
Learning Shape Representations for Multi-Atlas
Endocardium Segmentation in 3D Echo Images

Ozan Oktay, Wenzhe Shi, Kevin Keraudren,

Jose Caballero, and Daniel Rueckert

Biomedical Image Analysis Group, Imperial College London, UK

Abstract. As part of the CETUS challenge, we present a multi-atlas
segmentation framework to delineate the left-ventricle endocardium in
echocardiographic images. To increase the robustness of the registration
step, we introduce a speckle reduction step and a new shape represen-
tation based on sparse coding and manifold approximation in dictionary
space. The shape representation, unlike intensity values, provides con-
sistent shape information across different images. The validation results
on the test set show that registration based on our shape representa-
tion significantly improves the performance of multi-atlas segmentation
compared to intensity based registration. To our knowledge it is the first
time that multi-atlas segmentation achieves state-of-the-art results for
echocardiographic images.

1 Introduction

The analysis of left ventricular (LV) mass and function are of particular inter-
est to clinicians for diagnostic and therapeutic purposes, commonly relying on
3D echocardiography due to its low cost, availability, and high temporal resolu-
tion. However, the automatic delineation of the endocardial boundary remains
a challenging task due to low image quality.

The existing work on echocardiography segmentation can be divided into two
groups: model-based and data-driven approaches. The first category makes use of
prior shape constraint, as in active shape models [14] or deformable models [13],
which require a large training set. In the absence of large amounts of training
data, they fail to cope with inter-subject anatomical variations. The second
group of approaches, on the other hand, rely on image features or intensity
distributions such as: edge-based level sets and Bayesian formulations [9]. They
are less sensitive to anatomical differences, but have limitations when facing
inconsistent intensity distribution and low signal-to-noise ratio (SNR).

This paper proposes a segmentation framework based on label propagation,
similar to [15]. As an improvement, the proposed approach does not require
image compounding. More importantly it does not employ hand-crafted image
features for registration like local phase and image gradients, which are sensitive
to noise level. Indeed, the main challenge when applying multi-atlas segmenta-
tion on echo images is the low SNR. To overcome this problem, we introduce
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a novel data-driven feature learning algorithm. It eliminates noise and extracts
the shape representation of image patches at atrium and ventricle boundaries.
The new algorithm relies on sparse coding, spectral embedding, and manifold
approximation. Compared to the other shape representations like the Laplacian
images [11] or spectral embedding in the image domain [5], our method remains
computationally efficient. The proposed learned shape representation is inte-
grated in multi-atlas segmentation. During the evaluation, we demonstrate that
the proposed approach increases the accuracy compared to the intensity images.
Finally, it is a generic approach: Since it does not require any offline training, it
can be applied on images with different modality, morphology and field of view.

2 Proposed method

In the proposed framework, the images from all patients are first pre-processed
for speckle reduction, they are then converted to their shape representations by
manifold learning. These representations are then used in the registration step of
the multi-atlas segmentation. The details of each step are described as follows:

Speckle reduction: All echo sequences are preprocessed prior to segmentation.
The speckle reduction is performed based on sparse representation of learned
dictionary atoms. This approach has been successfully applied in image restora-
tion [7], and it is also applicable to echo images assuming image patches are
parameterizable and can be sparsely represented. In this way, speckle is removed
while ventricle boundaries in the images are preserved. As proposed in [4], K-
SVD algorithm is used to solve the cost function:

min
C,X

∑
i

‖xi‖0 s.t. ∀i , ‖yi −Cxi‖2 ≤ ε | ε ∈ R+ (1)

which reconstructs the observations yi ∈ Rn as sparse combinations xi ∈ Rm

of dictionary atoms in C ∈ Rn×m. The K-SVD algorithm iteratively alternates
between the dictionary update and the OMP sparse coding of X. In contrast to
other speckle reduction methods, such as non-local means [3], sparse coding of
learned patches is not limited only to the intensity information in local neigh-
bourhood, but the global information, learned from the image itself, is used as
well. This advantage makes the dictionary based reconstruction more accurate
in recovering the edge information in low SNR image areas.

Learning shape representation: Multi-atlas segmentation is performed on
our novel shape representation extracted from echo image patches. In compari-
son to intensities, the proposed representation captures contextual information
in the local spatial neighbourhood, which provides useful local shape information
for the image registration in multi-atlas segmentation. As explained in [10,11],
the representations are learned by extracting the underlying manifold structure
of image patches and mapping them to a lower dimensional space. As this trans-
formation preserves the locality, similar shaped patches are grouped together



3

in the low dimensional patch space while the variance of the patches is max-
imized. Learning a manifold requires the computation of an adjacency matrix
A ∈ Rl×l, where l is the total number of image patches. The edge weights of
the connected graph are the pairwise similarities between the image patches:
Ai,j = exp (−‖yi − yj‖2 / γ ), where γ is the mean of squared patch distances.
For echo images of large dimensions the computation of this matrix becomes
computationally very expensive making this approach not directly applicable.
To overcome this problem, Laplacian Eigenmaps [2] is applied on dictionary
space instead of the image space. In that respect, the lowest K eigenmodes of
the normalized Laplacian graph L = I − D−1/2ÃD−1/2 are computed for the
degree matrix D ∈ Rm×m and Ã ∈ Rm×m. Afterwards, spectral coordinates of
all patches are approximated by mapping each image patch to the manifold of
dictionary atoms through locally constrained sparse coding as suggested in [12].
The cost function of the local linear coding algorithm is:

min
X

∑
i

‖yi −Cxi‖2 + λ ‖bi � xi‖2 s.t. ∀i ,1>xi = 1 (2)

where � denotes the element-wise multiplication and λ ∈ R+. It computes the
sparse code of each query patch by enforcing the locality constraint. Pairwise
`2 norm distances bi = exp ( dist(yi,C) / σ ) determine the locality weight of
an atom. Fig.1 illustrates a single component of approximated manifold, i.e. the
shape quantization of echo image patches.

Multi-atlas segmentation: Similar to the framework in [1], the target im-
age is segmented by propagating labels of a subset of atlases selected from the
training dataset. The label propagation is based on linear and deformable image
registration between the manually segmented subset of atlas images and target
image. Different than the standard multi-atlas segmentation, in the proposed
framework, the image similarity metric in registration is based on the shape
representation of images instead of the intensity values.

The segmentation framework can be described as follows: Firstly, all atlases
are linearly transformed to the target image space based on three manually se-
lected landmarks (left ventricle apex, mid-ventricle, and mitral valve). A region
of interest is defined by the overlap of propagated labels after linear transfor-
mation. Secondly, the most similar M atlases are selected based on normalized
mutual information, which could alternatively be replaced by another global im-
age similarity metric. Next, the target and selected atlases are converted into
shape representations, and B-spline free-form deformation based registration [8]
is employed to propagate the atlases (FA) to the target image (FQ). Finally, the
segmentation is decided by majority voting of the propagated labels. The cost
function for the registration is defined as:

min
u

K∑
k=1

‖FAk
(p + u)−FQk

(p)‖2 + βR(u) (3)

where p,u ∈ Rd, β ∈ R and R(.) denote position, displacements, and bending
energy. The cost function minimizes the sum of squared differences between
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Fig. 1. From left to right: (1) input image, (2) proposed speckle reduction, (3) learned
shape representation, and (4) multi-atlas segmentation of LV endocardium

the spectral coordinates of atlas and target images, where there are in total K
separate spectral components in the low dimensional patch space.

3 Implementation and Results

In speckle reduction, dictionary and patch sizes are selected as m = 850, n =
7x7x7. The dictionary atoms ci are learned from zero-mean and unit variance
image patches. Maximum residual error is limited to ε = 0.25 for normalized
images. In the shape representation, a single over-complete dictionary is learnt
for all 15 training subjects, and the corresponding manifold of this dictionary is
computed by finding 8 nearest neighbours of each atom. Then, image patches are
mapped to the manifold using parameter values λ = 0.3, K = 4, and σ = 0.2.
Lastly, the registrations are performed on a three level image pyramid for β = 1.

The evaluation is performed on both testing and training datasets, each con-
sisting of 15 volumetric echo sequences. For both cases, the segmentations are
performed on the end-diastolic (ED) and end-systolic (ES) frames. The images
from these two phases are segmented individually using different subsets of at-
lases selected from the respective phases. This way of atlas selection is observed
to be more accurate in the segmentation. The results are reported in Table 1 and
2. The accuracy of the LV delineation is measured in terms of surface distance
and DICE metrics. For the training dataset, the results are obtained using a
leave one out cross-validation.

The two tables show the multi-atlas segmentation results for three different
types of image surrogates: (A) unprocessed images, (B) speckle reduced images,
and (C) shape representation. The results show that the denoising improves the
segmentation by 1.01 mm compared to the unprocessed images. In addition,
the use of shape representations outperforms the intensity based approaches by
providing a more robust registration. The best performance is obtained using
10 atlases with shape representations, for which the final result is reported as
2.32 mm mean error, 7.41 mm Hausdorff distance, and 0.87 Dice score. However,
there is no statistical significant improvement by using 10 atlases instead of 5
atlases given that the dataset is small and contains large variations. For this
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Table 1. Multi-atlas segmentation cross-validation results on the training dataset (Pa-
tient 1 to 15) based on (A) unprocessed images, (B) speckle reduced images, and (C)
shape representations. The evaluation metrics are mean surface distance (MSD), Haus-
dorff distance (HD), Dice coefficient (DC), and t-test P value.

Number of atlases (M = 5)

MSD (mm) HD (mm) DC (%) P -value

(A) 2.67±0.86 8.81±3.23 0.87±.06 0.47×10−3

(B) 2.39±0.62 8.55±2.90 0.88±.05 0.36×10−3

(C) 2.19±0.56 7.63±2.43 0.89±.04 -

Table 2. Multi-atlas segmentation results on the testing dataset (Patient 16 to 30)
based on (A) unprocessed images, (B) speckle reduced images, and (C) shape rep-
resentations. The accuracy is evaluated based on the surface overlap measure (Dice
coefficient) and distance measurements (mean and Hausdorff distances).

Number of atlases (M = 5) Number of atlases (M = 10)

MSD (mm) HD (mm) DC (%) MSD (mm) HD (mm) DC (%)

(A) 3.85±2.06 12.24±5.12 0.80±.11 3.12±1.42 9.89±3.21 0.84±.07
(B) 2.84±1.07 10.00±3.04 0.85±.06 3.07±1.26 9.78±3.05 0.84±.07
(C) 2.34±0.85 8.15±1.97 0.87±.04 2.32±0.78 7.41±1.84 0.87±.04

reason, a smaller number of atlases is preferred to reduce the computation time
required for the segmentation.

Additionally, a paired t-test on the mean errors is performed to statistically
verify the differences between the results; the P values are given in Table 1.
Lastly, two clinical parameters, ejection fraction (EF) and stroke volume (SV),
are evaluated for each patient and compared against their reference values. The
comparison is done by calculating the Pearson’s correlation coefficient (PCC)
and limit of agreement (LOA) between the estimated values and the ground-
truth. Similarly, the same analysis is done for ES and ED volume measures. The
accuracy of the derived clinical parameters is demonstrated in Table 3, which
shows a close agreement between the reference and calculated values.

The reported results are obtained on a quad-core 3.00 GHz machine, and the
computation time per image is recorded as: speckle reduction ≈ 3 min, shape
representation ≈ 2.5 min, and deformable registrations ≈ 30 min for 5 atlases.

4 Discussion

The reported results indicate that multi-atlas segmentation can be used in left-
ventricle boundary delineation in echocardiographic images. It performs as ac-
curate as the state-of-the-art methods in estimating LV volume and clinical pa-
rameters. The main advantage of the atlas approach is that it does not require
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Table 3. This table shows the accuracy of the derived clinical indices for the training
(Patient 1 to 15) and testing datasets (Patient 16 to 30). Pearson’s correlation coeffi-
cient (PCC) and Bland-Altman’s limit of agreement (µ ± 1.96σ) values are given for
the following indices: ejection fraction, stroke volume, end-systolic volume, and end-
diastolic volume. Additionally, mean surface distance (MSD), Hausdorff distance (HD),
and Dice coefficient (DC) values are computed separately for ED and ES volumes.

Testing dataset MSD(mm) HD(mm) DC(%) PCC LOA (µ± 1.96σ)

ED volume (ml) 2.32 7.17 0.885 0.926 12.81±33.77
ES volume (ml) 2.32 7.64 0.857 0.936 -7.77±28.27
Ejection fraction (%) - - - 0.923 0.74±7.58
Stroke volume (ml) - - - 0.832 -5.05±12.49

Training dataset MSD(mm) HD(mm) DC(%) PCC LOA (µ± 1.96σ)

ED volume (ml) 1.98 6.97 0.911 0.983 9.80±45.66
ES volume (ml) 2.46 8.53 0.870 0.961 11.21±56.91
Ejection fraction (%) - - - 0.787 -1.07±18.52
Stroke volume (ml) - - - 0.856 -1.38±27.08

any shape prior knowledge and model construction. For a given training data, a
registration based approach has a higher degree of freedom in segmentation in
comparison to the statistical shape model based approaches. The main difficulty
of the application of the multi-atlas segmentation to echo images has been the
lack of a reliable registration. As it is shown in the results section, the method is
more reliable and accurate when the proposed shape representation is used for
the characterization of images instead of the unprocessed intensity data.

The proposed framework does not require user interaction for the segmenta-
tion except for the selection of three landmark points for atlas initialization. In
the experiments, these points are selected by a non-expert, so the sensitivity of
the algorithm on the point selection is not very significant. In future work, the
algorithm will be made fully-automatic by introducing a linear alignment stage
prior to the shape representation based image registration.

Additionally, the accuracy of the segmentation method can be further im-
proved by updating the shape representations at each level of the image registra-
tion algorithm. This can also be done in between the iterations of the registration
algorithm. The main drawback of atlas based segmentation is probably the long
computation time, which is measured in our experiments in the order of minutes.
The primary reason for this computational load is the time required by the im-
age registrations. As a solution to this problem, discrete optimization techniques
can be used in registration algorithm, which is shown [6] to be very effective in
reducing the computation time while preserving the registration accuracy.
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5 Conclusion

In this paper, we demonstrated the applicability of multi-atlas segmentation
for echocardiographic images using a novel shape representation. It captures
the shape of the contours on endocardial surface. This advantage enables the
algorithm to succeed even if tissue boundaries are disrupted by noise or are
incomplete due to shadowing. The results show that by using the shape repre-
sentation, the mean registration error can be reduced by 1.51 mm compared to
the unprocessed image. Moreover, the proposed shape quantization method is
computationally efficient and generic; such that it can be applied in other echo
image applications. Future work will focus on faster registration algorithm and
study the benefits of combining intensity data with shape representations for the
improvement of multi-atlas segmentation in echocardiography.

References

1. Aljabar, P., Heckemann, R., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas
based segmentation of brain images: Atlas selection and its effect on accuracy.
Neuroimage 46(3), 726–38 (2009)

2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation 15(6), 1373–96 (2003)
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