
Segmentation of Multi-Center
3D Left Ventricular Echocardiograms

by Active Appearance Models

Marijn van Stralen1, Alexander Haak2, K.Y. Esther Leung3,
Gerard van Burken2 and Johan G. Bosch2,∗

1 Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
2 Thoraxcenter Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands

3 Albert Schweitzer Hospital, Dordrecht, Netherlands

Abstract. Segmentation of 3D echocardiograms (3DEs) is still a chal-
lenging task due to the low signal-to-noise ratio, the limited field of view,
and typical ultrasound artifacts. We propose to segment the left ventric-
ular endocardial surface by using Active Appearance Models (AAMs).
Separate end-diastolic (ED) and end-systolic (ES) AAMs were built from
presegmented 3DEs of the CETUS training data and 25 previously ac-
quired 3DEs, imaged using various 3DE equipment. The AAMs fully
automatically segmented the 15 training sets in a leave-one-out cross
validation, comparing two training populations and various initialization
strategies. All segmentations took about 15 seconds per patient.
The comparison on the CETUS training data shows that the AAM ben-
efits from additional training data and more accurate initialization. The
results on the CETUS training and testing data confirm good ED and ES
segmentation accuracy on multi-center, multi-vendor, multi-pathology
data, and corresponding EF estimation. Selection from different initial-
ization strategies, based on the minimal residual error, and propagation
of detected ED contours to initialize ES detection, contributed to more
accurate segmentations in this heterogeneous population.

1 Introduction

3D echocardiography offers a widely accessible and quick qualitative assessment
of cardiac function. However, image interpretation of this modality is subject to
high intra- and interobserver variability. Therefore, its recent expanding popu-
larity calls for objective, automated analysis techniques.

Fully automatic segmentation of the left ventricle in 3DE is a challenging
task, due to the poor signal-to-noise, the limited field-of-view and typical image
artifacts in transthoracic echocardiography, such as near-field noise and acoustic
shadowing. Various approaches have been presented previously [1–4], but none
of these approaches have been shown to be suitable for, or validated on multi-
center, multi-vendor, multi-pathology data sets.
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Active appearance models (AAM) were introduced by Cootes et al. [5] as
an extension of the more widely used active shape models (ASM). ASMs model
a collection of complex shapes by representing each example as a set of corre-
sponding points, calculating average positions and finding principal modes of
variation in shape over the collection by principal component analysis (PCA).
This results in a point distribution model (PDM). AAMs add statistical model-
ing of the local image intensities, corresponding to the shape locations, to this
formulation. Their ability to model typical shape and intensity variations across
the target population, including typical artifacts, make them very suitable for
the challenging segmentation of the left ventricle (LV) in echocardiography, as
was previously shown in [7]. In this work we extend our previous work on seg-
mentation of the LV in 3DE [10, 8] to explore the applicability of AAMs for
multi-center, multi-vendor and multi-pathology LV segmentation in 3DE for as-
sessment of the global LV function.

2 Methods

2.1 Data

AAMs use training data to model typical variations in shape and image intensi-
ties. The better these training data represent the target population, the better
the AAM will be able to segment it. To extend the limited amount of training
data available in the CETUS challenge (15 patients), we included 25 additional
3DE sequences of patients with varying pathologies. These were previously ac-
quired at our center using a Philips Sonos 7500 with an X4 matrix transducer and
semi-automatically segmented [6], albeit according to slightly different tracing
conventions that were optimized for comparison with MRI.

To investigate the influence of the training population of our AAM and the
applicability of the model built with varying compositions of data from various
vendors and patients groups, we performed our experiments with the following
training sets:

I. CETUS15 : CETUS training data only,
II. Extended40 : CETUS training data extended with 25 data sets previously

acquired at our institute.
Both local and CETUS data were preprocessed to extract masks representing
the valid ultrasound data. The CETUS training shapes were included in our
PDM by alternatingly matching and projecting each shape onto the LV shape
PCA model using iterative closest point (ICP) [9] matching, until convergence.

2.2 Modeling

Our AAM implementation for 3D echocardiography was developed earlier and
extensively described in [8]. In this implementation, the left ventricular endocar-
dial surface in 3D was represented as a fixed-topology grid (Fig. 1), consisting of
901 points (30 short-axis rings of 30 equally-spaced vertices, plus an apex point).



Fig. 1. Shape representation by 901 points for point distribution model. Variations
along the first principal component of shape.

Pose variation (translation, rotation and isotropic scaling) was removed from the
data before statistical analysis. The AAM texture was sampled along the normal
vector of each vertex, from the inside out, extending from 0 to 150% of the local
radius of the LV to capture contextual information, including the myocardium.
The textures were normalized with an echo-specific intensity normalization [7].
Missing data (outside of the ultrasound image sector) was masked out during
model generation, training and matching.

2.3 Training and matching

Active appearance models were generated from the selected training data. AAM
matching aims at minimizing the dissimilarity between the model appearance
gmodel(x, p), at position x and parameterized by p, and the target image gim(x).
The dissimilarity is represented by the difference or residual image r(x, p) =
gim(x) − gmodel(x, p). We trained model matching by computing the first order
approximation of the Jacobian, the partial derivatives of the residual images
with respect to the model parameters [5],

J(x, p) =
∂r(x, p)

∂p
(1)

The pseudo-inverse of the Jacobian,

U(x, p) =
(
J(x, p)TJ(x, p)

)−1
J(x, p)T (2)

was used to match the AAM to new images by minimizing r(x, p) through up-
dating the AAM parameter vector p using δp = −U(x, p)r(x, p).

2.4 Experiments

The matching experiments were carried out on the CETUS training and testing
data sets with separate, independent models for ED and ES segmentation. As
the iterative optimization of the AAM matching is sensitive to its initialization
we experimented with different initialization stragtegies. We experimented with
four strategies for ED and ES independently, varying the position (center of
the image volume vs. mean of the training set) and scaling (100 vs. 80%) of
the model. Additionally, one scenario coupled ED performance to ES detection.
Summarizing, these 5 scenarios had the the mean appearance initialized at:



a. Center100 : the center of the 3DE image,
b. Center80 : the center of the 3DE image and 80% scaled in size,
c. Mean100 : the mean position of the training shapes,
d. Mean80 : the mean position of the training shapes, and 80% scaled in size.
e. Selected & Propagated (ES only): the position and orientation resulting from

the best fully automatic ED detection (based on minimum r(x, p)), scaled at
80% of the ED size.

To allow further improvement of the matching and to avoid local minima, the
matching was restarted once at the resulting position with mean the mean apear-
ance. For the Selected & Propagated case this was not necessary, as the initial-
ization was already given accurately by the ED detection.

We compared the CETUS15 and the Extended40 training sets and the var-
ious matching strategies by segmenting the CETUS training set only (15 pa-
tients). The performance and the possible introduction of a bias of the Ex-
tended40 training set was assessed with respect to the CETUS15 set. To avoid
predisposition towards the target data set, a leave-one-out strategy was applied,
removing each target from the training set, generating and training the model
and matching it on the target patient.

For the final matching of the 15-patient CETUS testing data set, the model
was generated and trained using the favourable training data set, employing the
optimal matching strategy, following from the results on the previous experi-
ments.

The matching was in all cases fully automated, no patient-specific model
initialization or correction was applied. It was performed on an Intel Xeon X5570
2.93 GHz PC under Windows 7 (64-bit). The C++ code was single-threaded and
used ITK [11], VTK [12], and QT (Digia plc, Helsinki, Finland).

The MIDAS evaluation formed the basis of our analysis. For comparison of
the experiments with different training and matching strategies on the CETUS
training data, we limited ourselves to a subset of the measures provided by MI-
DAS. Comparison was done based on statistics (mean and SD) for the following
shape metrics: mean absolute difference (MAD), Hausdorff distance (HD) and
modified dice (MD). The clinically more relevant correlations and biases of the
ejection fraction (EF) and stroke volume (SV) were also investigated.

For the most favourable segmentation strategy, we evaluated the complete
spectrum of geometrical and clinical measures, as provided by MIDAS.

3 Results

3.1 Comparison of methods

In a head-to-head comparison of the CETUS15 and the Extended40 training
sets, the latter showed the added value of the extra training data on all relevant
metrics for the Center100 matching, as is shown in Table 1. As this case reflected
the general performance of the two training sets, we focus our analysis on the
Extended40 set only in the remainder of this paper, although the detection was
slightly biased by the different tracing conventions in the extended training set.



Table 1. Matching results for the CETUS training (15 patients), models generated
using different training sets. All results are reported as mean ± standard deviation or
correlation(bias). Center100 matchings without reinitialization.

MAD HD MD EF SV

CETUS15 3.5 ± 2.0 10.6 ± 5.5 0.15 ± 0.09 0.44(9.26) 0.69(−4.0)

Extended40 3.3 ± 1.8 10.3 ± 5.4 0.13 ± 0.09 0.54(9.26) 0.86(7.2)

Table 2. Matching results for the CETUS training set (15 patients), trained with the
Extended40 matched with different initialization scenarios. MAD, HD and MD results
are reported as mean ± standard deviation, EF and SV as correlation (bias).

MAD HD MD EF SV

Center100 3.4 ± 1.7 10.9 ± 5.4 0.14 ± 0.08 0.69(6.7) 0.88(3.0)

Center80 3.4 ± 1.8 11.2 ± 6.3 0.14 ± 0.10 0.67(2.8) 0.82(−3.3)

Mean100 3.1 ± 1.7 9.9 ± 4.9 0.13 ± 0.07 0.77(4.2) 0.88(−1.4)

Mean80 3.5 ± 1.9 11.4 ± 7.1 0.15 ± 0.10 0.63(10.9) 0.68(9.9)

Selected &
Propagated 3.0 ± 1.3 9.4 ± 3.9 0.12 ± 0.07 0.84(4.0) 0.94(−0.3)

The results for the comparison of the different strategies on the CETUS train-
ing data are presented in Table 2. It shows that the performance was improved by
more sophisticated initialization. Detection in ES improved by initialization with
smaller shapes, boosting EF correlations. The most favorable method used Se-
lected & propagated ED contours as initialization for ES detection. This method
rendered segmentations with a mean MAD of approximately 3mm and good EF
and SV correlations due to its loose coupling of ED and ES matchings.

Bias correction In general, matching using our Extended40 model caused an
overestimation of almost all ED and ES volumes (mean 12.3 ml in ED and 12.0 ml
in ES). These overestimations were especially profound in the apical region. They
were probably caused by the different tracing conventions that were employed on
our own training sets. To compensate for these different tracing conventions, we
downscaled our detected contours, relative to the mitral valve plane with 95%.
corresponding to the relative bias that was found on the CETUS training data.

3.2 Challenge results on CETUS training and testing data

For the combined results on CETUS training and testing data, we demonstrated
our optimal detection strategy, being training using the Extended40 set and
matching using the Selected & Propagated scenario, including bias correction
Fig. 2 shows examples of detected contours on three of the training set images
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Fig. 2. Example of well (#09 ED), averagely (#15 ED) and poorly (#01 ED) detected
contours (color coded) of the training set with the manual ground truth (orange) and
the initial contour (white). Without applying a bias correction (as shown), overestima-
tion at the apex is often seen.

Table 3. Results on the CETUS training and testing sets, with the Extended40 training
and Selected & Propagated matching.

Training Testing

MAD HD mDice Err MAD HD mDice Err

ED 2.37 8.54 0.107 [0; 8.41] 2.38 8.06 0.119 [0; 8.02]

ES 2.53 8.77 0.132 [0; 8.77] 2.85 8.14 0.171 [0; 8.06]

EDVol ESVol EF SV EDVol ESVol EF SV

CC 0.981 0.982 0.844 0.941 0.952 0.948 0.790 0.828

Bias −0.92 −3.83 3.98 2.92 −17.77 −14.18 3.61 −3.62

LOA [−38; 36] [−43; 36] [−12; 20] [−25; 30] [−47; 11] [−40; 11] [−8.6; 16] [−18; 11]

with the ground truth and the AAM initialization. The results are summarized in
Table 3 following the MIDAS evaluation output format. With the bias correction
based on the training set, the method still overestimates volumes in the testing
set (negative bias in volume).

The matching computation time varied per data set, depending on the num-
ber of iterations, averaging at about 15 seconds.

4 Discussion

The current results (Extended40, Selected & propagated) on the training and
testing data show that our AAM segmentation can provide good results in 3DE
LV segmentation, especially for ED. In any case, the AAM provides a promising
tool for clinical quantification of LV function in echocardiography, as the method
is fast and fully automated.

The results on the training sets as well as on the test sets are comparable to
what we reported earlier for our methods [8, 10]. This is a promising result, given



the heterogeneity of the CETUS data and the limited applicability of our current
Extended40 model. We took the majority of the training data from our own
center, acquired with an older Philips system and a probe with different image
characteristics. Furthermore, contours were drawn according to slightly different
standards. The Extended40 training set generally still gave better results than
the native CETUS15 dataset. Apparently, 15 data sets is hardly enough to create
a stable model with sufficient generalization capability.

Even the Extended40 training set might be small in order to model the vari-
ation in shapes (901 points) and especially appearances (including 45k voxels)
of the left ventricles in 3DE. Therefore, the generalization of the model was sub-
optimal and matching easily converged into a local optimum. To this end, we
combined multiple initialization strategies to accommodate for the wide variety
in patients. A single reinitialization of the matching at the resulting position
and orientation, with a clean mean appearance, contributed to a better perfor-
mance. Furthermore, the selection based on the residual matching error improved
the robustness of the segmentation with respect to the individual initialization
strategies.

The considerable biases in detected volumes (-12.3 ml in ED and -12.0 ml
in ES) may be linked to the 25 extra training sets. Therefore we applied a bias
correction to our segmentations, based on the results on the CETUS training
set. Compared to the CETUS tracings, our segmentations were generally too
wide, which was most pronounced near the apex. As the level of the mitral
valve plane was correctly matched, we implemented our bias correction as a
scaling of the surfaces in the direction of the long axis with respect to the mitral
valve plane. This correction was performed solely to comply with the CETUS
tracing conventions and did, by design, not alter the clinically relevant ejection
fractions. Including other data sets that are traced according to the CETUS
standards would be preferred and would most probably decrease the detection
bias.

Furthermore, improvement can be achieved by optimizing and finetuning the
model generation and regression training settings of the AAM. For now, we used
standard values that were previously obtained [8].

5 Conclusions

Our AAM for endocardial segmentation of 3D LV echocardiograms has been
shown to provide fully automatic segmentation with good results for ED and
reasonable results for ES over a database of different ultrasound machines, dif-
ferent pathologies and different centers. Selection from different initialization
strategies, based on the minimal residual error, and propagation of detected ED
contours to initialize ES detection, contributed to more accurate segmentations
in this heterogeneous population.
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