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Abstract. In this paper, we present the use of a generic image segmen-
tation method, namely a succession of Random Forest classifiers in an
autocontext framework, for the MICCAI 2014 Challenge on Endocardial
3D Ultrasound Segmentation (CETUS). The proposed method segments
each frame independently in 90 sec, without requiring temporal informa-
tion such as end-diastolic or end-systolic time points nor any registration.
For better segmentation accuracy, non-local means denoising can be ap-
plied to the images at the cost of an increased run-time. The mean Dice
score on the testing dataset was 84.4% without denoising and 86.4% with
denoising. The originality of our approach lies in the introduction of two
classes, the myocardium and the mitral valve, in addition to the left ven-
tricle and the background classes, in order to gain contextual information
for the segmentation task.

1 Introduction

The high temporal resolution of 3D ultrasound images provide cardiologists with
invaluable information, enabling them to observe the heart structures and their
function in real time. However, automating image analysis tasks on ultrasound
images is challenging due to low signal-to-noise ratio. In this paper, we propose
a method to delineate the left ventricle (LV) endocardium border in a fully
automatic manner using Random Forest classifiers (RF) [1] in an autocontext
framework [11].

RF have been successfully applied to various organ localization and segmen-
tation tasks in different imaging modalities [3,6,9]. In particular, the method
presented in [6] is aimed at segmenting myocardial tissues in echocardiography
images. While most of the proposed image segmentation methods based on RF
classify each pixel independently, we apply several RF classifiers successively,
each one gaining contextual information from the classification results of their
predecessors. This framework of applying successive classifiers, outlined in Fig. 1,
is called autocontext [11]. Similarly to [5], we use geodesic distance transforms,
namely the Euclidean distance weighted by the image gradient, computed be-
tween each autocontext iteration, in order to enhance contextual information.

The main contribution of this paper is to formulate the task of segment-
ing the LV endocardium in a way that best takes advantage of the autocontext



2 K. Keraudren, O. Oktay, W. Shi, J.V. Hajnal, D. Rueckert

Input imageprr-—m—oaiomo .

Class Probabilistic
centres segmentation
Final
segmentation
Distance Distance
transforms transforms

Fig. 1: Overview of the autocontext framework for segmenting the left ventricle endo-
cardium.

framework. Indeed, in order to increase the amount of contextual information, we
formulate a four class segmentation problem by introducing classes for the mi-
tral valve and myocardium, in addition to the LV endocardium and background.
Moreover, as it may be ambiguous for a translation invariant classifier to distin-
guish between the four heart chambers, we limit the first iteration of autocontext
to the detection of the center of each class. In the remaining of this paper, we
will present the proposed method in more details, along with the results which
were obtained on the first testing dataset of the CETUS challenge.

2 Method

Pre-processing: The images from all subjects are first resampled to a fixed
resolution before applying non-local means denoising [2]. Denoising, which re-
moves speckle textured image patches while preserving anatomical structures, is
an optional step that slightly increases the performance of the trained classifiers.

Segmentation with autocontext Random Forests: A RF classifier is an
ensemble method for machine learning that averages the results of decision trees
trained on random subsets of the training dataset (bagging) [1]. In order to grow
the decision trees, tests aiming to separate the different classes are randomly
generated at every node of the trees, and the tests maximizing information gain
are selected.

Similarly to [3], the tests used at the nodes of the trees are based on differ-
ences of mean intensity over displaced rectangular areas. Each test thus selects
two 3D patches of random sizes at random offsets from the current pixel, and
compares their mean intensity (Fig. 2.b). As these tests are invariant to inten-
sity shifts, image intensities do not need to be standardized. In order to enable
more interaction between the classes to be learnt (spatial context), those patches
are either both selected on the original image, or on two possibly different im-
ages among the detection probability maps of each class and their corresponding
geodesic distance transforms [5]. These geodesic distance transforms (GDTs) are
the Euclidean distance of every pixel to the center of each class, weighted by the
gradient of the image intensities (Fig. 2.c), as described in Equation 1.
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Fig.2: (a) Ground truth segmentation of the myocardium (green) and the mitral valve
(red) were generated using morphological operations. (b) The tests used at each tree
nodes are based on the difference of mean intensity between 3D patches. (¢) These

patches can be taken from the input image, or from the probability maps obtained
during the autocontext iterations (top row) and their corresponding GDTs (bottom

V

(c)

row).

ur)
day)= it [ VTFVIG) TP (1)

rebP.

where I' is a path in the set of all paths P, , between x and y, parametrised by its
arc length s € [0,1(I")], and ~ is a weight between the Euclidean distance and the
image gradient. GDTs, which can be efficiently computed in linear time [10], are
used to increase the amount of spatial context that can be learnt by the classifier
by combining prediction estimates with image information. Unlike [5] which
computes GDTs using the probabilistic class regions, the class centroids are
used to address the ambiguity between the four heart chambers, as highlighted
in Fig. 3.a. To enable the comparison between class probabilities and GDTs,
those images are rescaled to the same intensity range.

The training dataset in the CETUS challenge consists of 3D echocardiogra-
phy image sequences of the beating heart, with ground truth segmentation of the
left ventricle at end-diastolic (ED) and end-systolic (ES) frames. In order to train
each classifier on as many images as possible (data augmentation), the ground
truth segmentation of ED and ES frames are propagated to all other frames
using non-rigid image registration. Additionally, randomly rotated versions of
each frame (£ 30°along each axis) are generated to increase the training size as
well as the rotation invariance of the trained classifier. Finally, we formulate the
two class problem of the challenge into a four class problem: LV endocardium,
myocardium, mitral valve and background. Autocontext is a framework that im-
plicitly learns a shape model and more importantly, the spatial relation between
different classes. The two additional classes are thus introduced in order to take
advantage of the autocontext framework. Approximate segmentations are auto-
matically generated for the myocardium and the mitral valve using morpholog-
ical operations and fitting an ellipsoid to the ground truth segmentation of the
left ventricle to obtain its main axis (Fig 2.a).
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Fig.3: (a,b,c) Probabilistic output of the classifier for the first three iterations of au-
tocontext for the three classes: mitral valve (red), myocardium (green) and LV en-
docardium (white). (d) Final segmentation at the 3rd iteration of autocontext (red
contour). The yellow arrows in (a) point to two detected heart chambers at the first
iteration of autocontext. Only the main detection is carried out through the subsequent
autocontext iterations.

Although the classifier is run at every pixel when performing a segmentation,
not all pixel locations are used during training in order to limit the computational
cost. For the first training iteration of the classifier, the same number of pixel
locations is randomly sampled within each class, forming a balanced dataset. In
the subsequent iterations, pixel locations which have been correctly classified are
partially masked in order to sample more pixels from the misclassified regions
of the image, before randomly selecting the same number of pixel locations for
each class. This is analogous to the reweighting of misclassified examples taking
place in the AdaBoost algorithm [4].

Properties of the classifier: The proposed classifier is translation invariant
and produces a probabilistic classification at every pixel. The tests performed at
every node of the decision trees are designed to be invariant to intensity shifts as
they compare mean intensities between patches, without setting any threshold
[3]. The classifier is tolerant to some degree of rotation, depending on the amount
of rotation present in the training data. By construction, it selects one connected
component per class.

3 Implementation

The RF classifier is implemented in C++. Trees are grown in parallel using
the TBB library. At test time, instead of parallelizing over the trees, it is more
efficient to parallelize over the 2D slices of the 3D volume. The autocontext
framework is written in Python. We use RF of 20 trees, with a maximal tree
depth of 20. Images are resampled to 1x1x1 mm? and the maximal patch size
in the binary tests is set to 60 pixels, for a maximal offset of 30 pixels. When
performing non-local means denoising, the patch size is set to 3x3x 3 and the
weights of the neighboring patches are computed within an image window of size
TXTXT centred on the target patch. Training the classifiers takes approximately
a day on a 32 cores, 256 GB RAM computer, while testing only takes 90 sec for 4
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Table 1: Segmentation results on the testing set (Patients 16 to 30): mean absolute
distance (MAD), Hausdorff distance (HD) and modified Dice score (DS).

Original images Speckle reduced images

Training size MAD (mm) HD (mm) DS (%) MAD (mm) HD (mm) DS (%)

100 frames 2.70£0.84 9.58+3.36 16.1+5.5 2.75£1.01 9.5843.13 15.7+5.5
300 frames 2.60£0.80 9.64+3.28 15.6+5.4 2.324£0.69 9.19£3.33 14.3+5.2
600 frames 2.57+0.68 9.204+3.08 15.7£5.6 2.31+£0.74 8.66£2.79 13.6+4.2

autocontext iterations. Non-local means denoising for a single frame takes about
1 min on a quad-core machine. Due to the time required to train the classifier,
no cross-validation was performed on the training data.

As a post-processing step, the probabilistic segmentations are upsampled to
0.5x0.5x0.5 mm?, a Gaussian filter of standard deviation 0.5 mm is applied,
and the iso-surface for probability 0.5 is extracted using the marching cubes
algorithm [7].

4 Results and discussion

The results obtained on the first testing dataset of the CETUS challenge are
presented in Table 1 for different sizes of training dataset. The best segmentation
scores were obtained on the denoised data, for a training size of 600 frames and
4 iterations of autocontext, with a mean Dice score of 86.4%. The best results
obtained are detailed in Table 2.a, with distinct scores for ED and ES frames.
Among all the parameters of the model, the two most important were the size of
the training dataset and the choice of additional classes that can provide spatial
context when learning to segment the left ventricle, such as the mitral valve and
the myocardium (Fig. 2.a). Indeed, in the experiments performed, introducing a
class for the mitral valve was found necessary to enable the classifier to position
the boundary between the left ventricle and the left atrium.

Two clinical parameters, stroke volume (SV) and ejection fraction (EF), were
evaluated for each patient. They are defined as follows:

SV = EDV — ESV (2)
EDV — ESV

where EDV is the end-diastolic volume and ESV denotes the end-systolic vol-
ume. These parameters were compared against their reference values, and the
correlation coefficients, bias and limits of agreement are reported in Table 2.b.
A strong correlation can be observed between EDV, EDS and their reference
values (respectively 0.917 and 0.979). The lack of correlation between the mea-
sured stroke volume and its reference value (correlation coefficient 0.045) may be
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explained by the fact that ED and ES frames are segmented independently, us-
ing the same trained classifier. A model which would take time information into
account and segment each frame in the context of the preceding and successive
frames might provide a more accurate estimate of the stroke volume and ejec-
tion fraction. Besides, as can be seen in Table 2.a, the proposed model does not
perform as well on ES frames as on ED frames. This observation could motivate
training distinct ED and ES classifiers.

Table 2: Segmentation results on the testing set (Patients 16 to 30) for end-diastolic
and end-systolic frames, on speckle reduced images, using 600 frames for training:
(a) mean absolute distance (MAD), Hausdorff distance (HD) and modified Dice score
(DS); (b) correlation coefficient (CC), bias and limit of agreement (LOA) for the ejec-
tion fraction and stroke volume indices.

MAD (mm) HD (mm) DS (%)

(a) End-diastolic 2.28+0.92 8.294+2.37 12.1+4.3
End-systolic  2.33£0.50 9.03£3.12 15.0+3.6

CC Bias LOA (u+1.960)

End-diastolic volume (mL) 0.917 6.61  -30.85 to 44.07

(b) End-systolic volume (mL) 0.979 -7.85 -32.21 to 16.51
Stroke volume (mL) 0.045 14.43 -26.80 to 55.65
Ejection fraction (%) 0.780 8.49  -12.58 to 29.57

The importance of autocontext is highlighted in Fig. 3.a. Indeed, the first
iteration of autocontext, which classifies each pixel independently, might detect
more than one heart chamber due to the translation invariance of the classifier.
This first iteration is thus only used to define the center of each class, allowing
the subsequent iterations to focus on the correct region of the image. In order
to demonstrate the feasibility of segmenting the whole temporal sequence in
addition to the ED and ES frames using the proposed method, a video is available
online'.

Feature importance in Random Forests is a mean to measure which tests are
most capable of separating the different classes. The most important tests are
selected early in the tree construction, and repetitively across the forest. Fig-
ure 4 indicates which tests play a more important role at the different iterations
of autocontext. These tests can be summarized into four categories: the com-
parison of patches within the original image, patches across class probabilities,
patches across GDTs, and patches between both class probabilities and GDTs.
It can be noted that during the first iteration of autocontext, all tests are made
on the original image and that during the second iteration, no tests are made

! nttp://www.doc.ic.ac.uk/~kpk09/MICCATI2014_CETUS.mp4
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Fig. 4: (a) Modified Dice score on the training and testing datasets, using 600 frames,
for end-diastolic (ED) and end-systolic frames (ES). (b) Feature ranking at each auto-
context iteration: the tests performed in the tree nodes compare the mean intensity of
two patches which can originate from the original image, or from different class proba-
bilities, or different geodesic distance transforms, or a class probability and a geodesic
distance transform.

between the GDTs and the class probabilities as the latter only contains the
class centroids. In the subsequent iterations, only a minority of tests take place
on the original image. This is a form of overfitting as the algorithm no longer
uses the original image and instead recreates the shapes it learned during train-
ing. In the example video, overfitting can be observed in the last frames where
the segmentation of the LV overlaps with the endocardium, despite its boundary
being clearly defined in the original image. Overfitting can be observed as well
in Figure 4.a as the performance of the classifier on the test dataset decreases
after the 4" iteration while its performance on the training dataset is almost
constant.

The anatomy of the left ventricle is more complex than the simplified model
used to train the classifier. A more realistic and detailed ground truth, for in-
stance taking into account both the mitral valve and the aortic valve, could
potentially improve the accuracy of the classifier.

5 Conclusion

We presented a generic image segmentation method, autocontext Random Forests,
applied to the segmentation of the left ventricle endocardium in 3D echocardio-
graphy images. The only part of the method which is task specific is the choice
of the different classes to segment, as these classes must enable the classifier
to learn spatial context. This method can be applied to any time frame of an



8

K. Keraudren, O. Oktay, W. Shi, J.V. Hajnal, D. Rueckert

echocardiography sequence in a reasonable time. Future work will investigate dif-
ferent sets of tests for the decision trees, such as the use of local binary pattern
(LBP) features [8].
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