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Abstract

In this article, we present an implementation of a flexible framework for non-parametric variational im-
age registration, realized as part of ITK’s finite difference solver hierarchy.

In a variational registration setting, the transformation is found by minimizing an energy functional that
consists of (at least) two terms: a distance measure between fixed and transformed moving image and
a smoothness condition for the transformation. The specific choice of these terms depends on the par-
ticular application and requires consideration of, for example, image content and imaging modalities.
Following this view, the presented framework can be seen as a generalization of the demons algorithm
in which two key aspects remain exchangeable: the force term (or registration function, according to the
distance measure) and the regularizer (according to the smoothness condition). Moreover, two transfor-
mation models are realized: either a dense displacement field or a stationary velocity field to restrain the
transformation to the space of diffeomorphisms.

In its current state, the framework includes implementations of forces based on the Sum of Squared Dif-
ferences (SSD), Normalized Cross Correlation (NCC) and the demons algorithm as well as Gaussian,
diffusion and elastic smoothing. However, the implementation of further components is possible and
encouraged.
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Forewords

This paper is meant to complement the article “Estimation of lung motion fields in 4D CT data by varia-
tional non-linear intensity-based registration: A comparison and evaluation study” [12], in which the authors
present an extensive comparison study of different registration algorithms for the estimation of respiratory
motion on the base of 4D CT data. It presents the source code of the applied registration approaches and
gives details about the implementation. The final idea is to allow the reader to reproduce the results presented
in [12] by using the provided code and the publicly available image and evaluation data of the CREATIS
[11] and DIR-lab 4D CT data bases [3].

Moreover, the framework implements the principal algorithm presented in [9], which was ranked with an
initial forth place at the EMPIRE10 registration challenge [7].! It was further employed in [4].

This paper provides only basic information about the underlying theory of the registration framework; for
further information on this subject, the reader is referred to the underlying and above-mentioned articles
[12, 9] and references therein.

1 Introduction

Image registration is a crucial aspect of many applications in Medical Imaging. During the past years, a
wide variety of approaches has been proposed and successfully applied for diverse registration tasks.
A very prominent example is the demons algorithm, of which an open source implementation is available

I At the time of writing, [9] holds rank ten at the EMPIRE10 challenge.
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in the Insight Segmentation and Registration Toolkit. The algorithm consists of two main parts: the calcu-
lation of demon forces and a Gaussian smoothing of the accumulated displacement field. However, many
applications demand a specific adaption of these parts to a particular task.

A variational interpretation of the registration problem allows to generalize the demons algorithm in order
to adapt it to specific tasks and applications. In this way, force calculation and regularization remain ex-
changeable.

In this work, we present present an implementation of a flexible framework for variational image registration.
Within this framework, force term and regularizer can be easily exchanged. As examples, we implemented
Sum of Squared Differences-, Normalized Cross Correlation-, and demon-based forces as well as diffusion,
elastic and Gaussian regularization terms. Other terms can be integrated easily.

2 Methods

2.1 Variational formulation of the image registration problem

Without going into mathematical detail (which can be found, for example, in [5]), the goal of image regis-
tration can be formulated as finding a transformation @(x) that minimizes the distance D between a fixed
image F(x) and a transformed moving image M o @(x) with respect to an intended smoothness .S of the
transformation:

J[9] := DIF,M;¢] + S[¢] = min! (1)

The specific choice of the terms D and § strongly depends on the particular application.

The first consideration for choosing the distance measure is usually whether the images are mono- or multi-
modal. Common formulations for mono-modal registration include the Sum of Squared Differences (SSD),
whereas Normalized Cross Correlation (NCC), Normalized Mutual Information (NMI) or the Normalized
Gradient Field (NGF) are also used for multi-modal problems.

Popular choices for the smoothness condition include, for example, diffusion and elastic regularization.

In the basic approach, the transformation is given by a dense displacement field u, with @(x) := = + u(x).
In this case, the Euler-Lagrange equation associated with the minimization of J[@] leads to the necessary
condition

Alu] (z) — f(u(z)) =0.

Here, f denotes a force field that is related to the Gateaux-derivative of the distance measure D[F,M; @] and
A4 is a linear partial differential operator, which can be deduced from the Gateaux-derivative of S[@] (cf.

[5D.

To solve (1), the semi-implicit scheme
w ) = (14 —12)"! (u(k)—t—‘cf(u(k))) )

is employed, where /d denotes the identity mapping and 7 is the step size. The resulting registration scheme
is summarized in Algorithm 1.

2.2 Diffeomorphic and symmetric diffeomorphic registration

Following the approach of Arsigny [1], diffeomorphisms are defined as solutions of the stationary flow
equation att =1

d
g(])(.’l?,t):v((l)(w,l‘)), ¢(.’B,0)Z$ ) 3)
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Algorithm 1 Variational registration

Set ©(©) = 0 or to an initial field and k = 0
repeat
Compute the update field p®) = tf (u®))
Let u® + u® +p(k)
Regularize the displacement field using w®*V) = (1d —t42) ' u®
Letk<+ k+1
until &k > K,,,, or another stop criterion is fulfilled

Algorithm 2 Diffeomorphic variational registration

Set v(*) = 0 or to an initial field, u(®) = exp(v®) —z and k =0

repeat
Compute the update step p®) = tf (u®))
Let v®) « v® 4 p®)
Regularize the velocity field using v**!) = (1d —t42) "' v®
Calculate the corresponding displacement field wktl) = exp(v(k“)) —T
Letk <+ k+1

until & > K,,,, or another stop criterion is fulfilled

where v(x) is a stationary vector field (the velocity field of the transformation). The solution of (3) is given
by the group exponential map @(x) = ¢(x, 1) = exp(v(x)). Exploiting this approach, the update scheme
for diffeomorphic registration is defined on the basis of the velocity fields of the transformation,

o®) = (14 —12)"! (v(k)+‘tf(v(k))) : @)

with the corresponding displacement field given by

w1 — exp(p*+1)) —

T .
The resulting diffeomorphic registration scheme can be summarized as listed in Algorithm 2.

Finally, the immediate availability of the inverse transformation ¢! (x) = exp(—w(x)) enables an efficient
implementation of a symmetric variant of the algorithm with

DY"[F,M; 9] = 5 (DIF.M; 9]+ DM, F;07']) .

| =

When this term is applied, the result is independent of the choice of the fixed image. This leads to the
symmetric diffeomorphic registration variant summarized in algorithm 3.

2.3 Force terms

In the following section, the force terms currently implemented in the framework are described. In [12],
registration methods were applied for motion estimation in 4D CT data and therefore the focus was on
mono-modal distance measures (see the respective literature overview in the article for motivation of the
specific choice of the implemented distance measures). The implementation of further force terms like NMI
oder NGF is subject of future work.
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Algorithm 3 Symmetric diffeomorphic variational registration

Set v(9) = 0 or to an initial field, u(?) = exp(v(®) — z, w©) = exp(—v®) —z and k=0
repeat

Compute the update step p®) = tf (u®), w®)

Let v®) « p® 4 p®

Regularize the velocity field using v**1) = (1d —12) ™' o®

Calculate the corresponding displacement field wkt) = exp(’u(k“)) —x

Calculate the inverse displacement field w**!) = exp(—v*+)) — &

Letk <+ k+1
until k& > K, k > K4, or another stop criterion is fulfilled

SSD forces

A common choice for the distance measure is the Sum of Squared Differences (SSD) between fixed image
and transformed target image:

DSPIF, M; 0] ::/Q(F(:B)—Mo(p(w))z dz .

The derivation of D5P leads to the force term

F3P(u):=(F-Mo@)VMo@.

Demon forces

In [10], Thirion introduced the demon-based registration with some alternative force formulations that play
the same role as f55P. Contrary to the SSD-based force,
F—Mog

NSSDa .
P = e o (F - Mag O

induces relatively stronger forces in regions with low image contrast by utilizing the normalized gradient
(NSSD = Normalized Sum of Squared Differences). The parameter o # 0 is used to prevent instability in
regions with a contrast close to zero. Analogous to the itk::DemonsRegistrationFunction, we use
o = 1/82 with 82 denoting the mean squared spacing of the image.

In fN55P4 the warped moving image is used for gradient calculation, which causes an active force “pushing”
the target image to fit the reference image. However, in

F—Moo VF
IVF|? + o (F—Mog)?

fNSSDp(u) —

the fixed image is used for gradient calculation, leading to a passive force “pulling” the target image. This
term provides computational advantages because gradients are not calculated in each iteration.
As a combination of these two terms, the symmetric or dual force term

FNSDA (4 . (F—Mo@)-(VF+VMoo)
© IVF+VMog|?+a- (F—Mog)?

was proposed.

N.B.: Both f¥55P¢ and fNSSPP are closely related to the second order approximation of the SSD gradient.
Still, for the best of our knowledge, the exact energy corresponding to these terms is not known for the
particular choice of a (cf. [8]).

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3460]
Distributed under Creative Commons Attribution License


http://www.itk.org/Doxygen/html/classitk_1_1DemonsRegistrationFunction.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3460
http://creativecommons.org/licenses/by/3.0/us/

2.4 Regqularizers 6

NCC forces

Normalized Cross Correlation (NCC) of two images F' and M can be understood as

NCC[F,M] := o fg)z d{z fg(z )(dw T

with the corresponding NCC-based distance measure (i.e., the energy to minimize) given by 1 — NCC[F, M]?;
cf. [6]. For implementation of the distance measure, we followed [2] and defined DV¢C on the discretized
image domain Q:

Dl g 1 e (F () = F (2) (M o0(2) ~Mog (@)
Locar (F (2) ~ F (2)) Egcqr (Mo@(w) ~ Mo @ ()

AZ
=1- 5)

The terms F(z) and F(x) denote average intensity values, computed over a local neighborhood of x in F
and M, respectively. Based on (5), NCC forces finally read as

2A
BC

2

£ ) i= = e ((F () = F (@) = & (Mo0(a)~Mop(a)) | VM- M)op(a) . ©)

2.4 Regularizers
Diffusion regularization

In diffusion regularization, the gradient of the deformation is penalized. The term is given by

S fu] = 3 / Z Vi ()| *d.
This leads to the Laplace operator as associated linear differential operator, i.e.
A% [y == Au. (7
The main reason for introducing the diffusion regularizer in image registration is its low computational com-
plexity of O(N) with N being the number of image voxels. This can be achieved using Additive Operator
Splitting (AOS) [5].

Elastic regularization

The elastic regularizer measures the elastic potential
i u z 2 A 2
59 fu] == Pfu] = [ &Y @t dyu)’+3 (V- w)de
ik=1

of the deformation. The associated differential operator is given by the Navier-Lamé operator
20 y) = pAu + (A 4-u) V (V- u) (8)
where u and A are the Lamé constants that constitute a parameterization of the elastic moduli for the media

modeled. By performing regularization in Fourier space, complexity can be reduced to O (NlogN) [5].
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Gaussian regularization

In a strict mathematical sense, Gaussian regularization is not an implementation of scheme (2) but writes as
wH) = K« (uuc) +f(u<k>)> ’

where Ks denotes a Gauss kernel with standard deviation 6. Howebver, it is closely related to the diffu-
sion regularization S/ and can be seen as an analytical solution of the problem rather than the numerical
scheme stated above [5].

In conjunction with demon forces, Gaussian regularization allows to compose the classical demons algo-
rithm with the presented variational registration framework.

3 Implementation details

3.1 Registration filter

The registration filter is implemented as an itk::DenseFiniteDifferenceImageFilter. Output and
(mandatory) input image is the displacement field of the transformation (the denotation “deformation field”
was used in ITK 3.x but then corrected to “displacement field” in ITKv4).

itk::VariationalRegistrationFilter

]

itk::VariationalDiffeomporphicRegistrationFilter

I

itk::VariationalSymmetricDiffeomorphicRegistrationFilter

Declaration of the registration filter is done as follows:

typedef VariationalRegistrationFilter<
FixedImageType,
MovingImageType,
DisplacementFieldType > RegistrationFilterType;

RegistrationFilterType::Pointer registrationFilter;

registrationFilter = RegistrationFilterType::New();

3.2 Diffeomorphic and symmetric diffeomorphic registration filter

In contrast to the standard registration filter, the diffeomorphic filters take the velocity field as in-
put and output, respectively. The corresponding displacement field is calculated internally from the
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velocity using the itk::ExponentialDisplacementFieldImageFilter and can be accessed via
GetDisplacementField (). This allows to handle both filters consistently in a multi resolution setting.

3.3 Force terms

Force terms are realized as implementations of the itk::FiniteDifferenceFunction. They share the
common interface itk::VariationalRegistrationFunction.

For all forces, a mask image can be defined using SetMaskImage () in order to execute the registration only
in a certain region.

itk::VariationalRegistrationFunction

— T~

itk::VariationalRegistrationDemonsFunction itk::VariationalRegistrationNCCFunction

itk::VariationalRegistrationSSDFunction

3.4 Regularizers

Regularizers are realized as stand-alone itk::InPlaceImageFilters, which means that they can also be
used separately from the framework. They share the common interface itk::VariationalRegistration-
Regularizer. The itk::VariationalRegistrationElasticReqularizer performs a Fourier transfor-
mation and is therefore only available if ITK is built with USE_FFTWD or USE_FFTWF flag on.

itk::VariationalRegistrationRegularizer

_ T~

itk::VariationalRegistrationGaussianRegularizer itk::VariationalRegistrationElasticRegularizer

itk::VariationalRegistrationDiffusionRegularizer
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4 User’s guide

4.1 Building the framework

The provided variational registration implementation was tested using the Insight Toolkit in a version of 4.4
and CMake 2.8. We make use of classes like itk::ExponentialDisplacementFieldImageFilter that
are currently in the “Review” directory; therefore, ITK must be built with the ITK_USE_REVIEW flag
on. Furthermore, the itk::VariationalRegistrationElasticReqgularizer uses FFTW (tested with
the built-in version 3.2.2). In order to use this class, an installation of the framework must be provided and
ITK must be built with the USE_FFTWD and/or USE_FFTWF flag on.

4.2 Class overview

e itk::VariationalRegistrationFilter<TFixedImage, TMovingImage,
TDisplacementField>: The registration filter.

e itk::VariationalDiffeomorphicRegistrationFilter<TFixedImage, TMovingImage,
TDisplacementField>: The diffeomorphic registration filter.

e itk::VariationalSymmetricDiffeomorphicRegistrationFilter<TFixedImage,
TMovingImage, TDisplacementField>: The symmetric diffeomorphic registration filter.

e itk::VariationalRegistrationMultiResolutionFilter<TFixedImage, TMovingImage,
TDisplacementField>: A filter for performing the registration in a multi resolution setting.

e itk::VariationalRegistrationFunction<TFixedImage, TMovingImage,
TDisplacementField>: Base class for all registration functions used in the framework.

e itk::VariationalRegistrationDemonsFunction<TFixedImage, TMovingImage,
TDisplacementField>: Implementation of the demons function/force term, see 2.3.

e itk::VariationalRegistrationSSDFunction<TFixedImage, TMovingImage,
TDisplacementField>: Implementation of the SSD function/force term, see 2.3.

e itk::VariationalRegistrationNCCFunction<TFixedImage, TMovingImage,
TDisplacementField>: Implementation of the NCC function/force term, see 2.3.

e itk::VariationalRegistrationRegularizer<TDisplacementField,
TDisplacementField>: Base class for all regularizers used in the framework.

e itk::VariationalRegistrationGaussianRegularizer<TDisplacementField,
TDisplacementField>: Implementation of the Gaussian smoothing, see 2.4.

e itk::VariationalRegistrationDiffusionRegularizer<TIDisplacementField,
TDisplacementField>: Implementation of the diffusion smoothing, see 2.4.

e itk::VariationalRegistrationElasticRegularizer<TDisplacementField,
TDisplacementField>: Implementation of the elastic smoothing, see 2.4.

e itk::VariationalRegistrationStopCriterion<TRegistrationFilter,
TMultiResolutionFilter>: A stop criterion for the registration implemented as an observer.
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e itk::ContinuousBorderWarpImageFilter<TInputImage, TOutputImage,TDisplacementField>:
An image warping filter that assumes a continuous boundary. This filter can be used separatly from
the module.

4.3 Example program

With itkVariationalRegistration, an example program is provided for testing the different registration
approaches. The simplest execution command is

./bin/VariationalRegistration -M Moving.nii.gz -F Fixed.nii.gz -D OutDisplacement.mha
The following parameters can be used to specify the algorithm:

e -F <STRING>: Filename of the fixed image

e -M <STRING>: Filename of the moving image

e -S <STRING>: Filename of the mask segmentation for the registration

e - <STRING>: Filename of the initial displacement field

e -0 <STRING>: Filename of the output displacement field

e -V <STRING>: Filename of the output velocity field (for diffeomorphic registration)

e -l <STRING>: Filename of the output warped moving image

e -L <STRING>: Filename of the log file of the registration

e —i <UINT>: Number of iterations

e -1 <UINT>: Number of multi-resolution levels

e -t <FLOAT>: Registration time step

e -s <UINT>: Select search space: 0: Standard (default), 1: Diffeomorphic, 2: Sym. diffeomorphic
e -u <UINT>: Use image spacing: 0: false, 1: true (default)

e -u <UINT>: Number of scaling and squaring iterations (for diffeomorphic registration)
e —r <UINT>: Select regularizer: 0: Gaussian smoother (default), 1: Diffusion, 2: Elastic
e -a <FLOAT>: Alpha for the regularization (only diffusive)

e -v <FLOAT>: Variance for the regularization (only gaussian)

e -m <FLOAT>: Mu for the regularization (only elastic)

e -b <FLOAT>: Lambda for the regularization (only elasic)

e —f <UINT>: Select force term: 0: Demon forces (default), 1: SSD forces, 2: NCC forces

e -g <UINT>: Neighbourhood size for NCC calculation

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3460]
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-d <UINT>: Select image domain for force calculation: 0: Active or warped image forces (default),
1: Passive or fixed image forces, 2: Dual or symmetric forces

-p <UINT>: Select stop criterion policy

-g <FLOAT>: Set fitted line slope for stop criterion

~h <UINT>: Perform histogram matching: 0: false (default), 1: true
-x: Print debug information

-3: Print output field as 3D field in 2D implementation

-?: Print help

5 Conclusion

We have presented an implementation of a variational registration framework for ITK, which can be seen
as a more flexible alternative to the demons algorithm. While large parts of the code are based on existing
implementations, completely new core functionalities have been added to the framework. For example,
to the best of our knowledge, there is currently no implementation of elastic or diffusion regularization
available in ITK.
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