A Multiplelmagelterator for iterating over
multiple images simultaneously

Release 1.00
Joél Schaerer'

February 19, 2014

'Bioclinica SAS, 60 avenue Rockefeller, 69008, Lyon, France

Abstract

This document describes an iterator designed to make iterating over multiple images more convenient

Contents

1 Introduction 1
2 Design and implementation 1
3 Sample use 2

1 Introduction

Several applications such as multi-atlas segmentation require frequent iteration over multiple image
volumes at the same time.

Doing so with the regular ITK iterators is tedious and error prone as it requires updating each iterator at
end of each iteration. Failing to do so results in hard to debug errors and crashes.

The Multiplelmagelterator is a simple wrapper class that tries to make this more convenient.

2 Design and implementation

The iterator is designed to share most of the itk image region iterator API.

The Multiplelmagelterator holds a vector of image iterators. Most iterator methods are simply
implemented by calling the corresponding method on all iterators. For example, the increment operator
increments all iterators. The GoToBegin() method calls GoToBegin() on all iterators.

Defining the ISAtEnd() method is more challenging: checking all iterators would be correct, but very
slow. The solution that was chosen is to perform full tests when the code is compiled in debug mode
(NDEBUG is not set), and only check the first iterator in release mode. The user is expected to make sure
all his iterators have the same number of values.

In addition to the usual iterator methods, the Multiplelmagelterator provides the subscript operator ([])
which simply gives access to the underlying iterators.

One major limitation to the Multiplelmagelterator is that all iterators must point to images of the same
type, due to the lack of an untemplated base class for iterators in ITK.

3 Sample use

The following code demonstrates the use of the Multiplelmagelterator in a program that draws random
samples from a set of images and outputs them in CSV format:

int main ()
{
typedef itk::Image<float, 3> ImageType;
typedef itk::ImageFileReader<ImageType> ReaderType;

typedef itk::ImageRegionlterator<ImageType> IteratorType;
itk::MultipleImagelIterator<IteratorType> it;

std::string filenames[] =
{"originalTl.mha","csf reg.nii.gz","grey reg.nii.gz","white reg.nii.gz"};
std::vector<ImageType: :Pointer> images; // Need to keep a reference as
iterators only have weak references
ReaderType: :Pointer r = ReaderType: :New () ;
for (unsigned int i=0; i<4;++1i) {
r->SetFileName (filenames[i]) ;
r->Update () ;
ImageType: :Pointer im = r->GetOutput () ;
im->DisconnectPipeline () ;
images.push back (im) ;
it.AddIterator (itk::ImageRegionIterator<ImageType> (im, im—

>GetLargestPossibleRegion ())) ;
}
for (it.GoToBegin(); !it.IsAtEnd(); ++it) {
if ((it[l].Get() != 0) && ((float)std::rand()) / RAND MAX < 0.01) {

for (unsigned int i=0; i<it.Size(); ++1i) {
std::cout << it[i].Get () << ";";

Latest version available at the Insight Journal link http://hdl.handle.net/1926/1338
Distributed under Creative Commons Attribution License

}
std::cout << std::endl;
}
}
}

Latest version available at the Insight Journal link http://hdl.handle.net/1926/1338
Distributed under Creative Commons Attribution License

