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Abstract. A method for real-time automatic tracking of the left ven-
tricle (LV) in 3D ultrasound is presented. A mesh model of the LV is de-
formed using mean value coordinates enabling large variations. Kalman
filtering and edge detection is used to track the mesh in each frame. The
method is evaluated using the framework of the Challenge on Endocar-
dial Three-dimensional Ultrasound Segmentation (CETUS). The results
show that the method is able to robustly track the LV in all sequences
with a mean mesh difference of about 2.5 mm.

1 Introduction

Ultrasound is a real-time, flexible and affordable medical image modality which
makes it ideal for intraoperative imaging. However, 3D ultrasound images can be
hard to interpret and visualize due to noise and other imaging artifacts. Tracking
of structures in ultrasound images can be a way to make this easier and provide
quantitative measures such as volume size.

The Kalman filter [1] is a method for estimating a state using a series of
noisy measurements over time. This method can be used to track meshes in ul-
trasound images by using a state consisting of translation, rotation, scaling and
deformation parameters of a mesh model in addition to edge detection measure-
ments. Jacob et al. [2] developed a tracking method for myocardial borders using
a Kalman filter and active contours in 2D ultrasound. Orderud [3] presented a
method for tracking the left ventricle (LV) in 3D ultrasound using a deformable
contour model. This was later extended to incorporate local deformation using
a B-spline surface in [4] and using a subdivision surface in [5]. B-spline and
subdivision surfaces can model mesh deformations using a set of control points.

If the surface is simple, only a few control points are needed which results
in faster computation of the Kalman filter. However, creating such a model can
involve a lot of manual work. In this paper, we present a fully automatic method
for tracking a closed surface with free-form surface deformation based on the
Kalman filter approach by Orderud et al. [4]. The presented method uses a
mesh model with mean value coordinates which is able to deform a complex
shape with few control points. It also makes the shape modelling easier as only
a surface consisting of a set of points is required, and some calculations such as



generating surface points needed for edge detection are avoided. The new method
is tested on 3D ultrasound images of the LV of the heart, and evaluated as part
of the Challenge on Endocardial Three-dimensional Ultrasound Segmentation
(CETUS).

2 Methods

In this section, the different methods used are described. First, the mesh model
for the LV is presented together with the method for deforming it. Next, the
Kalman filter used to track the mesh in the images is described and finally, a
pseudo-code of the complete implementation is provided.

2.1 Mesh model

Fig. 1. Mesh model of the
LV and the control mesh
around (red).

The LV is modelled as a set of points p. The initial
mesh is defined by the points p0 and is first trans-
formed using a local transformation pl = Tl(p0,xl)
and then a global transformation p = Tg(pl,xg).
xl and xg are the local and global transformation
parameters. p0 was created from the end diastolic
reference mesh of the first patient and resampled
down to M = 386 vertices using the surface simpli-
fication method of Garland and Heckbert [6]. The
reason for reducing the number of vertices is to in-
crease the speed of the implementation.

Mean value coordinates are used to perform the
local deformation of the mesh. This is done using a
control mesh c which has a lot less vertices than the mesh. The control mesh
was created from p0 by resampling it to N = 18 vertices using [6] and finally
scaling it by 1.5. The mesh is deformed by moving the vertices in the control
mesh. Initially, a weight wi,j is calculated between each vertex j in each triangle
of the control mesh and vertex i in the mesh p0. The mean value coordinate
weights are calculated as described by Ju et al. [7] using equation (1) where Ψ
and θ are the dihedral angles and arc lengths as depicted in Fig. 2.

wi,a =
θa − cos(Ψb)θc − cos(Ψc)θb
2 sin(Ψb) sin(Ψc)|ca − pi|

(1)

The weights for the other vertices in the triangle (cb and cc) are calculated
using the same formula by swapping a with b or c. After all the weights have
been calculated, they are normalized as w′i,j = wi,j/

∑
k,l wk,l. The calculation

of the normalized weights are only performed once for the mesh model and is not
repeated for every dataset. The local state vector xl consist of a displacement
vector dj for each of the control mesh’ vertices. The local deformation of the



mesh is calculated by using the normalized weights and the displacement vectors:

pl,i = Tl(p0,xl)i =

N∑
j=0

w′i,j(cj + dj) (2)

The global transformation is performed using equation (3) below. The mesh is
first moved so that its centroid C is placed in the origin. Next, rotation around
each axis is performed as well as scaling. Finally, translation is performed using
T . As translation, rotation and scaling is used in all three directions, the global
state vector xg consist of 9 values.

pi = Tg(pl,xg)i = RzRyRxS(pl,i −C(pl)) + C(pl) + T (3)

Initially, the mesh p0 is placed automatically in the center of the image and
scaled to 0.8 of its original size, effectively placing the mesh model inside the
LV. Although it is slightly counterintuitive to do the local transformation first,
this greatly simplifies the calculations. For instance, performing the global trans-
formation first would require calculating the weights wi,j in every iteration.
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Fig. 2. Notation used for the calculation
of mean value coordinates. pi is a point
on the model mesh. ca, cb, cc are control
points for one triangle in the control mesh.
Ψ and θ are the angles for the spherical
triangle formed by these control points.
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Fig. 3. Edge detection for a vertex i on the
predicted mesh p. A line is created with
the center at the vertex position and in
the direction of its normal ni. vi is then
the normal displacement between the ver-
tex and the detected edge on this line.

2.2 Mesh tracking using a Kalman filter

As proposed by Orderud et al. [4], the state of a mesh p is described using
both the local and global transformation parameters x = [xl,xg]. A Kalman
filter with a motion model (4) is used to predict the mesh’s state x̄k+1, and
the corresponding covariance error matrix P̄k+1 in (5). For the state transition
model, diagonal matrices were used with values 1.5 for A1 and -0.5 for A2. A
diagonal matrix was also used for the process error matrix Q with values 1.5 for
the global and 0.001 for the local transformation parameters.

x̄k+1 = A1x̂k + A2x̂k−1 (4)

P̄k+1 = A1P̂kAT
1 + A2P̂k−1A

T
2 + A1P̂kAT

2 + A2P̂k−1A
T
1 + Q (5)



The edge detection finds the normal displacement (vi = nT
i (pi,observed−pi,predicted))

for each vertex i in the predicted mesh in a 25 mm long line centered at the ver-
tex and in the direction of the normal n as shown in Fig. 3. The edge is detected
using the STEP model [8] which entails finding a k that maximizes the following
measure where l(t) is the image intensity at step t along the line with step size
0.6 mm (see Fig. 4).

k∑
t=0

∣∣∣∣∣∣ 1

k + 1

k∑
j=0

(l(j))− l(t)

∣∣∣∣∣∣+

L−1∑
t=k+1

∣∣∣∣∣∣ 1

L− k

L−1∑
j=k+1

(l(j))− l(t)

∣∣∣∣∣∣ (6)
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Fig. 4. Edge detection using the STEP model.
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Fig. 5. Tetrahedron formed by a
triangle i and the origin.

A measurement noise value ri is also recorded for each vertex and is calculated
based on the edge strength:

ri =
1

1
k+1

∑k
j=0 l(j)−

1
L−k

∑L−1
j=k+1 l(j)

(7)

However, these edge measurements are nonlinear and thus an extended Kalman
filter has to be used in which the observation model is linearized. This is done
by calculating Jacobi matrices that relate changes in each vertex i to changes in
the mesh state x. The final measurement vector hT

i is the normal projection of
these Jacobi matrices:

hT
i = nT

i

∂Tg(pl,x)i
∂x

= nT
i

[
∂Tg(pl,xg)i

∂xg
,
∂Tg(pl,xg)i

∂pl

∂Tl(p0,xl)i
∂xl

]
(8)

By assuming that the measurements are independent, the measurement noise
covariance matrix R becomes a diagonal matrix of the measurement noise values
ri. The multiplications of R, the measurement-to-state transition matrix H and
the measurements v becomes a simple summation as shown in equation (9)
[3]. This makes the Kalman update equations (10) invariant to the number of
measurements which improves speed significantly, as matrix inversion of large
matrices is avoided.

HTR−1v =

M∑
i=0

hT
i r
−1
i vi HTR−1H =

M∑
i=0

hT
i r
−1
i hi (9)



Using P̂kHTR−1 as the Kalman gain, the updated state and error covariance
estimate becomes:

x̂k = x̄k + P̂kHTR−1v P̂k = (P̄−1
k + HTR−1H)−1 (10)

2.3 End-systolic and end-diastolic volumes

The volume of the mesh is calculated for every frame using equation (11) [9]. This
equation calculates the signed volume of tetrahedrons formed by each triangle
in the mesh and the origin as depicted in Fig. 5. The end-systolic (ES) and end-
diastolic (ED) phases are identified using the minimum and maximum volumes
respectively from the volumes of the meshes in all image frames.

V =

∣∣∣∣∣∑
i

1

6
(xi2yi3zi1 − xi3yi2zi1 + xi3yi1zi2 − xi1yi3zi2 − xi2yi1zi3 + xi1yi2zi3)

∣∣∣∣∣
(11)

The pseudo-code below describes the complete implementation which is written
in C++. The entire Kalman filter procedure is repeated 10 times per image
frame.

Algorithm 1 Implementation

Set initial state x0 and x1 = x0
k ← 1
for each image frame do

for a number of iterations do
Predict state and error for the current frame using Eq. (4) and (5).
Perform transformations to create the predicted shape p = Tg(Tl(p0,xl),xg)
Perform edge detection for each vertex in the mesh p
Assimilate the measurements using Eq. (8) and (9).
Estimate the state and error for the current frame using Eq. (10).
k ← k + 1

end for
Calculate volume size V of the current mesh model defined by xk using Eq. (11).
if V < Vmin then

Vmin ← V
xES ← xk

end if
if V > Vmax then

Vmax ← V
xED ← xk

end if
end for
Save the meshes defined by xES and xED to disk

3 Results

The method was evaluated as part of the Challenge on Endocardial Three-
dimensional Ultrasound Segmentation (CETUS). In this challenge, a dataset



of 30 sequences of 3D ultrasound volumes of one cardiac cycle was provided.
The sequences were collected from both healthy subjects and subjects with a
history of myocardial infarction and dilated cardiomyopathy using three differ-
ent ultrasound probes. The same parameters were used for all subjects. Results
for the training and test dataset are gathered in tables 1 and 2 respectively. The
tables contain measures such as mean absolute difference (MAD), hausdorff dis-
tance (HD) and min and max error all expressed in millimeters. The correlation
of the ejection fraction (EF) and stroke volume (SV) was 0.91 and 0.92 for the
training dataset and 0.91 and 0.55 for the test dataset. A Bland-Altman analysis
of the EF and SV gave the 95% limits of agreements intervals 1.52±12.37 and
0.34±19.14 for the training dataset and 3.87±8.15 and 0.75±20.31 for the test
dataset. Fig. 6 show two ultrasound images where the border of the result mesh
of the proposed method and the ground truth is illustrated. The average run-
time per subject was measured to be 2.1 seconds with a standard deviation of
0.6 seconds. This includes everything from reading data, processing and storing
the result meshes to disk. The average runtime per image frame was measured to
be 65 ms which enables real-time tracking of the LV. The runtime was measured
on a system with an Intel i7-3770 CPU running at 3.4 GHz, 16 GB RAM and a
solid-state drive.

Fig. 6. Result of subject 5 ES to the left and subject 10 ED to the right. The yellow
line is the mesh border of the ground truth given by the CETUS organizers and the
green line is the mesh border of the proposed method.

4 Discussion

The results show that the presented method is able to automatically and robustly
track the LV in 3D ultrasound with a mean mesh difference at about 2.5 mm.
However, the results for the training set is slightly better than for the test set
which may indicate that the parameters have been overtuned for the training
set. Also, the max error was high (∼10mm) on some sequences. The image to
the right in Fig. 6 illustrates such a case. The experts have included bright parts



of the heart’s apex in the image, while the proposed method track the inside
edge. Thus, to deal with this problem, different edge detection methods may
be needed for different parts of the mesh model. The implementation achieved
speeds that enable real-time tracking and it is mainly the number of model and
control mesh vertices (M and N) that affect the speed. The proposed mesh
model which use mean value coordinates is able to model a complex shape with
few control points. This may prove useful when tracking more complex shapes
in which traditional methods such as B-spline and subdivision surfaces will have
to use many control points which reduces speed significantly. Thus, our future
work will focus on applying this method to other applications such as tracking
the ventricle of the brain in 3D ultrasound for guidance of ventricular drainage
procedures.

5 Conclusion

A method for fully automatic real-time tracking of the LV in 3D+t ultrasound
was presented. The method was able to track the LV in all 30 sequences and
achieved a mean mesh difference of about 2.5 mm. However, the max error was
high (∼ 10 mm) on some of the sequences due to failure to detect the LV border
in some areas.
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Subject MAD HD Modified dice Min error Max error EF Reference EF SV Reference SV
1 ES 2.35 6.82 0.1 0 6.82 - - - -
1 ED 1.39 4.01 0.05 0.01 4.01 41.4 44.2 122.1 126.6
2 ES 1.66 6.22 0.08 0.01 6.05 - - - -
2 ED 1.33 4.73 0.06 0 4.59 22.9 19.3 46.3 39.6
3 ES 4.47 8.88 0.26 0.01 8.88 - - - -
3 ED 3.53 7.42 0.16 0.02 7.42 43.6 55 72.2 67.7
4 ES 2.95 9.69 0.15 0.02 9.34 - - - -
4 ED 2.07 8.06 0.1 0.01 7.61 35 24.1 69 46.8
5 ES 1.31 3.97 0.07 0 3.97 - - - -
5 ED 1.58 5.24 0.08 0 4.98 26.4 25.9 32.2 32.5
6 ES 2.33 7.7 0.12 0.01 7.7 - - - -
6 ED 2.43 7.34 0.1 0.01 7.34 54.9 53.6 72.4 64.9
7 ES 3.96 10.55 0.22 0.03 10.55 - - - -
7 ED 2.08 6.67 0.1 0.01 6.67 33.1 47.2 44.9 56.8
8 ES 3.31 9.27 0.17 0.01 9.27 - - - -
8 ED 2.41 7.52 0.1 0.01 7.52 42 48.8 67.3 72.2
9 ES 1.69 6.26 0.08 0 6.26 - - - -
9 ED 1.44 5.21 0.07 0 5.21 47.5 51 66.9 67.9
10 ES 2.32 10.34 0.11 0 9.86 - - - -
10 ED 1.96 11.36 0.09 0.01 10.68 17 16.9 30.3 32.6
11 ES 1.96 6.66 0.13 0 6.31 - - - -
11 ED 1.51 6.46 0.08 0.01 6.36 38.5 34.9 64.5 65.4
12 ES 3.13 9.67 0.1 0.02 9.67 - - - -
12 ED 2.83 8.32 0.09 0.02 7.87 17.1 23.2 57.5 75.5
13 ES 1.9 6.77 0.06 0 6.28 - - - -
13 ED 1.84 5.79 0.05 0.02 5.79 14.1 13.6 58.9 55.3
14 ES 2.86 7.86 0.11 0 7.86 - - - -
14 ED 3.09 7.82 0.11 0.01 7.82 18.3 15.1 48.9 37.1
15 ES 1.98 6.19 0.06 0 6.19 - - - -
15 ED 2.19 7.28 0.07 0 7.28 22.5 24.3 85.7 93
Mean 2.33 7.34 0.10 0.01 7.21 31.62 33.14 62.60 62.26
Std. Dev. 0.80 1.87 0.05 0.01 1.80 12.81 15.25 22.55 24.88

Table 1. Results for the training dataset.

Subject MAD HD Modified dice Min error Max error EF Reference EF SV Reference SV
16 ES 1.48 6.53 0.08 0 6.53 - - - -
16 ED 1.37 5.19 0.07 0 4.89 43 47.3 49.9 56.1
17 ES 1.71 4.2 0.11 0 4.2 - - - -
17 ED 1.5 4.75 0.08 0.01 4.33 38.7 46.9 44.9 54.3
18 ES 3.25 8.02 0.12 0.01 8.02 - - - -
18 ED 2.96 6.77 0.1 0.02 6.77 22.7 26 59.9 57.3
19 ES 3.27 8.63 0.17 0 8.63 - - - -
19 ED 3.61 9.12 0.15 0.01 9.12 39.6 38.7 66.5 49.2
20 ES 2.53 8.09 0.17 0 7.46 - - - -
20 ED 2.01 9.12 0.1 0 8.83 48 55 53.4 61.8
21 ES 2.51 7.98 0.12 0 7.89 - - - -
21 ED 1.79 4.32 0.07 0.01 4.22 32.3 36.1 63.2 67.1
22 ES 3.86 12.95 0.18 0.02 12.95 - - - -
22 ED 2.79 6.93 0.12 0.02 6.93 29.1 38.2 50.5 53.7
23 ES 3.66 12.97 0.2 0 12.97 - - - -
23 ED 4.54 12.3 0.19 0 12.3 49.8 48.5 64.9 46.9
24 ES 2.76 7.59 0.14 0.05 7.59 - - - -
24 ED 1.79 7.06 0.08 0 6.7 27.1 31.8 39.6 44.3
25 ES 2.21 7.96 0.13 0.01 7.13 - - - -
25 ED 2.37 11.68 0.11 0.04 10.82 51.6 56.8 69.8 75
26 ES 3.35 11.4 0.15 0 10.74 - - - -
26 ED 3.52 13.04 0.14 0.04 12.53 30.8 33.9 65.4 78.3
27 ES 3.03 6.37 0.23 0.04 6.37 - - - -
27 ED 2.54 5.3 0.15 0.02 5.3 40 51.9 40.6 43
28 ES 1.96 6.11 0.12 0 6.11 - - - -
28 ED 2.75 7.71 0.13 0.02 7.71 49 52.6 46.7 42.9
29 ES 2.29 5.69 0.16 0 5.69 - - - -
29 ED 2.06 4.67 0.1 0.01 4.67 56.2 55 50.2 43.9
30 ES 4.47 13.19 0.19 0.01 13.19 - - - -
30 ED 5.28 12.84 0.18 0.01 12.84 34.6 31.9 70.7 51.1
Mean 2.77 8.28 0.13 0.01 8.11 39.50 43.37 55.74 54.99
Std. Dev. 0.97 2.94 0.04 0.01 2.91 10.01 10.01 10.60 11.29

Table 2. Results for the test dataset.


