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Abstract. In this paper, we validate our proposed segmentation algo-
rithm called Bayesian-based adaptive mean-shift (BAMS) on real mul-
timodal MR images provided by the MRBrainS challenge. BAMS is a
fully automatic unsupervised segmentation algorithm. It is based on the
adaptive mean shift wherein the adaptive bandwidth of the kernel for
each feature point is estimated using our proposed Bayesian approach
[1]. BAMS is designed to segment the brain into three tissues; white
matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The
performance of the algorithm is evaluated relative to the manual seg-
mentation (ground truth). The results of our proposed algorithm show
the average Dice index 0.8377±0.036 for the WM, 0.7637±0.038 for the
GM and 0.6835± 0.023 for the CSF.
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1 Introduction

Automated segmentation of MR images of the brain is an active area of research
in the field of neuro imaging. The resulting segmentation yields a patient-specific
labeling of individual tissues which makes possible for the quantitative charac-
terization of these tissues (for example, in the study of Alzheimer’s disease and
multiple sclerosis).
The majority of unsupervised methods that have been proposed for automated
segmentation of brain tissues are based on statistical parametric models. These
methods assume some distributional form for the underlying probability distri-
bution of the data and seek to estimate its parameters. Some of these [2, 3] are
purely voxel wise intensity based clustering methods. A downside of these is that
they may give poor tissue classifications in the presence of additive noise and
the multiplicative bias field [4]. Some of the parametric methods [5, 6] using a
Markov random filed (MRF) statistical spatial model to improve the smooth-
ness of segmentation. A drawback with these approaches is that MRF algorithm
is computationally expensive and requires critical parameters settings at higher
dimensional feature space [4].
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An alternative unsupervised approach that doesn’t require many parameters, in-
corporates the spatial information easily into a higher dimensional feature space
(multimodal MR images) is mean shift (MS) clustering. In MS, only the param-
eter that influences the clustering is called bandwidth of the kernel. A couple
of MS methods [4, 7] based on the adaptive bandwidth have been proposed for
brain tissue segmentation in MR images. The adaptive bandwidth estimator [8]
used in [4], is based on the k nearest neighbour (kNN) distance. A downside is
that this approach is known to be biased by outliers for Euclidean distance [9].
Drawback of adaptive bandwidth estimator used in [7] include that it requires an
initial density estimate (called the pilot). These collective limitations motivated
the development of new algorithm presented in [1]. In [1], we applied our pro-
posed algorithm only on single modality (T1) real MR data sets. In this paper
we evaluate the performance of our proposed algorithm on multimodal MR data
sets obtained from the MRBrainS challenge.
The rest of the paper is organized as follows. In section 2 we summarize the
adaptive mean shift algorithm. In section 3 we present the Bayesian approach
for adaptive bandwidth estimation. The proposed segmentation algorithm is pre-
sented in section 4. Finally, the experimental results are presented in section 5.

2 Adaptive mean shift

Let {xi 2 Rd|i = 1.....n} denote a set of feature vectors in d - dimensional space.
The adaptive kernel density estimate of the underlying multivariate probability
function at point x is given by
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where hi > 0 is the adaptive bandwidth and k : [0, 1] ! R is the kernel profile
of the spherically symmetrical kernel K with bounded support defined as

K(x) = ck,dk
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and ck,d is a normalizing constant ensuring that the kernel K integrates to 1. In
this work, the Gaussian kernel is applied which is defined as

KG(x) = ck,d exp
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The derivative of the adaptive density estimator in eq. 1 leads to

5̂fK(x) ⌘ 5f̂K(x) =
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where g(x) = �k

0(x). The right-most factor (in square brackets) in eq. 4 is
called the mean shift vector. It points toward the direction of maximum increase
in density and is defined as

Mhi,G(x) =
5f̂K(x)
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where G represents the kernel and defined as

G(x) = cg,dg(kxk2) (6)

Adaptive mean shift is an iterative hill climbing procedure in which the kernel
G starts from an initial position y1 and moves towards the position closer to the
higher dense region. This process is continued until the position in higher dense
region is achieved which represents a mode of the density. The update rule of
kernel position is given by

yj+1 =
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where {yj}j=1,2,... represents the successive locations of the kernelG. The feature
points that converge to the same mode constitute a cluster. In order to perform
the clustering using spatial information of voxel with its range (intensity) value,
a joint spatial-range domain kernel Khs,hi(x) is used. It is defined as a product
of spatial and range domain kernels and is given by

Khs,hi(x) =
C
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where xs represents a vector of voxels spatial coordinates, xr represents a vector
of voxels range (intensity) values and hs and hi are their corresponding kernel
bandwidths, and C is a normalization constant.

3 Bayesian approach for adaptive bandwidth estimation

Our proposed approach is based on a novel variation on the Bayesian approach
initially proposed in [9] for the global bandwidth estimation of the kernel. In our
variation we used this idea locally for adaptive bandwidth estimation.
The bandwidth is modeled by the a posteriori probability density function p(s|x)
of local data spread s given the feature point x. Let M < n (total number of
feature points) be the number of nearest neighborhoods to a feature point x. We
can then define the pseudolikelihood

P (s|x) =
NY

j=1

P (s|xMj ) (9)
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where P (s|xMj ) is the probability of local data spread s depending on the nearest
neighborhood samples to xMj and {Mj | j = 1, 2, ...N} is the set of N such
neighborhoods of various sizes. The evaluation of probabilities over the entire
range of number of neighborhoods Mj is given as

P (s|xMj ) =

Z
P (s|Mj ,xMj )P (Mj |xMj )dMj (10)

Bayes rule yields

P (Mj |xMj ) =
P (xMj |Mj)P (Mj)

P (xMj )
(11)

where P (xMj |Mj) is the probability of the feature point xMj given the Mj near-
est neighborhood. Hereinafter P (Mj) is considered to have uniform distribution
on the interval [M1M2]. Several values are selected for Mj in this interval ac-
cording to

Mj = M1 + j

M2 �M1

N

(12)

For a given Mj the local variance sj is computed as

sj =

MjX

l=1
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, i = 1, 2, ...n, j = 1, 2, ....N (13)

where x(i,l) is the l-th nearest neighbor to the feature point xi. The distribution
of variances is modeled as the Gamma distribution defined as

P (s|↵,�) = s
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where ↵ and � define the shape and the scale of the Gamma distribution, re-
spectively.
These parameters are estimated using the maximum likelihood approach. Fi-
nally the adaptive bandwidth is estimated by the product of these parameters,
identically the mean of Gamma distribution, i.e.

ĥ(xi) = ĥi = ↵̂�̂, i = 1, 2, ....n (15)

4 Proposed segmentation algorithm

The pre-processing steps includes: (1) extraction of brain mask which is done by
employing the BET2 [2] tool on a T1 weighted image with parameter settings;
fractional intensity threshold=0.2 and threshold gradient=0.05. These parame-
ters optimal values are determined by using the 5 training data sets. The resul-
tant brain mask is then used to extract the brain of multimodal MR images. (2)
Normalization of intensity values of each modality to the interval [0 1] which is
done by applying the linear histogram stretching.
The proposed algorithm BAMS involves the following steps for segmenting the
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brain into WM, GM and CSF.
1. BAMS takes feature vectors xi as input, which represent the thick slice mul-
timodal MR brain images. The modes or clusters of the feature points are de-
termined using the eq.7. The clustering is done in the joint spatial-range do-
main using the joint-domain kernel defined in eq.8. The spatial bandwidth is
set as hs = 9 and the adaptive range bandwidth hi is estimated by employing
our proposed Bayesian approach described in section 3 with parameters settings
M1 = 100,M2 = 750 and N = 10. These parameters optimal values and the spa-
tial bandwidth optimal value are determined empirically by using the 5 training
datasets. The output of BAMS is a large number of modes or clusters.
2. Finally the three tissues are obtained by merging the clusters (output from
step 1) using the voxel weighted k-means clustering algorithm [4]. Cluster initial-
ization is performed making use of prior information of tissue intensity ranges
in the multimodal MR images.
The schematic procedure of the proposed algorithm is shown in Fig.1.

5 Results

Our proposed unsupervised algorithm BAMS is applied on 12 test data sets,
provided from the MRBrainS challenge. Each data set consists of thick slice
multimodal (T1-weighted, T1-weighted inversion recovery (T1 IR)and FLAIR)
MR images with voxel resolution 0.958mm⇥0.958mm⇥3mm. The segmentation
performance of BAMS for each data set is evaluated relative to manual segmen-
tation. The evaluation is performed by the MRBrainS challenge organizers. The
average segmentation performance of proposed method BAMS is presented in
Table 1.
The proposed algorithm BAMS is implemented in MATLAB (R2010a) and it
takes approximately one and a half hours for segmenting the multimodal MR
images on a single desktop PC running 64-bit Ubuntu 10.04 with 8 GiB ram
memory and 8 Intel Core i7 CPU 870 at 2.93 GHz.

Structure Dice (%) Mod. HD (mm) Abs. volume di↵. (%)

Gray matter 76.37± 3.79 5.77± 3.27 9.57± 7.25
White matter 83.77± 3.61 5.00± 3.57 24.74± 10.80

Cerebrospinal fluid 68.35± 2.33 3.73± 0.58 11.95± 9.22
Brain 93.24± 1.52 7.19± 3.90 5.45± 5.17

All intracranial structures 93.81± 1.09 6.27± 1.50 3.99± 1.97

Table 1. Average segmentation performance of proposed algorithm BAMS in terms
of Dice, modified Hausdor↵ distance (Mod. HD) and absolute volume di↵erence (Abs.
volume di↵.)
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Fig. 1. Schematic procedure of proposed algorithm BAMS.
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