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Abstract. This work is integrated in the MICCAI Grand Challenge: MR Brain 
Image Segmentation 2013. It aims for the automatic segmentation of brain into 
Cerebrospinal fluid (CSF), Gray matter (GM) and White matter (WM). The 
provided dataset contains patients with white matter lesions, which makes the 
segmentation task more challenging. The proposed algorithm uses multi-
sequence MR images to extract meaningful features and learn a Random Deci-
sion Forest that classifies each voxel of the image. The results show that it is 
robust to the presence of the white matter lesions, and the metrics show that the 
overall results are competitive. 
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1 Introduction 

Magnetic Resonance Imaging (MRI) is a three-dimensional (3D) imaging tech-
nique that provides very good quality and contrast images of soft tissues, being used 
for diseases diagnostics, but also for scientific research. Volumetric studies as well as 
the study of some diseases like multiple sclerosis, schizophrenia or Alzheimer, require 
the segmentation of brain tissues, namely the cerebrospinal fluid (CSF), grey matter 
(GM) and white matter (WM). The task of manual segmentation of the brain is time 
consuming, and if one thinks about studies with dozens of subjects, the necessity, if 
not the obligation, of an automatic or semi-automatic tool that accurately accomplish-
es that task arises [1] [2]. 

Several brain tissue segmentation approaches have been proposed over the years. 
Some proposals try to use clustering technics, being the Expectation-Maximization 
(EM) a popular method. Some of those employ Markov Random Fields to add context 
of the neighbourhood of the voxel being labelled [2] [3]. In [2], a prior probability 
atlas is employed to initialize the EM procedure, which gives, also, spatial infor-
mation. However, other authors have also proposed segmentation methods more de-



pendent on an atlas, but usually they aim to label more neuroanatomical structures 
besides CSF, GM or WM, like the basal ganglia, brainstem and others [4] [5]. More 
recently, Yi proposed a segmentation method based on a supervised Decision Forest 
to segment the brain tissue, achieving good results [6]. 

For the MRBrainS challenge, we propose a fully automatic algorithm, using a su-
pervised Decision Forest. Our main contribution consisted in a set of new features and 
the choice of steps for pre-processing and post-processing the MR images. These 
features provide information about the context around the voxel under analysis, taking 
into consideration information among the MRI sequences (T1-weighted, T1-weighted 
inversion recovery and FLAIR). Our proposed algorithm is multi-sequence, using the 
three thick sequences. 

2 Materials and methods 

2.1 Dataset 

The dataset is comprised by 5 MR images for training and 12 MR images for test-
ing. Ground-truth images were only available for the training ones and include white 
matter lesions, suggesting that the subject were not all healthy. For each subject, 3 
MR sequences were used: 

- Thick-slice T1-weighted scan (voxel size: 0.958 mm x 0.958 mm x 3.0 mm). 
- Thick-slice T1-weighted inversion recovery scan (voxel size: 0.958 mm x 

0.958 mm x 3.0 mm). 
- Thick-slice FLAIR scan (voxel size: 0.958 mm x 0.958 mm x 3.0 mm). 

All images were provided by the MICCAI Grand Challenge: MR Brain Image 
Segmentation 2013 (MRBrainS13). 

2.2 Proposed algorithm 

The proposed algorithm consists of four main tasks: pre-processing of the MR im-
ages, features extraction, classification and post-processing of the classified image. 

The pre-processing stage includes two steps. First, a skull stripping method was 
applied to extract the brain [7]. Then, the intensity scale of each subject’s sequence 
was normalized to a reference scale (of a chosen MR training image), by histogram 
matching, in order to make the brightness level and the contrast more consistent 
among subjects [8]. For the normalization step, ITK’s [9] implementation of [8] was 
used. 

The proposed algorithm uses a supervised classifier, namely a Random Decision 
Forest, which is the combination of several Random Trees that are simpler classifiers. 
Each tree is unique, because there is some randomness during the training phase, re-
sulting in a good generalization of the forest for unseen data. Plus, it can handle multi 
label problems (because it combines many trees), it can be easily parallelized and it 
can handle many features. 

Finally, a post-processing was applied to the classified volumes to remove isolated 
points. 



In order to optimize the Decision Forest parameters and test which features im-
proved the method, a leave-one-out cross-validation was used in the training set. After 
that, the classifier was trained with features extracted from the five training subjects. 
Whole procedure was applied for three labels only, meaning that some of the training 
labels were joined. 

 
Random Decision Forests. During the training step, on every splitting node each 

tree will learn from the labelled training data which feature and which threshold are 
more appropriate to distinguish the remaining samples. During the testing step, each 
sample will go through the splitting nodes of every tree, until a leaf node (after the 
last division) is reached. According to the training samples, the tree will vote for one 
of the labels (CSF, GM or WM), when reaching that leaf during the training step. The 
label that has the majority of votes, considering all the trees, gives the final classifica-
tion for the testing sample [10].  

The parameters that are possible to influence the Decision Forests’ efficiency are 
the number of trees and the depth (number of divisions) of each tree. For this work, 
the forest is comprised of 52 trees with a depth of 32. A total of 500.000 samples 
(100.000 per image) were used to train the decision trees. These samples were ran-
domly selected from the brain region of the training dataset. 

Features. For each voxel, a set of meaningful features was extracted. These features 
include the intensity of the voxel, some information about the 2-dimensional neigh-
bourhood of the voxel, posterior probabilities from the Gaussian Mixture Models with 
Markov Random Fields, and the gradient magnitude. 

MR sequences intensities. These features include the intensity of the brain images in 
the 3 sequences provided by the dataset and the difference between each two se-
quences. The total number of this kind of feature was 9. 

Neighbourhood information. These features comprise of the mean, sum and median 
value of 2-dimensional neighbourhoods (axial plane). These statistics were performed 
for neighbourhood sizes of 3, 9, 15 and 19 mm2 and for each of the 3 MR sequences. 
Similar to the intensities, the differences between sequences were also used as fea-
tures. A total number of 108 features of neighbourhood information were used, being 
36 features of the neighbourhood of the voxel, and 72 features of neighbourhoods’ 
differences. 

Posterior probabilities. These features were computed with Atropos from the Ad-
vanced Normalization Tools (ANTs) [3] for the T1 sequence, only. Atropos is a seg-
mentation algorithm based on the Baye’s theorem, which states that 

𝑝 𝒙 𝒚 = ! 𝒚 𝒙 !(𝒙)
!(𝒚)

  (1) 

Where p(𝒙|𝒚) is the posterior probability of the label x, given the intensities y, p(𝒚|𝒙) 
is the model likelihood, p(𝒙) is the prior probability of x and 𝑝(𝒚) is a normalization 



term. So, the segmentation is a maximization problem of the posterior probability, 
addressed by the Expectation-Maximization algorithm [3]. 

It was assumed that the intensity of the three tissue types followed a Gaussian mix-
ture model. For the prior probability, Atropos allows users to choose Markov Random 
Fields in order to apply some information from the neighbourhood, what gives to the 
final segmentation a more coherent result [3]. 

Besides the segmentation, Atropos output may also include the posteriors probabil-
ities of each label, which were used as feature for the Decision Forest. 

Atlas. A probability atlas was created for each of the training labels, in a similar way 
as described in [6], so that some spatial information could be incorporated. In order to 
achieve that, all the training subjects were affinely registered to a random chosen one. 
Then, for each label, the ground truth from all those subjects were averaged and regis-
tered to each of the test volumes. 

Magnitude of the gradient. The last feature was the magnitude of the gradient for each 
sequence, which tried to capture some information from the tissue edges. 

Post processing. Inside a region of a tissue type it is not likely to appear a single 
voxel of another tissue. However, since Decision Forests do not take into account 
information from the neighbourhood of the voxels, it may classify, wrongly, some 
isolated voxels as another class. Therefore, those isolated points are found and substi-
tuted by the mode of their neighbourhood. 

3 Results and discussion 

Figure 1 shows one slice for each sequence of three different scans, and the respec-
tive segmentation. It looks that the segmentation algorithm performs well, mainly in 
the WM. Observing the GM, one may conclude that in some areas it is thicker than it 
should, principally in the sulci, which could be due to the partial volume effect in 
those locations. Also, a great portion of the basal ganglia is detected, however the 
edges seem irregular. 

It is important to notice that even not training the Decision Forest with one label 
just for the white matter lesions, those voxels are accurately classified as white matter, 
even the smaller ones, as it is possible to observe in the first scan of the Figure 1. This 
means that the proposed algorithm may be a good approach for studies that need to 
extract the WM as a region of interest for research in lesions localized in this tissue. 

Looking at the CSF label, one may conclude that the skull stripping procedure, alt-
hough preserving all the brain, removes some voxels of the extra cerebral CSF. On 
the other and, the ventricles seems to be very well segmented. 

Table 1 presents the quantitative evaluation done by the organizers of the chal-
lenge. The algorithm performs better on WM tissue than on GM or CSF, as it was 
inferred by simple observation of the images. In fact, the performance for CSF is 



poor, what may confirm that the skull stripping procedure and the partial volume 
effect affect greatly the segmentation of this label. 

 

Fig. 1. Segmentation from three scans, each line is a different person. All the three sequences 
are shown for each of the cases, in the first column it is the T1-weighted, and then the T1-
weighted inversion recovery and FLAIR, finally, in the fourth column is our segmentation 
result. 

Table 1. Evaluation results of the segmentation method for GM, WM, CSF, Brain and all intra-
cranial structures (AIS). The metrics presented are the Dice, the Hausdorff Distance and the 
Absolute Volume Difference in percentage. 

Structure Dice (%) Mod. HD (mm) Abs. Volume 
diff (%) 

Mean Std. dev Mean Std. dev Mean Std. dev 
GM 83.60 2.33 3.01 0.92 9.28 7.06 
WM 87.79 1.12 2.75 0.91 8.60 3.62 
CSF 67.96 3.70 5.07 2.41 27.37 21.47 
Brain 94.32 1.08 4.94 2.04 3.92 3.50 
AIS 92.52 1.19 7.38 4.67 9.41 4.95 

 



4 Conclusion 

In this paper, it is reported a fully automatic, multi-sequence, brain tissue segmen-
tation algorithm that achieves very satisfactory results. Besides, it proves to be robust 
to the presence of abnormalities such as white matter lesions. It is also shown, that 
despite the existence of a reduced number of algorithms based on supervised classifi-
ers for the segmentation of brain tissues, they should be subject of attention. In this 
context, when using supervised methods, an important step is the choice of the best 
set of features to train them with. 

The main limitation of our proposal is the segmentation of the extra CSF; however, 
it is likely to be significantly improved after the implementation of a method that 
corrects the partial volume effects. 

The total execution time of our algorithm is about 15 minutes for each test subject, 
using the programming language Python on a computer with an Intel processor (i7-
3930k, 3.2 GHz) and 24 GB of RAM.  

For future work, we aim to study other methods for the skull striping procedure, or 
even another strategy for that task, as well the inclusion of a method to correct the 
partial volume effect. 
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