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Abstract. Segmentation of the left ventricle endocardium in 3D echocar-
diography is a critical step for the diagnosis of heart disease. Although
recent work has shown effective endocardial edge detection, these tech-
niques still preserve spurious anatomical edge responses that undermine
overall ventricle segmentation. In this paper we propose a robust semi-
automatic framework based on 2D structured learning that facilitates full
3D model-based endocardial segmentation. This method is evaluated on
30 publicly available datasets from different brands of ultrasound ma-
chines. Results show that the proposed method accurately finds the en-
docardium and effectively converges an explicit and continuous surface
model to it.

1 Introduction

In this paper we propose a two-step method to perform left ventricle (LV) en-
docardial segmentation from 3D echocardiography volumes.

LV endocardial boundary candidates are detected on each short-axis slice
(2D approach) of each volume using a Structured Random Forest (SRF) [1, 2]
to first regress the probability that each pixel belongs to the endocardium-blood
boundary. The motivation for using a SRF for boundary detection is that it
automatically learns to discard strong image edge responses which do not cor-
respond to the endocardium-blood boundary [3]. These spurious edge responses
— arising from the presence of papillary muscles, trabeculae, imaging artefacts,
and speckle — are typically retained as boundary candidates by standard edge
detectors.

Following detection, an explicit continuous surface model of the LV is de-
formed to a subset of the boundary candidates in each volume. The “surface
fit” is defined as the distance of each boundary candidate to its preimage on
the continuous surface [4, 5]. The motivation for using an explicit surface model
instead of an implicit level set representation is that the explicit surface model
has fewer model parameters and is amenable to non-linear optimisation methods
more powerful and robust than gradient descent.

Recent and common approaches to endocardial segmentation include Ac-
tive Contours [6] and Active Appearance Models [7] (AC/AAM). Our method
is similar in spirit — we fit a parametric surface model to detected boundary
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Fig. 1: Endocardial boundary detection in 2D (a) Short-axis slice. (b) The
probability of a pixel belonging to the endocardium-blood boundary superim-
posed in yellow (non-maximum suppression applied to the output of the SRF).
(c) Final boundary candidates.

candidates — but has two subtle and important differences. First, endocardial
boundary candidates are detected separately from the model surface. This is sim-
ilar to [8] where a parametric surface model is initialised and deformed after first
classifying all edge responses as either endocardium, epicardium, or background
boundary candidates. Second, we do not fix the boundary candidate preimages
during the optimisation of the model surface. This is identical to [4] and [5]
and it has the advantage that we do not have to make assumptions about how
boundary candidates are distributed relative to the model surface. Specifically,
we are not restricted to selecting only boundary candidates which are perpen-
dicular to the model surface. Instead, we use all boundary candidates that are
in the vicinity of the model surface to obtain an accurate final segmentation.

2 Method

2.1 Endocardial boundary detection

Given an input echocardiography volume, we produce a matrix of positions of
boundary candidates which describe the LV endocardium-blood interface.

Processing each short-axis slice independently (Fig. 1a) we first use a SRF to
predict the probability of each pixel belonging to the endocardium-blood inter-
face from a given image patch. A SRF is similar to a standard Random Forest
(RF) classifier used in image segmentation (e.g. [9]) except that we store edge
maps at the leaf nodes, hence the resulting output is extended to an high di-
mensional structured output space ), and ultimately output labels are assigned
to multiple pixels jointly instead of independently. That is, prediction is per-
formed patch-by-patch instead of pixel-by-pixel and the output structured labels
are vector quantities instead of scalars [2]. The motivating reason for using a
SRF instead of a standard RF is that label structure present in training data is
preserved when making a prediction.
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In the context of multiclass classification, the standard information gain crite-
rion is not well defined over structured labels, y € ). To overcome this problem,
the authors in [1] proposed a two-step mapping approach, Y — Z and Z — C,
with an intermediate space Z in which the Euclidean distance can be measured
and the similarity over ) finally estimated. More specifically, because only an
approximate measure of information gain is sufficient to train a random forest
classifier, we map a set of structured labels y € ) into a discrete set of labels
¢ € C, so that labels with similar ) are assigned to the same discrete label c. In
our method, these discrete labels are binary (k = 2) and the Gini impurity is
used as the standard information gain measure. The discretisation step (£ — C)
yielding the discrete label set C given Z is computed independently when train-
ing each node and depends on the distribution of labels at each node. To do this,
z is quantized based on the top logs(k) PCA dimensions, effectively assigning z
a discrete label ¢ according to the orthant into which z falls.

The final structured ensemble model merges a set of n labels y;...y, € Y
into a single prediction by effectively selecting the label y, whose z; is the
medoid (the medoid zj that minimizes Y-, (2x; — 2ij)). The resulting ensemble
model is computationally efficient because it uses structured labels, capturing
information for an entire image neighbourhood, thus reducing the number of
decision trees T that need to be evaluated per pixel. Classical multiscale of the
model is ultimately computed by averaging the result of three probability edge
maps at the original, half and double resolution.

Given an input short-axis slice from an End-Diastolic or -Systolic (ED, ES)
volume, the proposed Structured Edge Detector (SED) task is to label each
pixel with a binary variable indicating whether it belongs to an edge or not.
This was done by predicting a structured 16 x 16 segmentation patch within
a larger 32 x 32 image patch. Each image patch was augmented with multiple
gradient channels of information. We computed normalised gradient magnitude
at 2 scales which were then split into 4 channels based on orientation (see [10]
for more details). Let X € R32%32XK denote the augmented image patch with
K channels. The two types of features we used were pizel lookup — I[r,c, k] —
and pairwise differences — I[rq,c1, k] —I[ro, co, k], where lowercase variables are
row, column and channel indices and constitute the feature parameters.

Parameter sweeps were run on the publicly available database (15 training
+ 15 testing datasets) provided by the 2014 MICCAI CETUS challenge. Im-
portantly, the 15 patients with ground-truth segmentation surfaces were used
to generate the required training data to train the SRF. Optimal settings for a
subset of the SRF parameters (e.g. number of structured labels, patch dimen-
sions, number of trees, maximum tree depth) were determined by applying the
SRF to the other 15 patients, fitting the endocardial surface (§ 2.2) and using
the MIDAS platform to measure distance error and clinical indices. Along with
the parameters specified previously, a configuration of 2 structured labels and
8 trees evaluated on an alternating set of 4 trees — each to a maximum tree
depth of 64 — achieved the minimum mean surface distance and modified Dice
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Fig.2: Endocardial surface fitting (Left) The limit surface (red) is defined
by the control mesh (gray). Surface points (blue) are initialised and boundary
candidates are selected (yellow) (“model-to-data”). (Centre) The fitted surface
with initial boundary candidates. (Right) The fitted surface with final boundary
candidates (“data-to-model”).

error for the 15 test patients. However, the total variation in error of the mean
surface distance was only 0.7mm across all configurations tested.

Following the application of the SRF to each slice, we applied non-maximum
suppression (Fig. 1b) by suppressing locations where edges are stronger in the
orthogonal direction, and retained only the most probable 2% of candidates to
produce the final matrix of boundary candidate positions (Fig. 1c).

2.2 Endocardial surface fitting

The explicit and continuous surface model of the LV is defined by a matrix of 24
control vertices X € R3*24 (Fig. 2). Positions on the limit surface are defined
by the function x(u, X) where u € {2 is a surface coordinate and 2 C R? is the
surface domain. y is defined using Loop subdivision [11] which generalises the
definition of quadratic triangular B-splines to topologically irregular meshes [12,
5]. The important properties of y are that it is non-linear in « but linear in X.

Let ¢ denote the matrix of all boundary candidates (§ 2.1, Fig. 1) and I
denote the vector of selected boundary candidate indices (the exact specification
of 1 is deferred until later). Also, let N = |l| denote the number of selected
boundary candidates, ¢; denote the I*! entry of ¢, and I; denote the i*? entry of
l. The surface “fit” is defined as:

N
E(X|l)=>\Zgl€igH¢zi = x(u, X)|I” + R(X) (1)
i=1

where A controls the weight of each error term. The min over w in (1) ensures
that for each selected boundary candidate the distance to the surface is measured
to its closest corresponding point on the surface — its preimage [4,5]. R(X) is
the thin-plate regulariser given by!:

R(X) :/ Xz (@, X1 + 2] Xay (@, X1 + Ixyy (2, X)|Pdac (2)

! The reparameterisation of y in @ = (z,y) is required to obtain an isotropic definition
(4].
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Local continuous optimisation of E with respect to X is inhibited by the
presence of the min in the summation and the integral in (2). However, E can
be redefined with all preimages introduced as additional continuous unknown
parameters:

N
E(X w1 =AY e, — x(ws, X)|* + R(X) (3)
i=1

so that minimisation of E with respect to X and {u}Y, is equivalent to minimi-
sation of F with respect to X alone [5]. Furthermore, since x is linear in X, the
integral in (2) can be evaluated and reduced to a quadratic in sum-of-squares
form. As a result, £ can be minimised using the Levenberg-Marquardt algo-
rithm [13], taking care to handle the updates of each u; so that preimages move
smoothly across the limit surface [5]. Finally, to ensure that the surface fitting is
robust to incorrectly selected boundary candidates, a Huber loss function? [13]
is applied to each weighted square residual.

With reference to Fig. 2, the specification of the boundary candidate indices 1
and the complete optimisation schedule for X is now described. Starting with an
initial® X, {u;} was initialised by sampling a fixed number of points uniformly in
the surface domain §2. Each corresponding [ was then set to its closest entry in ¢
— this is standard “model-to-data” boundary candidate selection. To allow for
missing boundaries, all u; with selected boundary candidates that had a distance
to the surface exceeding 10~?m were discarded. With {w;}}¥ ; initialised and I
set, X was then refined by minimising E with A\ = 28. Following the initial
refinement, | was reset to include all entries in ¢ which were within a given
radius (5mm) of the limit surface, and each corresponding w; was initialised to
the closest surface correspondence. The advantage of this “data-to-model” step
is that it utilises as many boundary candidates as possible (typically in the order
of 10%). Finally, X was refined once more by minimising E with X = 215 /N. The
final segmentation surface was then produced by densely evaluating the limit
surface.

3 Experimental Results

All 60 frames were processed in 960s (16s per volume) on 8 cores of an Intel Core
i7-4930MX. The computational bottleneck was the second stage of “data-to-
model” surface fitting. The results are presented in Table 1. Example slices from
the worst performing patients are shown in Fig. 4. SE D1 refers to the Structured
Edge Detector which performed best on the training database. Similarly, SFE D2
refers to the endocardial boundary detector which performed best on the testing
database. The detectors have slightly different configurations: SED1 uses 16 trees
while SED2 uses 4.

2 A scale of 0.025 is used in all experiments.
3 This is provided by the user using a 3D interactive GUT and takes typically 5-15s.
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dmean,ED |dmean,Es| da,ED | dH,ES | DEp | DB | EFr* |EFyias EFroa
() | o) | (o) s mm) (1%6) | (1.960.%)

SEDlonTraining|| 0.97 1.17 5.79 | 6.65 |0.039/0.055|0.986| 2.7 |[-2.76 ; 8.16]
SEDlonTesting 1.98 2.46 7.32 9.36 ]0.099(0.139|0.811 | 10.65 [-1.7 ; 23]

SED2onTraining 1.12 1.25 6.26 6.66 |0.045|0.059[0.983| 3.16 | [-2.84 ; 9.16]

SED2ontesting 2 2.17 | 9.11 | 8.7 [0.103(0.128|0.847| 8.97 |[-2.15 ; 20.08]
EDV;«|EDVyias EDVioa ESV.«|ESVhias| ESVioa
(u,mL) | (£1.960,mL) (u,mL) | (£1.960,mL)

SED1ontraining|| 0.997 | -3.51 |[-18.34 ; 11.32][0.997 | -8.01 |[-24.87 ; 8.85]
SEDlontesting || 0.887 | -2.94 | [-47.71 ; 41.83] | 0.962 | -15.41 | [-38.93 ; 8.11]
SED2onTraining|| 0997 | -0.45 | [-15.73 ; 14.83] | 0.996 | -6.45 |[-23.69 ; 10.79]
SED2onresting || 0.892| 1.03 |[-41.51 ; 43.57]|0.972 | -10.48 |[-29.58 ; 8.62]

Table 1: Summary of the distance errors and clinical indices: mean surface dis-
tance (dmean), Hausdorfl surface distance (dg), modified Dice similarity index
(D* =1 — D), Ejection Fraction (EF), End Diastolic Volume and End Systolic
volume (ESV) measurements, each with modified Pearson product-moment cor-

relation coefficient (r* = 1—r) and Bland-Altman bias and Limits of Agreement
(LOA).

4 Discussion

Table 1 demonstrates that the proposed method achieves high endocardial bor-
der detection accuracy. Our method shows very strong correlation against the
reference values for EF, EDV, and ESV, but poor correlation against SV on
the Testing database (SV,~ = 0.322). Bland-Altman analysis of the estimated
indices shows that EF, SV and ESV bias are statistically significant at the 5%
significance level (paired-sample t-test, p < 0.05) while EDV is not. Although
the estimated EDV bias is close to zero, it exhibits high variance and wide lim-
its of agreement (Fig. 3(c)). Finally, Fig. 3(a) and (d) demonstrate that the
proposed framework is consistently underestimating EF and overestimating the
ESV measurements.

Importantly, our current framework does not include a step to cut the seg-
mentation at the basal region of the heart. Fig. 4 shows that this procedure is
required.

5 Conclusion

A semi-automatic method based on 2D structured learning was developed to
perform consistent endocardial segmentation in 3D echocardiography volumes
from different brands of ultrasound machines.
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Fig.3: Bland-Altman plots with bias and LOA for the SED2,,1¢sting clinical
indices measurements: (a) EF, (b) Stroke Volume (SV, SV,. = 0.322), (¢) EDV
and (d) ESV.
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