
DICOM Spatial Transform IO in the Insight
Toolkit
Release 1.00

Matthew McCormick1, Kevin Wang2, Andras Lasso3, Gregory Sharp4, and Steve

Pieper4

September 11, 2014

1Kitware, Inc., Cary, NC, USA
2Princess Margaret Hospital, Toronto, Ontario, CA

3Queen’s University, Kingston, Ontario, CA
4Massachusetts General Hospital, Boston, MA, USA

5Isomics, Boston, MA, USA

Abstract

This document describes a module that extends the Insight Toolkit, ITK www.itk.org, which reads

DICOM Spatial Registration Object files into itk::Transform’s. Currently, DICOM files are read by

applying the DCMTK library as a backend. An itk::DCMTKTransformIO class can be registered with

the IO factory mechanism so itk::TransformFileReaderTemplate will recognize and read these

files.

This paper is accompanied with the source code, input data, parameters and output data that the au-

thors used for validating the algorithm described in this paper. This adheres to the fundamental principle

that scientific publications must facilitate reproducibility of the reported results.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]

Distributed under Creative Commons Attribution License

Contents

1 DICOM Spatial Transform Background 2

2 ITK Interface to DICOM Transforms 2

3 Example 3

4 Future Work 8

DICOM, Digital Imaging and Communications in Medicine, is the standard for medical images and related

information [3]. As image registration computational research has been adopted into clinical practice, DI-

www.itk.org
http://www.itk.org/Doxygen/html/classitk_1_1Transform.html
http://www.itk.org/Doxygen/html/classitk_1_1TransformFileReaderTemplate.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

2

COM has been extended to support registration information. Registration is applied in medical practices

such as radiotherapy [8].

The Insight Segmentation and Registration Toolkit, ITK, is a resource for medical image analysis applied

in both a research and clinical context. This article describes a module [2] for ITK that makes it possible to

read affine transforms stored as DICOM files.

First, a brief background of how spatial transforms are stored in DICOM is presented. Next, an overview

of transforms are handled in the proposed module code is described. A concrete example showing how the

module is applied follows. Finally, an overview describing next steps is given.

1 DICOM Spatial Transform Background

Regarding spatial transforms in DICOM, there are three definitions to primarily be concerned with, the

Frame of Reference [5], the Spatial Registration Information Object Definition IOD [6, 7], and the De-

formable Spatial Registration Information Object Definition IOD [6, 4].

A Frame of Reference identifies the coordinate system associated with an image. The Frame of Refer-

ence Unique Identification Number (UID), tag (0020,0052), is associated with an image series. Frame of

Reference UID’s are also used to identify the coordinate systems that a spatial transform maps to and from.

The Spatial Registration IOD describes DICOM files that store affine spatial transforms between Frames

of Reference. A single Spatial Registration Object (SRO) can contain multiple transforms. All spatial

transforms in a SRO are with respect to a Reference Coordinate System, which is also identified with a

Frame of Reference UID.

The Reference Coordinate System could be the Frame of Reference UID for a reference image that the other

images were registered against. In this case, one of the transforms stored in the SRO, which correponds to

the transform for the reference image, will be an identity transform. However, the Reference Coordinate

System could also be an independent coordinate system, such as when the images are registered against an

atlas.

The transform for each image series in a SRO can consist of a chain of rigid or affine transforms.

The Deformable Spatial Registration IOD is similar to the Spatial Registration IOD, but displacement field

transforms are also possible in the chain of transforms.

2 ITK Interface to DICOM Transforms

ITK uses an object factory mechanisms to support reading multiple file formats. For images, classes that

read and write specific file formats inherit from the itk::ImageIOBase, and the itk::ImageFileReader

uses the objects registered to the factory to attempt to read, then read, a given file. Similarly, the classes

that inherit itk::TransformIOBaseTemplate to read specific transform file formats are registered in the

factory, and itk::TransformFileReaderTemplate uses this factory to read a given transform file name.

We wrote an itk::DCMTKTransformIO class that inherits from itk::TransformIOBaseTemplate, and

can read DICOM SRO files. Internally, this class uses the DCMTK library [1] to read the file.

Since a sequence of transforms is possible, itk::DCMTKTransformIO generates a

itk::CompositeTransform. The ITK transforms that correspond to the various DICOM transform

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]

Distributed under Creative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1ImageIOBase.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1TransformIOBaseTemplate.html
http://www.itk.org/Doxygen/html/classitk_1_1TransformFileReaderTemplate.html
http://www.itk.org/Doxygen/html/classitk_1_1TransformIOBaseTemplate.html
http://www.itk.org/Doxygen/html/classitk_1_1CompositeTransform.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

3

DICOM Type ITK Type

RIGID SCALE itk::ScaleTransform

RIGID itk::Euler3DTransform

AFFINE itk::AffineTransform

Table 1: DICOM transform types and their corresponding ITK transform type.

types are listed in Table 2.

The default output of the DCMTKTransformIO is the concatenation of all transforms found in the SRO

in the resulting itk::CompositeTransform. To request only the transforms corresponding to a specific

Frame of Reference, call SetFrameOfReferenceUID.

To find the spatial transform between the Frame of Reference for a Fixed Image and the Frame of Reference

for a Moving Image, first obtain the transform for the Fixed Image,

Tf = Tf 1 ◦Tf 2 ◦ ...Tf N = Tf 1(Tf 2(...Tf N)) (1)

where Tf is the Fixed Image composite transform to the Reference Coordinate System. The component

transforms, Tf 1,Tf 2, ... are a sequence of rigid, scale, or affine transforms.

If the Frame of Reference is specified for the Moving Image composite transform to the Reference Coordi-

nate System, Tm,

Tm = Tm1 ◦Tm2 ◦ ...TmN = Tm1(Tm2(...TmN)) (2)

then the transform from the Fixed Image Frame of Reference to the Moving Image Frame of Reference is

Tf m = T−1
m ◦Tf = T−1

m (Tf) (3)

where T−1
m is the inverse of the moving transform.

3 Example

The format of this LaTeX file, allows authors to include code snippets, like the following

/*===

*

* Copyright Insight Software Consortium

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0.txt

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]

Distributed under Creative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1ScaleTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1Euler3DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1CompositeTransform.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

4

* See the License for the specific language governing permissions and

* limitations under the License.

*

===/

#include "itkDCMTKTransformIO.h"

#include "itkDCMTKTransformIOFactory.h"

#include "itkTransformFileReader.h"

#include "itkImageSeriesReader.h"

#include "itkDCMTKImageIO.h"

#include "itkDCMTKSeriesFileNames.h"

#include "itkGDCMImageIO.h"

#include "itkGDCMSeriesFileNames.h"

#include "itkCompositeTransform.h"

#include "itkImageFileWriter.h"

#include "itkMetaDataObject.h"

#include "itkResampleImageFilter.h"

int ReadDicomTransformAndResampleExample(int argc, char* argv[])

{

// Parse command line arguments

if(argc < 5)

{

std::cerr << "Usage: " << argv[0]

<< " fixedSeriesDirectory movingSeriesDirectory"

<< " transform fixedImageOutput resampledMovingOutput"

<< std::endl;

return EXIT_FAILURE;

}

const char * fixedSeriesDirectory = argv[1];

const char * movingSeriesDirectory = argv[2];

const char * transformFileName = argv[3];

const char * fixedImageOutputFileName = argv[4];

const char * resampledMovingOutputFileName = argv[5];

// Basic types

const unsigned int Dimension = 3;

typedef short PixelType;

typedef itk::Image< PixelType, Dimension > ImageType;

// Read the fixed and moving image

typedef itk::ImageSeriesReader< ImageType > ReaderType;

ReaderType::Pointer fixedReader = ReaderType::New();

// DCMTKImageIO does not populate the MetaDataDictionary yet

//typedef itk::DCMTKImageIO ImageIOType;

typedef itk::GDCMImageIO ImageIOType;

ImageIOType::Pointer fixedIO = ImageIOType::New();

fixedReader->SetImageIO(fixedIO);

//typedef itk::DCMTKSeriesFileNames SeriesFileNamesType;

typedef itk::GDCMSeriesFileNames SeriesFileNamesType;

SeriesFileNamesType::Pointer fixedSeriesFileNames =

SeriesFileNamesType::New();

fixedSeriesFileNames->SetInputDirectory(fixedSeriesDirectory);

typedef SeriesFileNamesType::FileNamesContainerType FileNamesContainerType;

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

5

const FileNamesContainerType & fixedFileNames =

fixedSeriesFileNames->GetInputFileNames();

std::cout << "There are "

<< fixedFileNames.size()

<< " fixed image slices."

<< std::endl;

std::cout << "First fixed images series UID: "

<< fixedSeriesFileNames->GetSeriesUIDs()[0]

<< "\n" << std::endl;

fixedReader->SetFileNames(fixedFileNames);

ReaderType::Pointer movingReader = ReaderType::New();

ImageIOType::Pointer movingIO = ImageIOType::New();

movingReader->SetImageIO(movingIO);

SeriesFileNamesType::Pointer movingSeriesFileNames =

SeriesFileNamesType::New();

movingSeriesFileNames->SetInputDirectory(movingSeriesDirectory);

const FileNamesContainerType & movingFileNames =

movingSeriesFileNames->GetInputFileNames();

std::cout << "There are "

<< movingFileNames.size()

<< " moving image slices."

<< std::endl;

std::cout << "First moving images series UID: "

<< movingSeriesFileNames->GetSeriesUIDs()[0]

<< "\n" << std::endl;

movingReader->SetFileNames(movingFileNames);

try

{

fixedReader->Update();

movingReader->Update();

}

catch(itk::ExceptionObject & error)

{

std::cerr << "Error: " << error << std::endl;

return EXIT_FAILURE;

}

// Create a DICOM transform reader

typedef float ScalarType;

itk::DCMTKTransformIOFactory::Pointer dcmtkTransformIOFactory =

itk::DCMTKTransformIOFactory::New();

itk::ObjectFactoryBase::RegisterFactory(dcmtkTransformIOFactory);

typedef itk::TransformFileReaderTemplate< ScalarType > TransformReaderType;

TransformReaderType::Pointer transformReader = TransformReaderType::New();

transformReader->SetFileName(transformFileName);

typedef itk::DCMTKTransformIO< ScalarType > TransformIOType;

TransformIOType::Pointer transformIO = TransformIOType::New();

transformReader->SetTransformIO(transformIO);

// Read in the fixed image transform

const ReaderType::DictionaryType & fixedMetaDataDict =

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

6

fixedIO->GetMetaDataDictionary();

std::string fixedFrameOfReferenceUID;

if(! itk::ExposeMetaData< std::string >(fixedMetaDataDict,

"0020|0052",

fixedFrameOfReferenceUID))

{

std::cerr << "Could not find the fixed image frame of reference UID." << std::endl;

return EXIT_FAILURE;

}

std::cout << "Fixed image frame of reference UID: "

<< fixedFrameOfReferenceUID << std::endl;

transformIO->SetFrameOfReferenceUID(fixedFrameOfReferenceUID);

try

{

transformReader->Update();

}

catch(itk::ExceptionObject & error)

{

std::cerr << "Error: " << error << std::endl;

return EXIT_FAILURE;

}

typedef TransformReaderType::TransformListType TransformListType;

TransformListType * transformList = transformReader->GetTransformList();

typedef itk::CompositeTransform< ScalarType, Dimension > ReadTransformType;

TransformListType::const_iterator transformIt = transformList->begin();

ReadTransformType::Pointer fixedTransform =

dynamic_cast< ReadTransformType * >((*transformIt).GetPointer());

if(fixedTransform.IsNull())

{

std::cerr << "Did not get the expected transform out." << std::endl;

return EXIT_FAILURE;

}

std::cout << "Fixed transform: " << fixedTransform << std::endl;

// Read in the moving image transform

const ReaderType::DictionaryType & movingMetaDataDict =

movingIO->GetMetaDataDictionary();

std::string movingFrameOfReferenceUID;

if(! itk::ExposeMetaData< std::string >(movingMetaDataDict,

"0020|0052",

movingFrameOfReferenceUID))

{

std::cerr << "Could not find the moving image frame of reference UID." << std::endl;

return EXIT_FAILURE;

}

std::cout << "Moving image frame of reference UID: "

<< movingFrameOfReferenceUID << std::endl;

transformIO->SetFrameOfReferenceUID(movingFrameOfReferenceUID);

try

{

transformReader->Update();

}

catch(itk::ExceptionObject & error)

{

std::cerr << "Error: " << error << std::endl;

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

7

return EXIT_FAILURE;

}

transformList = transformReader->GetTransformList();

transformIt = transformList->begin();

ReadTransformType::Pointer movingTransform =

dynamic_cast< ReadTransformType * >((*transformIt).GetPointer());

if(movingTransform.IsNull())

{

std::cerr << "Did not get the expected transform out." << std::endl;

return EXIT_FAILURE;

}

std::cout << "Moving transform: " << movingTransform << std::endl;

// Compose the transform from the fixed to the moving image

ReadTransformType::Pointer movingTransformInverse = ReadTransformType::New();

movingTransform->GetInverse(movingTransformInverse);

ReadTransformType::Pointer fixedToMovingTransform = ReadTransformType::New();

fixedToMovingTransform->AddTransform(fixedTransform);

fixedToMovingTransform->AddTransform(movingTransformInverse);

// Flatten out the two component CompositeTransforms.

fixedToMovingTransform->FlattenTransformQueue();

typedef itk::ResampleImageFilter< ImageType, ImageType, ScalarType, ScalarType >

ResamplerType;

ResamplerType::Pointer resampler = ResamplerType::New();

resampler->SetInput(movingReader->GetOutput());

resampler->SetUseReferenceImage(true);

resampler->SetReferenceImage(fixedReader->GetOutput());

resampler->SetTransform(fixedToMovingTransform);

resampler->SetDefaultPixelValue(-1000);

// Write the fixed image and resampled moving image (should look similar)

typedef itk::ImageFileWriter< ImageType > WriterType;

WriterType::Pointer writer = WriterType::New();

writer->SetFileName(fixedImageOutputFileName);

writer->SetInput(fixedReader->GetOutput());

try

{

writer->Update();

}

catch(itk::ExceptionObject & error)

{

std::cerr << "Error: " << error << std::endl;

return EXIT_FAILURE;

}

writer->SetInput(resampler->GetOutput());

writer->SetFileName(resampledMovingOutputFileName);

try

{

writer->Update();

}

catch(itk::ExceptionObject & error)

{

std::cerr << "Error: " << error << std::endl;

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]

Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

8

return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

4 Future Work

While reading the Spatial Registration IOD is now possible, future work could entail adding write

support. Support for Deformable Registration IOD’s could also be added, which correspond to an

itk::CompositeTransform of affine transforms and the itk::DisplacementFieldTransform. While

the low-level reading of the DICOM files is currently achieved with the DCMTK library, similar calls could

be performed to create a GDCM library-based implementation.

References

[1] M. Eichelberg, M. Onken, and A. Thiel. The dicom toolkit. http://dicom.offis.de/. Accessed:

2014-09-04. 2

[2] Xiaoxiao Liu, Brian Helba, Luis Ibanez, Brad King, and Matt McCormick. Advance itk with modules.

http://www.kitware.com/blog/home/post/557. Accessed: 2014-09-03. (document)

[3] NEMA. The dicom standard. Technical report, NEMA, http://dicom.nema.org/, 2014. (document)

[4] NEMA. The dicom standard: Deformable spatial registration storage sop classes. Technical Report

Supp 112, NEMA, ftp://medical.nema.org/medical/dicom/final/sup112_ft.pdf, 2014. 1

[5] NEMA. The dicom standard: Frame of reference module. Technical Report Part 3, Section C.7.4.1,

NEMA, http://medical.nema.org/medical/dicom/2014a/output/chtml/part03/sect_C.7.html,

2014. 1

[6] NEMA. The dicom standard: Spatial registration iod. Technical Report Part 3, Section A.39, NEMA,

http://medical.nema.org/medical/dicom/2014a/output/chtml/part03/sect_A.39.html,

2014. 1

[7] NEMA. The dicom standard: Spatial registration storage sop classes. Technical Report Supp 73,

NEMA, ftp://medical.nema.org/medical/dicom/final/sup73_ft4.pdf, 2014. 1

[8] Csaba Pinter, Andras Lasso, An Wang, David Jaffray, and Gabor Fichtinger. Slicerrt – radiation therapy

research toolkit for 3d slicer. Medical Physics, 39:6332/7, 10/2012 2012. (document)

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]

Distributed under Creative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1CompositeTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1DisplacementFieldTransform.html
http://dicom.offis.de/
http://www.kitware.com/blog/home/post/557
http://dicom.nema.org/
ftp://medical.nema.org/medical/dicom/final/sup112_ft.pdf
http://medical.nema.org/medical/dicom/2014a/output/chtml/part03/sect_C.7.html
http://medical.nema.org/medical/dicom/2014a/output/chtml/part03/sect_A.39.html
ftp://medical.nema.org/medical/dicom/final/sup73_ft4.pdf
http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

	DICOM Spatial Transform Background
	ITK Interface to DICOM Transforms
	Example
	Future Work

