF),It(C)>, p X q X r-sized 3D
image patches are defined on It(T) and It(F) and denoted as Xg) and xg),
(T)

and

respectively, which reside in a d dimensional space where d = pgr. x;,
X(F) are concatenated to form a 2d x 1 vector x; ., which acts as the feature

it
vector for the i*" voxel with a corresponding label taken from the i*" voxel of
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It(c), denoted by y; ;. We thus consider x;’s as attributes with the dependent
variables being y; ;’s. We can then construct training pairs of (x; ¢, y; ) for each
voxel ¢ in each training subject t. Using all the available data, i.e. all the voxels
in all five subjects, leads to an unbalanced training set as each tissue class is not
represented equally, thus care is taken to ensure equal proportions of each class
in the training data.

We pursue a classification tree solution which enables us to directly use the
training algorithm described in [5] to train a bagged ensemble of decision trees.
A single decision tree partitions our 2d-dimensional space by splitting different
dimensions using a learned threshold. During training, one third of the attributes
are randomly considered for the choice of splitting and the one that best min-
imizes the Gini impurity criterion, after deciding a threshold, is chosen as the
dimension to split upon. A single decision tree is considered as a weak learner
and has higher error in general, thus we use a bagged ensemble of decision trees
which reduces errors through bootstrap aggregation. In this process, the en-
semble consists of n trees, each of which is learned from a bootstrapped data
set—which are created by randomly sampling with replacement from the whole
training data set, N times where N is the number of training samples in the
entire training data. We limit the depth of each tree by fixing the number of
samples accumulated at a leaf to be five, thus preventing over-fitting. Prediction
is done by passing a test feature vector through each tree and allowing it to
traverse the nodes of the tree by observing the splitting criterion and threshold
at each node until it reaches a leaf node. The predicted label is calculated by
voting between the training data vectors present in the leaf. The training data
consists of ~ 10% samples from the five training subjects, with training done in
parallel, we can create a trained ensemble of decision trees takes on average 256
seconds on an 8-core, 2.73GHz machine, image preprocessing which includes nor-
malization of T1 and FLAIR data takes on average 67 seconds, while prediction
on a new unseen data set takes on average 31 seconds on the same machine.

3 Results

We perform three experiments to demonstrate the practicality of this new seg-
mentation method. The first is a leave-one-out cross-validation on the training
data, the second is an analysis on 12 additional subjects from the same co-
hort as the training data, and finally a study of the accuracy of the defined
CSF/GM & GM/WM boundaries using manually picked landmarks. The train-
ing and test data consists of T3-w and FLAIR images both with resolution of
0.958 x 0.958 x 3.0mm with the manual segmentation being conducted in the
same space. Our landmark cohort is made up of five healthy subjects (3 females)
with a mean age of 39.4 years (range: 30-49) with the T1-w and FLAIR images
having an isotropic resolution of 1.1lmm3. Two raters (Raters A and B) then
placed 10 landmark points upon the inner and outer boundaries of the cortex in
each of 21 coarsely selected regions, resulting in each rater picking 210 landmarks
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per surface for each of the five subjects, more details are available in Shiee et
al. [25].

3.1 Cross-Validation

In each round of our cross-validation experiment we removed a single data set
from the training sample of five subjects and trained our decisions trees as de-
scribed in Sec. 2 with the four remaining data sets. The trained decision tree
ensemble is then tested on the held out data with evaluation on the three classes
including Dice score, 95% Hausdorff distance, and absolute volume difference.
The results are reported in Table 1, see Babalola et al. [2] and Dubuisson et
al. [10] for an explanation of the metrics used. To provide a baseline for compar-
ison purposes, we computed the same metrics after using FreeSurfer to segment
the data, also in Table 1. Fig. 2 has three orientations of a training data set
showing the T1-w, FLAIR, and both the manual segmentation and the result of
our algorithm. The red arrow in Fig. 2 denotes a region in the midsagittal plane
where our algorithm seems to make a more sensible decision than the human
rater by leaving a clear separation between the hemispheres.

Table 1. Cross validation on the five test subjects, performed by training on four data
sets and evaluating on the fifth. We report the Dice score, 95% Hausdorff distance (HD),
and the absolute volume difference (Abs. Vol. Diff.) as a percentage of the total brain
volumes. More details about the computation of these metrics is available from Babalola
et al. [2] and Dubuisson et al. [10]. For comparison purposes, we include the results of
FreeSurfer on the same data.

Dice (%) 95% HD (mm) Abs. Vol. Diff.
Structure Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
GM 83.42 1.67 4.11 1.16 2.978 2.013
WM 87.13 2.62 2.18 0.19 1.198 1.010
CSF 81.38 2.55 1.88 0.58 4.466 2.178
Brain 94.71 0.50 7.33 1.45 2.899 1.628
FreeSurfer GM 69.66 1.72 12.02 0.66 2.027 1.128
FreeSurfer WM 79.88 2.52 10.26 0.64 7.377 1.641

3.2 Test Data

For evaluation on the test data, we trained our decision trees on all five subjects
in the training data and then used this trained ensemble to predict the segmen-
tation in the test data. The results are shown in Table 2 and some example
segmentations for the test data are given in Fig. 3.
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Fig. 2. Each row shows a specific orientation from a training data set. From left to right
the columns are: T1-w, FLAIR, manual segmentation, and the result of our algorithm.

Table 2. Results on 12 test subjects. We report the Dice score, 95% Hausdorff dis-
tance (HD), and the absolute volume difference (Abs. Vol. Diff.) as a percentage of the
total brain volumes. More details about the computation of these metrics is available
from Babalola et al. [2] and Dubuisson et al. [10]. AIS denotes all internal structures.

95% HD (mm)
Mean Std. Dev.

Abs. Vol. Diff.

Mean Std. Dev.

Dice (%)
Structure Mean Std. Dev.
GM 83.46 1.95
WM 87.01 1.10
CSF 66.46 2.40
Brain 94.75 0.60
AIS 92.53 0.55

2.29
3.42
15.67
2.96
27.89

0.44
1.03
2.51
0.38
1.49

6.37
6.80
13.39
3.32
3.52

4.45
5.20
9.21
2.01
1.74

3.3 Landmark Validation

The same trained ensemble that we used on the twelve test data subjects was
used on our landmark cohort. With each landmark representing either the CSF/GM
or GM/WM interface, we computed the shortest distance from each landmark
to the corresponding boundary as defined by our voxel based segmentation. For
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Fig. 3. The top row shows a sagittal view comparison of the skull-stripping on training
and test data. The bottom row shows an axial view of the Ti-w, FLAIR, and our
segmentation of the same test subject.

Table 3. Landmark results based on five subjects with 420 manually picked landmarks,
with 210 landmarks on each of the inner and outer surfaces, by two raters.

Inner Surface Outer Surface

Rater A Rater B Rater A Rater B
Sub. 1 0.52 (0.51) 0.58 (0.61) 1.08 (1.04) 0.99 (1.01)
Sub. 2 0.54 (0.44) 0.62 (0.73) 0.68 (0.72) 0.64 (0.79)
Sub. 3 0.73 (0.97) 0.70 (0.95) 0.65 (0.60) 0.64 (0.59)
Sub. 4 0.41 (0.34) 0.46 (0.38) 0.67 (0.50) 0.64 (0.63)
Sub. 5 0.65 (0.80) 0.70 (0.78) 0.98 (0.69) 1.13 (0.82)
Mean 0.57 (0.66) 0.61 (0.71) 0.81 (0.73) 0.80 (0.78)
FreeSurfer 0.47 (0.38) 0.44 (0.38) 0.51 (0.36) 0.44 (0.38)

a comparison to the state-of-the-art, we also ran FreeSurfer on each of the land-
mark data sets and computed the shortest distance between each landmark and
the appropriate surface generated by FreeSurfer. The results are shown in Ta-
ble 3.

4 Conclusion

We present a new approach to MR brain segmentation with a focus on speed
while achieving very high accuracy. The Cross-Validation and Test Data exper-
iments demonstrate that we can consistently achieve very good results for all
three metrics with respect to GM and WM segmentation. In comparison to the
hard segmentation generated by FreeSurfer on the Training Data, we are clearly
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much better for all three metrics. Our inferior results for CSF segmentation on
the test data set, are in large part due to the skull stripping differences be-
tween the training and text subjects, this is best evidenced by considering both
the 95% Hausdorff distance and the absolute volume difference. These metrics
show a very large difference in the volumes and the distance between mislabeled
voxels for CSF, as our CSF volume extends outside the CSF volume labeled
by the manual experts. Our landmark data provide more confirmation that our
estimation of the boundaries of WM & GM and GM & CSF are close to the
state-of-the-art even though they are just at the voxel level, and not sub-voxel
like all surface generation software tools.
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