DICOM Spatial Transform IO in the Insight
Toolkit

Release 1.00

Matthew McCormick!, Kevin Wang?, Andras Lasso?®, Gregory Sharp?, and Steve
Pieper*

September 11, 2014

Kitware, Inc., Cary, NC, USA

2Princess Margaret Hospital, Toronto, Ontario, CA
3Queen’s University, Kingston, Ontario, CA
4Massachusetts General Hospital, Boston, MA, USA
SIsomics, Boston, MA, USA

Abstract

This document describes a module that extends the Insight Toolkit, ITK www.itk.org, which reads
DICOM Spatial Registration Object files into itk::Transform’s. Currently, DICOM files are read by
applying the DCMTK library as a backend. An itk::DCMTKTransformIO class can be registered with
the IO factory mechanism so itk::TransformFileReaderTemplate will recognize and read these
files.

This paper is accompanied with the source code, input data, parameters and output data that the au-
thors used for validating the algorithm described in this paper. This adheres to the fundamental principle
that scientific publications must facilitate reproducibility of the reported results.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]
Distributed under Creative Commons Attribution License

Contents

1 DICOM Spatial Transform Background 2
2 ITK Interface to DICOM Transforms 2
3 Example 3
4 Future Work 8

DICOM, Digital Imaging and Communications in Medicine, is the standard for medical images and related
information [3]. As image registration computational research has been adopted into clinical practice, DI-

www.itk.org
http://www.itk.org/Doxygen/html/classitk_1_1Transform.html
http://www.itk.org/Doxygen/html/classitk_1_1TransformFileReaderTemplate.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

COM has been extended to support registration information. Registration is applied in medical practices
such as radiotherapy [8].

The Insight Segmentation and Registration Toolkit, ITK, is a resource for medical image analysis applied
in both a research and clinical context. This article describes a module [2] for ITK that makes it possible to
read affine transforms stored as DICOM files.

First, a brief background of how spatial transforms are stored in DICOM is presented. Next, an overview
of transforms are handled in the proposed module code is described. A concrete example showing how the
module is applied follows. Finally, an overview describing next steps is given.

1 DICOM Spatial Transform Background

Regarding spatial transforms in DICOM, there are three definitions to primarily be concerned with, the
Frame of Reference [5], the Spatial Registration Information Object Definition 10D [6, 7], and the De-
formable Spatial Registration Information Object Definition 10D [6, 4].

A Frame of Reference identifies the coordinate system associated with an image. The Frame of Refer-
ence Unique Identification Number (UID), tag (0020, 0052), is associated with an image series. Frame of
Reference UID’s are also used to identify the coordinate systems that a spatial transform maps to and from.

The Spatial Registration 10D describes DICOM files that store affine spatial transforms between Frames
of Reference. A single Spatial Registration Object (SRO) can contain multiple transforms. All spatial
transforms in a SRO are with respect to a Reference Coordinate System, which is also identified with a
Frame of Reference UID.

The Reference Coordinate System could be the Frame of Reference UID for a reference image that the other
images were registered against. In this case, one of the transforms stored in the SRO, which correponds to
the transform for the reference image, will be an identity transform. However, the Reference Coordinate
System could also be an independent coordinate system, such as when the images are registered against an
atlas.

The transform for each image series in a SRO can consist of a chain of rigid or affine transforms.

The Deformable Spatial Registration 10D is similar to the Spatial Registration IOD, but displacement field
transforms are also possible in the chain of transforms.

2 |ITK Interface to DICOM Transforms

ITK uses an object factory mechanisms to support reading multiple file formats. For images, classes that
read and write specific file formats inherit from the itk::ImageIOBase, andthe itk::ImageFileReader
uses the objects registered to the factory to attempt to read, then read, a given file. Similarly, the classes
that inherit itk::TransformIOBaseTemplate to read specific transform file formats are registered in the
factory, and itk::TransformFileReaderTemplate uses this factory to read a given transform file name.

We wrote an itk::DCMTKTransformIO class that inherits from itk::TransformIOBaseTemplate, and
can read DICOM SRO files. Internally, this class uses the DCMTK library [1] to read the file.

Since a sequence of transforms is possible, itk::DCMTKTransformIO generates a
itk::CompositeTransform. The ITK transforms that correspond to the various DICOM transform

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]
Distributed under Creative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1ImageIOBase.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1TransformIOBaseTemplate.html
http://www.itk.org/Doxygen/html/classitk_1_1TransformFileReaderTemplate.html
http://www.itk.org/Doxygen/html/classitk_1_1TransformIOBaseTemplate.html
http://www.itk.org/Doxygen/html/classitk_1_1CompositeTransform.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

DICOM Type ITK Type

RIGID_SCALE itk::ScaleTransform
RIGID itk::Euler3DTransform
AFFINE itk::AffineTransform

Table 1: DICOM transform types and their corresponding ITK transform type.

types are listed in Table 2.

The default output of the DCMTKTransformlO is the concatenation of all transforms found in the SRO
in the resulting itk::CompositeTransform. To request only the transforms corresponding to a specific
Frame of Reference, call SetFrameOfReferenceUID.

To find the spatial transform between the Frame of Reference for a Fixed Image and the Frame of Reference
for a Moving Image, first obtain the transform for the Fixed Image,

Tr=TpoTpo..Ten =T (Tra(. Tyn)) 1)

where T is the Fixed Image composite transform to the Reference Coordinate System. The component
transforms, T, Ty, ... are a sequence of rigid, scale, or affine transforms.

If the Frame of Reference is specified for the Moving Image composite transform to the Reference Coordi-
nate System, 7},

Ty =TmoTwo..Tuny = Tin (Tm (TmN)) @)

then the transform from the Fixed Image Frame of Reference to the Moving Image Frame of Reference is

Tpm =T, o Ty =T, ' (Ty) 3)

where 7! is the inverse of the moving transform.

3 Example

The format of this LaTeX file, allows authors to include code snippets, like the following

Copyright Insight Software Consortium

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0.txt
Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

P T

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]
Distributed under Creative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1ScaleTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1Euler3DTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1CompositeTransform.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

* See the License for the specific language governing permissions and
* limitations under the License.

#include "itkDCMTKTransformIO.h"
#include "itkDCMTKTransformIOFactory.h"
#include "itkTransformFileReader.h"
#include "itkImageSeriesReader.h"
#include "itkDCMTKImageIO.h"
#include "itkDCMTKSeriesFileNames.h"
#include "itkGDCMImageIO.h"

#include "itkGDCMSeriesFileNames.h"
#include "itkCompositeTransform.h"
#include "itkImageFileWriter.h"
#include "itkMetaDataObject.h"
#include "itkResampleImageFilter.h"

int ReadDicomTransformAndResampleExample(int argc, char* argv([]
{
// Parse command line arguments
if(argc < 5)
{
std::cerr << "Usage: " << argv[0]
<< " fixedSeriesDirectory movingSeriesDirectory"
<< " transform fixedImageOutput resampledMovingOutput"
<< std::endl;
return EXIT_FAILURE;
}
const char * fixedSeriesDirectory = argv[l];
const char * movingSeriesDirectory = argv([2];
const char * transformFileName = argv[3];
const char * fixedImageOutputFileName = argv[4];
const char * resampledMovingOutputFileName = argv[5];

// Basic types

const unsigned int Dimension = 3;

typedef short PixelType;
typedef itk::Image< PixelType, Dimension > ImageType;

// Read the fixed and moving image
typedef itk::ImageSeriesReader< ImageType > ReaderType;
ReaderType: :Pointer fixedReader = ReaderType::New();

// DCMTKImageIO does not populate the MetaDataDictionary yet
//typedef itk::DCMTKImageIO ImageIOType;

typedef itk::GDCMImageIO ImagelIOType;

ImageIOType: :Pointer fixedIO = ImageIOType::New();
fixedReader->SetImageIO(fixedIO);

//typedef itk::DCMTKSeriesFileNames SeriesFileNamesType;

typedef itk::GDCMSeriesFileNames SeriesFileNamesType;

SeriesFileNamesType: :Pointer fixedSeriesFileNames =
SeriesFileNamesType: :New();

fixedSeriesFileNames->SetInputDirectory(fixedSeriesDirectory);

typedef SeriesFileNamesType::FileNamesContainerType FileNamesContainerType;

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

const FileNamesContainerType & fixedFileNames =
fixedSeriesFileNames->GetInputFileNames () ;
std::cout << "There are "
<< fixedFileNames.size()
<< " fixed image slices."
<< std::endl;
std::cout << "First fixed images series UID: "
<< fixedSeriesFileNames—>GetSeriesUIDs () [0]
<< "\n" << std::endl;
fixedReader->SetFileNames (fixedFileNames);

ReaderType: :Pointer movingReader = ReaderType::New();
ImageIOType: :Pointer movingIO = ImageIOType: :New();
movingReader->SetImageIO(movingIO);

SeriesFileNamesType: :Pointer movingSeriesFileNames =
SeriesFileNamesType: :New () ;
movingSeriesFileNames->SetInputDirectory(movingSeriesDirectory);
const FileNamesContainerType & movingFileNames =
movingSeriesFileNames—>GetInputFileNames () ;
std::cout << "There are "
<< movingFileNames.size ()
<< " moving image slices."
<< std::endl;
std::cout << "First moving images series UID: "
<< movingSeriesFileNames->GetSeriesUIDs () [0]
<< "\n" << std::endl;
movingReader->SetFileNames (movingFileNames);

try
{
fixedReader->Update();
movingReader->Update () ;
}
catch(itk::ExceptionObject & error
{
std::cerr << "Error: " << error << std::endl;
return EXIT_FAILURE;

}

// Create a DICOM transform reader
typedef float ScalarType;

itk::DCMTKTransformIOFactory: :Pointer dcmtkTransformIOFactory =
itk::DCMTKTransformIOFactory: :New();
itk::0ObjectFactoryBase: :RegisterFactory(dcmtkTransformIOFactory);

typedef itk::TransformFileReaderTemplate< ScalarType > TransformReaderType;
TransformReaderType: :Pointer transformReader = TransformReaderType::New();
transformReader->SetFileName (transformFileName);

typedef itk::DCMTIKIransformIO< ScalarType > TransformIOType;
TransformIOType: :Pointer transformIO = TransformIOType::New();
transformReader->SetTransformIO(transformIO);

// Read in the fixed image transform
const ReaderType::DictionaryType & fixedMetaDataDict =

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

fixedIO->GetMetaDataDictionary();
std::string fixedFrameOfReferenceUID;
if(! itk::ExposeMetaData< std::string >(fixedMetaDataDict,
"0020]0052",
fixedFrameOfReferenceUID))
{
std::cerr << "Could not find the fixed image frame of reference UID." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Fixed image frame of reference UID: "
<< fixedFrameOfReferenceUID << std::endl;
transformIO->SetFrameOfReferenceUID(fixedFrameOfReferenceUID);

try
{
transformReader—>Update () ;
}
catch(itk::ExceptionObject & error
{
std::cerr << "Error: " << error << std::endl;
return EXIT_FAILURE;
}
typedef TransformReaderType::TransformListType TransformListType;
TransformListType * transformList = transformReader->GetTransformList();

typedef itk::CompositeTransform< ScalarType, Dimension > ReadIransformType;
TransformListType::const_iterator transformIt = transformList->begin();
ReadTransformType: :Pointer fixedTransform =
dynamic_cast< ReadTransformIype * >((*transformIt).GetPointer());
if(fixedTransform.IsNull())
{
std::cerr << "Did not get the expected transform out." << std::endl;
return EXIT_FAILURE;
}

std::cout << "Fixed transform: " << fixedTransform << std::endl;

// Read in the moving image transform
const ReaderType::DictionaryType & movingMetaDataDict =
movingIO->GetMetaDataDictionary();
std::string movingFrameOfReferenceUID;
if(! itk::ExposeMetaData< std::string >(movingMetaDataDict,
"0020(0052",
movingFrameOfReferenceUID))
{
std::cerr << "Could not find the moving image frame of reference UID." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Moving image frame of reference UID: "
<< movingFrameOfReferenceUID << std::endl;
transformIO->SetFrameOfReferenceUID(movingFrameOfReferenceUID);

try
{

transformReader—>Update () ;

}

catch(itk::ExceptionObject & error
{

std::cerr << "Error: " << error << std::endl;

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

return EXIT_FAILURE;
}

transformList = transformReader->GetTransformList ();
transformIt = transformList->begin();
ReadTransformType: :Pointer movingTransform =
dynamic_cast< ReadTransformType * >((*transformIt).GetPointer());
if (movingTransform.IsNull())
{
std::cerr << "Did not get the expected transform out." << std::endl;
return EXIT_FAILURE;
}

std::cout << "Moving transform: " << movingTransform << std::endl;

// Compose the transform from the fixed to the moving image
ReadTransformType: :Pointer movingTransformInverse = ReadTransformType: :New();
movingTransform->GetInverse(movingTransformInverse);

ReadTransformType: :Pointer fixedToMovingTransform = ReadTransformType: :New();
fixedToMovingTransform->AddTransform(fixedTransform);
fixedToMovingTransform->AddTransform(movingTransformInverse);

// Flatten out the two component CompositeTransforms.
fixedToMovingTransform->FlattenTransformQueue () ;

typedef itk::ResamplelmageFilter< ImageType, ImageType, ScalarType, ScalarType >
ResamplerType;

ResamplerType: :Pointer resampler = ResamplerType: :New();

resampler->SetInput (movingReader->GetOutput ());

resampler->SetUseReferencelmage (true);

resampler->SetReferencelImage (fixedReader->GetOutput());

resampler->SetTransform(fixedToMovingTransform);

resampler->SetDefaultPixelValue(-1000);

// Write the fixed image and resampled moving image (should look similar)
typedef itk::ImageFilelriter< ImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName (fixedImageOutputFileName);
writer->SetInput (fixedReader->GetOutput ());
try

{

writer->Update();

}
catch(itk::ExceptionObject & error

{

std::cerr << "Error: " << error << std::endl;

return EXIT_FAILURE;

}

writer->SetInput (resampler->GetOutput ());
writer->SetFileName (resampledMovingOutputFileName);
try

{

writer->Update();

}

catch(itk::ExceptionObject & error

{

std::cerr << "Error: " << error << std::endl;

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

return EXIT_FAILURE;
}

return EXIT_SUCCESS;
}

4 Future Work

While reading the Spatial Registration IOD is now possible, future work could entail adding write
support. Support for Deformable Registration I0D’s could also be added, which correspond to an
itk::CompositeTransform of affine transforms and the itk::DisplacementFieldTransform. While
the low-level reading of the DICOM files is currently achieved with the DCMTK library, similar calls could
be performed to create a GDCM library-based implementation.

References

[1] M. Eichelberg, M. Onken, and A. Thiel. The dicom toolkit. http://dicom.offis.de/. Accessed:
2014-09-04. 2

[2] Xiaoxiao Liu, Brian Helba, Luis Ibanez, Brad King, and Matt McCormick. Advance itk with modules.
http://www.kitware.com/blog/home/post/557. Accessed: 2014-09-03. (document)

[3] NEMA. The dicom standard. Technical report, NEMA, http://dicom.nema.org/, 2014. (document)

[4] NEMA. The dicom standard: Deformable spatial registration storage sop classes. Technical Report
Supp 112, NEMA, ftp://medical.nema.org/medical/dicom/final/supll2_ft.pdf, 2014. 1

[5] NEMA. The dicom standard: Frame of reference module. Technical Report Part 3, Section C.7.4.1,
NEMA, http://medical .nema.org/medical/dicom/2014a/output/chtml/part03/sect_C.7.html,
2014. 1

[6] NEMA. The dicom standard: Spatial registration iod. Technical Report Part 3, Section A.39, NEMA,
http://medical.nema.org/medical/dicom/2014a/output/chtml/part03/sect_A.39.html,
2014. 1

[7] NEMA. The dicom standard: Spatial registration storage sop classes. Technical Report Supp 73,
NEMA, ftp://medical.nema.org/medical/dicom/final/sup73_ft4.pdf, 2014. 1

[8] Csaba Pinter, Andras Lasso, An Wang, David Jaffray, and Gabor Fichtinger. Slicerrt — radiation therapy
research toolkit for 3d slicer. Medical Physics, 39:6332/7, 10/2012 2012. (document)

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3468]
Distributed under Creative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1CompositeTransform.html
http://www.itk.org/Doxygen/html/classitk_1_1DisplacementFieldTransform.html
http://dicom.offis.de/
http://www.kitware.com/blog/home/post/557
http://dicom.nema.org/
ftp://medical.nema.org/medical/dicom/final/sup112_ft.pdf
http://medical.nema.org/medical/dicom/2014a/output/chtml/part03/sect_C.7.html
http://medical.nema.org/medical/dicom/2014a/output/chtml/part03/sect_A.39.html
ftp://medical.nema.org/medical/dicom/final/sup73_ft4.pdf
http://www.insight-journal.org
http://hdl.handle.net/10380/3468
http://creativecommons.org/licenses/by/3.0/us/

	DICOM Spatial Transform Background
	ITK Interface to DICOM Transforms
	Example
	Future Work

