BinShrink: A multi-resolution filter with cache
efficient averaging.

Release 1.00
Bradley C. Lowekamp' and David T. Chen!

November 18, 2013
National Library Of Medicine

Abstract

We present a new filter for the Insight Toolkit (ITK) for reducing the resolution of an image by an
integer factor while averaging called BinShrink. This filter provides a new level of performance to ITK
for reducing resolution and noise present in an image. The filter supports streaming, multi-threading and
most of ITK’s pixel types including scalars, Vectors, SymmetricSecondRankTensors, and RGBPixels.
The filter has been optimized to efficiently access the input image thereby greatly increasing performance
over conventional methods.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/10380]
Distributed under Creative Commons Attribution License

Contents

1 Implementation 2
L1 GeOmetry o o e e e e e e e e e e e e 2
1.2 Initial Implementation 2
1.3 Optimization v vt e e e e e e e e e e e e e e e e e e e 3

2 Results 4
2.1 Performance e e e e e e e e 7

3 Conclusion 8

Our new BinShrink filter reduces the resolution of an input image by a integer shrinking factor, while per-
forming averaging of an input neighborhood. It can be used in streaming processing to reduce the size of an
image that is larger the main memory. The averaging can effectively reduce uncorrelated noise by reducing
the expected standard deviation by a factor 1//n where n is the number of samples in the neighborhood,
based on the Bienaym formula.

Electron microscopy pushes the limits of resolution and detectable signal, sometimes having less than a
1:4 signal to noise ratio. The “binning” algorithm is commonly used in processing high resolution electron
microscopy images. It is available in packages such as The Boulder Laboratory for 3-D Electron Microscopy
of Cell’s IMOD]J2], and BSoft [1].

In this paper we demonstrate the effective performance improvements which can be achieved by changing
the way an algorithm accesses the data. We show that by accessing the data is a coherent scan-line order a
10 times speedup can be realized in some cases.

1 Implementation

The algorithm implemented in the BinShrink filter can be described with (Equation 1) for the 2D case.

T2 B o lin(foxo + i, fix1+ j)
fofi

ey

lour (xmxl) =

The output image is only defined when all the required input image pixels are defined. The vector variable
fis a user specified shrink factor.

The method operates only on local input and output regions making the filter appropriate for streaming.
Also the only operations required are pixel wise addition and division by a scalar, so the filter can readily
work with a wide variety of pixel types.

1.1 Geometry

The geometry of an image includes its pixel spacing, origin, and image orientation. For the BinShrink filter
the orientation is unchanged from the input image to the output image, but the output image’s spacing is
scaled from the input spacing by the shrink factor. Also, there is some complication when defining the
origin. When the input image size is not evenly divisible by the shrinking factor, a choice of how to “round”
the pixel locations needs to be made. We have chosen to maintain the physical location for the image signal
and truncate the odd pixels at the boundaries. As an ITK image can have non-zero starting indexes, we
define that the output origin pixel must lay on the same lower boundary as the input, and therefore the origin
must be adjusted accordingly (See figure 1).

While this approach maintains the physical location of the image signal, it does not always maintain either
the full extent or the center of the image. Therefore for algorithms such an image pyramids or certain neuro-
imaging analysis, this method may not be appropriate, or assurances must be made that the input size is
divisible by the shrink factor.

1.2 Initial Implementation

We have included the initial, naive implementation of the filter in the submission for performance com-
parison purposes and have named it BinShrink2. The above description of geometry applies only to the
BinShrink filter. The original BinShrink2 was derived from ITK’s Shrink filter, which has different geome-
try characteristics than described above. The original BinShrink2 follows the same geometry as the Shrink
filter.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/10380]
Distributed under Creative Commons Attribution License

1.3 Optimization

Figure 1: The change in image geometry from a 5x5 image binned by a factor of 2x2. The green dotted lines are the

input image. The yellow grid is the result of the filter. The points represent the respective origins.

This original implementation used ITK’s conventional Neighborhoodlterator to average the input for each

output pixel (See Listing 1).

1| while (!outlt.IsAtEnd())

2| {

3 outputlndex = outlt.Getlndex () ;

4

5 inputIndex = outputlndex * factorSize + offsetIndex;

6

7 inputlt.SetLocation(inputlndex);

8

9 AccumulatePixelType sum = NumericTraits <AccumulatePixelType >::Zero;
10 typename ConstNeighborhoodIteratorType:: Constlterator ci = inputlt.Begin();
11

12 for (ci.GoToBegin(); !ci.IsAtEnd(); ++ci)

13 {

14 sum += AccumulatePixelType(ci.Get());

15 }

16 sum = sum / double(inputlt.GetActivelndexListSize());

17

18 outlt.Set(sum);

19 ++outlt;

20 }

Listing 1: A selected section of code from BinShrink?2 filter using the neighborhood iterator.

1.3 Optimization

The implementation we suggest for inclusion in ITK is the BinShrink, which follows the geometry described
above (Section 1.1) and is not derived from the ShrinkFilter. The initial implementation accesses the mem-
ory in an incoherent fashion based on the input neighborhood. However, it is faster to access memory in a
linear and coherent fashion. Therefore we designed BinShrink to access the input image on a per scan-line
basis and to operate the averaging on whole scan-lines, not individual pixels. By utilizing ITK’s Scanlinelt-

Latest version available at the Insight Journal [http://hdl.handle.net/10380/10380]
Distributed under Creative Commons Attribution License

[e BN o) SR I S OS B

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

erators, we improved the algorithm to work on a scan-line for the innermost loops (See Listing 1).

while (!outputlterator.IsAtEnd())
{
const OutputlndexType outputlndex = outputlterator.Getlndex () ;
typename std ::vector<OutputOffsetType >::const\ _iterator offset = offsets.begin();
const InputlndexType startInputlndex = outputlndex * factorSize;
while (++offset != offsets.end())
{
inputlterator.Setlndex(startInputlndex+xoffset);
for(size_t i = 0; i < In; ++i)
{
for (size_t j = 0; j < factorSize[0]; ++j)
{
accBuffer[i] += inputlterator.Get();
++inputlterator;
}
}
}
for (size_t j = 0; j <ln;++j)
accBuffer[j] = accBuffer[j] % inumSamples;
outputlterator.Set(static_cast<OutputPixelType >(accBuffer[j]));
++outputlterator;
}
outputlterator.NextLine () ;
}
Listing 2: A selection of code from the BinShrink filter demonstrating scan-line averaging.
2 Results

To test our BinShrink filter we have used a synthetic function created by Marschner and Lobb[3], along with
additive noise to create test images. This function is often used to evaluate volume rendering reconstruction
filters. We have rendered it into a 128 pixel cubic volume such that the majority of the frequencies in the
function are sampled just above 4 times the Nyquist frequency. Such an image makes for a challenging
theoretical data set when the shrinking factor is also 4.

The code used to generate these images was written in Python with SimpleITK. The original Marshner-
Lobb volume was normalized with the Normalize filter so that the volume had a mean of 0 and a standard
deviation of 1. Then Gaussian distributed random noise was added with a 0 mean and a sigma to achieve
the targeted signal to noise ratio. After the shrinking operation was performed, the volume was again
normalized for contrast. Then the center slice was extracted and tiled. Finally it was colorized by the
ScalarToRGBColormap filter[4].

We examined the results of the BinShrink filter by varying the signal to noise ratio in our Marshnel-Lobb
test image and then shrinking those noisy images by factors of 2 and 4 (See figure 2). For comparison we
also used the SmoothingRecusiveGaissian filter in conjunction with the Shrink filter on the same test noisy
images. We set sigma of the smoothing Gaussian kernel at 0.7 times the shrink factor.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/10380]
Distributed under Creative Commons Attribution License

Figure 2: Outputs of the BinShrink filter on a Marchner-Lobb function with additive Gaussian noise. The
(Left) column is the original image, the (Center) column is binned by 2, and the (Right) column is binned
by 4. The signal to noise ratio varies by row with the values 100:1, 2:1, 1:1, 1:2, and 1:4, respectively.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/10380]
Distributed under Creative Commons Attribution License

Figure 3: Outputs of the SmoothingRecusiveGaussian and Shrink filters on a Marchner-Lobb function with
additive Gaussian noise. The (Left) column is the original image, the (Center) column is smooth with a
sigma of 1.4 and shrunk by 2, and the (Right) column is smoothed by 2.8 and shrunk 4. The signal to noise
ratio varies by row with the values 100:1, 2:1, 1:1, 1:2, and 1:4, respectively.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/10380]
Distributed under Creative Commons Attribution License

2.1 Performance 7

Algorithm Shrink Factor

2 3 4 6 8 12 24
BinShrink 0.0149 0.0116 0.0118 0.0113 0.0112 0.0113 0.0110
BinShrink2 0.0862 0.0465 0.0714 0.0797 0.0940 0.1217 0.7451

GaussianShrink | 0.4850 0.4779 0.4778 0.4803 0.4791 04752 04767
MeanShrink 0.7440 3.9093 3.9264 12.818 31.602 121.80 14123

Table 1: The execution time in seconds of algorithms verses various shrink factors.

Comparing the results of Gaussian filtering (Fig. 3) with BinShrink’s box filtering (Fig. 2) reveals the
aliasing that the latter can produce. This artifact is most apparent in the images with signal to noise ratios
of 100:1, the images in the upper right-hand corner of the two figures. The Gaussian filter image is much
smoother without the banding artifact.

2.1 Performance

To analyze the performance of our two bin shrinking methods (both the optimized and naive versions) we
compare them against similar processes which can be performed in ITK with other pairs of filters.

Running a Mean filter followed by a Shrink filter is a close approximation to BinShrink. The Mean filter
computes an average for each input pixel’s neighborhood in a brute force fashion. This approach wastes
computation on input pixels that are not used by the Shrink filter.

Using a Gaussian kernel to reduce aliasing is another alternative to the box kernel implicitly used with the
BinShrink filter. Gaussian filtering can be performed in constant time and independent of the size of the
Gaussian with the SmoothingRecusiveGaussian filter.

We generated a 384 pixel cubic image of Gaussian distributed noise for performance evaluation. We set the
number of threads used to be 16. Utilizing SimpleITK and Python’s timeit module, we report the median
of 3 runs for each algorithm across varying shrink factors (See Figure 4 and Table 1). The image size,
the number of threads, and the shrink factors were carefully chosen such that the output image was always
evenly divided for multi-threading. As expected the Mean approach suffers from exponential cost as a
function of shrink size, while the SmoothingRecursiveGaussian method remains constant. The BinShrink2
implementation only touches each input pixel once, but it also suffers from exponential growth likely due
to its memory access pattern being inefficient and not cache coherent. On the other hand the BinShrink
implementation execution time decreases as the shrink factor increases.

Analyzing the difference in performance between the BinShrink and BinShrink?2 filters is quite interesting.
Both these filters access the same number of input pixels and output pixels to perform the same computation.
The difference between them is the type of iterator used and the order in which the images are accessed. The
differences in the iterator should account for the time difference for a shrink factor of 2. However, the large
increase in the BinShrink2 execution times can not be explained by the difference in the iterator operation
costs. Specifically our performance results indicate that for a shrink factor of 24 the BinShrink is 67X faster.
We conjecture that this disparity is due to BinShrink2’s inefficient memory access pattern causing decreased
cache hits.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/10380]
Distributed under Creative Commons Attribution License

10* y y y y
@ --® BinShrink]
103 b A --A BinShrink2]
m-® Gaussian Shrink |]
— 102 k x--x Mean Shrink 4
[%) E
8 ‘,X
g 10 ¢ e
Ty o A
F_:
107 A gk A a
‘A
102 ."._. [T Y ® [®. fe e Jee i a |
0 5 10 15 20 25
Shrink Size

Figure 4: The execution time of the BinShrink filter compared to the original BinShrink2 implementation and other
shrinking approaches.

3 Conclusion

We have demonstrated that the BinShrink filter is a fast filter for multi-resolutional work. We have also
shown that by coherently accessing images in scan-line order the performance can be improved by a factor
of 10. BinShrink may not always be the best method for image quality as it may result in aliasing. However,
features such as wide pixel type support and streaming make it quite practical for working with large data
sets.

References
[1] Heymann J.B. and Belnap D.M. Bsoft: Image processing and molecular modeling for electron mi-
croscopy. J. Struct. Biol., 157(1):3-18, 2007. (document)

[2] Kremer J.R., Mastronarde D.N., and Mclntosh J.R. Computer visualization of three-dimensional image
data using IMOD. J. Struct. Biol., 116:71-76, 1996. (document)

[3] Stephen R. Marschner and Richard Lobb. An evaluation of reconstruction filters for volume rendering.
In IEEE Visualization, pages 100-107, 1994. 2

[4] N. Tustison, H. Zhang, G. Lehmann, P. Yushkevich, and J. Gee. Meeting Andy Warhol somewhere over
the rainbow: RGB colormapping and ITK. The Insight Journal, 01 2009. 2

Latest version available at the Insight Journal [http://hdl.handle.net/10380/10380]
Distributed under Creative Commons Attribution License

