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Abstract. In this paper, we propose a semi-automatic method for left ventricle 
segmentation. The proposed method utilizes a multi-scale quadrature filter 
method to enhance the 3D volume, followed by a model-based level set method 
to segment the endocardial surface of the left ventricle. The phase map from the 
quadrature filters is also used to weight the influence of contour points when 
updating the statistical model. 
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1 Introduction: 

Three-dimension ultrasound (US) imaging is a relatively new method for analyzing 
cardiac function. Compared with other 3D modalities, such as CT and MRI, US is 
more available outside radiology departments and more cost-effective. However, a 
drawback of US imaging is the inferior image quality compared to CT or MRI, which 
makes it difficult to perform automated structure segmentation in US images. Numer-
ous efforts have been made to improve the image quality and segmentation accuracy. 
Relatively complete reviews of the field can be found in [1], [2]. Local phase has 
been used as a robust image feature in noisy images in many US image segmentation 
applications [3], [4]. However, most existing methods perform the local phase estima-
tion on a single scale, which limits the local phase to only reflect structures with a 
certain size. In practice, this means the local phase map is only valid within a limited 
distance from the edges. When combined with a segmentation method, such as active 
contours, the initial seed region has to be relatively close to the object border to bene-
fit from the phase information. In this paper, we propose a semi-automatic method for 
left ventricle (LV) segmentation, which utilizes a multi-scale quadrature filter method 
[5] to enhance the 3D volume, followed by a model-based level set method to seg-
ment the LV endocardial surface. The integration of multi-scale filter output makes it 
easier to tell whether a point is inside or outside an object, even if the point is far 
away from the object border. In addition, the integrated multi-scale phase map is used 
to weight the model fitting process so that points far from edge will have less influ-



ence than points close to a clear edge. The proposed method delivered encouraging 
results on a small number of test datasets. 

2 Method: 

2.1 Image enhancement using 3D multi-scale quadrature filter 

As most 3D US images are very noisy, an image enhancement step using 3D multi-
scale quadrature filter was introduced as a preprocessing step. Quadrature filters, 
originally proposed by Granlund and Knutsson [6], have been successfully applied for 
various local structure estimation and image enhancement tasks [7]–[9]. The principle 
of these filters is to combine a ridge-picking filter with an edge-picking filter. Typical 
2-dimensional filter kernels are illustrated in Fig. 1a and Fig. 1b. The output of this 
pair of filters is represented by a complex number where the output of the ridge-
picking filter is seen as the real part and the output of the edge-picking filter as the 
imaginary part. When applied to an image, the response of ridge-like structures will 
be dominantly real, while the response of edge-like structures will be dominantly 
imaginary. The argument of this complex number in the complex plan is referred to as 
the local phase [6], θ in Fig 1c. To detect structures with various orientations, the 
image is often filtered with a set of quadrature filter pairs (e.g. 4 pairs in 2D and 6 
pairs in 3D as suggested in [6]). The responses can be integrated into a tensor repre-
sentation [6] or by simply adding the complex numbers up to a response map Q as 
suggested in [5]. In this study, the latter approach was chosen. Before summing up the 
output of these quadrature filter pairs, a phase correction step, as reported in [5], was 
carried out to ensure the edge responses from filters with opposite directions will not 
cancel out each other. A single-scale quadrature filter is limited to pick up lines with a 
certain width that is controlled by the central frequency and bandwidth of filter. In 
this study, we use a 6-direction quadrature filter set with a central frequency of π/2 
and bandwidth of 6 octaves. To be able to detect structures with varying size, multi-
scale quadrature filters were proposed by Läthén et al., where the response maps from 
different scale are combined using the magnitude of the response at each scale as a 
weighting factor. 

  (1) 

Here N is the number of scales, qi is the response map for each scale and β is a real 
number parameter that controls the scaling of the difference between |qi| when trans-
lated to weighting factors. In this study, β is set to be 1 by visually comparing the 
enhanced images with different parameter settings. Three scales are used, and the 
scale ratios are 4x, 8x and 16x respectively. 



 
Fig. 1. An example of quadrature filter pairs in 2D. A, the ridge-picking filter. B, 

the edge-picking filter. C, The quadrature filter’s response in the complex plane. 

When applying the multi-scale quadrature filter on cardiac ultrasound images, the 
myocardial region has a positive real part due to its ridge-like (sheet-like in 3D) ap-
pearance, while the heart chambers have large negative real parts because they can be 
viewed as a dark line/dot at a large scale. In this study, we use the real part of the 
response map as an enhanced image for the remaining segmentation operations. An 
example of such enhanced images is shown in Fig 2B. A phase map Θ, which con-
tains the arguments of all complex responses, is also created to guide the segmenta-
tion (explained in the next section). 

 

 
Fig. 2. An example of image enhancement using multi-scale quadrature filters. A, B, C, the 
axial, coronal and sagittal view of an input US image. D, E, F, the axial, coronal and sagittal 

view of the real part of the response map 

2.2 Phase-map weighted model-based level set segmentation 

In this study, the model-based level set method proposed by Leventon et al. [10] was 
adapted for endocardial surface segmentation. The principle of this method is to regu-
larize the propagation of the level set function using a statistical shape model. This 
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model is also repeatedly updated using the current segmentation result. The speed 
function of the level set propagation is summarized in Eq. 2.  

 !"
!"
= !!!   + !  M(T(!))     + !  !(!)  |∇Φ| (2) 

Here !,  ! and ! are weighting factors. !! is the real part of the multi-scale response 
map q. This term is similar to the threshold-based speed function, where the threshold 
is simply set to zero as the quadrature filter outputs negative real part inside the heart 
chambers and positive real part in myocardial area. ! !  represents the local curva-
ture. M(T(!)) is the model term; the statistical shape model M can be written as the 
weighted sum of the mean signed distance functions (!) and n prominent variations 
extracted via Principal Component Analysis (PCA) (M1, M2, … Mn) (Eq. 3). T is a 
rigid transform function with 7 parameters (3 for rotation, 3 for translation and 1 uni-
versal scaling factor).  

 M= !+ ω1M1 +ω2M2 +…+ωnMn  (3) 

To find the model most closely fitting the current level set function, we try to mini-
mize the squared distance between M and !!, i.e. (!∈!"# M T ! − !!(!))

2, where 
!"# represents the narrow band around the zero level set. This least square problem 
can be solved by iteratively solving Eq. 4, i.e. using the Gauss–Newton algorithm. 
Here J is the Jacobian matrix of M T ! , ∆! is a n+7 parameter vector of the statisti-
cal model. ∆! is the distance difference between the model and current level set func-
tion at point !. W is a diagonal weight matrix, whose elements control the influence 
of the sample points on the global parameter estimation. The design of W is explained 
below. 

 J!WJ ∆! = J!W∆! (4) 

A major challenge for LV segmentation in 3D US is missing signal around the apex 
area, where parts of the myocardium appear to be as dark as the heart chambers, or 
are left outside the field of view of the US beam (e.g. Fig. 2). This will cause the 
segmentation contour to leak outside of the LV. Another complication is the opening 
of the valves, which can also cause leakage of the contour. If the leaking area is large, 
it may eventually drive the model in the wrong direction. To overcome the erroneous 
influence of such leaking areas, we perform the model-fitting step using a weighting 
map, i.e. W in Eq. 4 created from the phase map Θ. The weighting factor for each 
point on the segmentation contour is computed using the following equation: 

 !!! = !"#! !(!!) + ! (5) 

Here ! is a non-negative real number which controls the relative weighting between 
voxels located in ridge-like structures and edge-like structures. If  ! = 0, the voxels 
located far from edges (either bright or dark area in Fig. 2B) will have no influence on 
the model fitting. In practice, we set ! to 0.1 so that, when the initial level set function 



is far from the object border, i.e. !"#! !  is close to zero, the model will still be up-
dated. 
To speed up the proposed segmentation method, a fast level set method using coher-
ent propagation [11], [12] was implemented. It forces the whole segmentation contour 
to expand or shrink monotonically within a propagation period. The coherent propa-
gation method can not only speed up the level set propagation, but also reduce the 
frequency of prior shape registration by taking advantage of the convergence detec-
tion of the coherent propagation [13], [14]. In this new framework, the model fitting 
operation is only repeated if the contour has moved a certain distance from the previ-
ously estimated model. 

2.3 Model initialization using user input 

To initialize the position of the statistical model, the user is requested to draw a line 
across the LV in one of the axial slices that is close to the center of the LV. The mid-
point of this line is used to compute the translation from the model center. The length 
of the line is used to estimate the scaling transformation of the model. To tolerate 
possible operation errors by the human observer, the diameter of the model cross 
section is set to be 4/5 of the length of the input line, so that the model is always con-
tained by the real LV (c.f. Fig. 3A). This line should also be pointed towards the right 
ventricle, which is used to calculate a rotation transformation around the z-axis. This 
line is merely used to initialize the LV model. It does not impose any constraint dur-
ing the level set propagation. 

   

Fig. 3. A, Initialization of the statistical model (the green line was drawn by the user). B, Seg-
mentation result. C, Error map. 

3 Results: 

The proposed algorithm was trained on 6 manually segmented LV by a medical ex-
pert from cardiac CT datasets that were collected for a coronary CTA study 
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[15](diastolic phase only). and tested on 15 training datasets and 15 testing datasets 
provided by the organizer of the challenge [16]. For comparison, the segmented re-
gions were converted to 3D meshes using vtkContourFilter function from VTK li-
brary. Compared with the manually created references, the proposed method achieved 
a mean surface distance of 2.91 ± 1.13mm, mean Hausdorff surface distance of 13.21 
± 4.49mm and modified Dice similarity index of 0.16 ± 0.04. More detailed evalua-
tion results are listed in Table 1 and 2. The overall running time of our C++ imple-
mentation was approximately 1-2 minutes on a PC with an Intel i7 CPU and 8Gb 
RAM. 

Table 1. Segmentation accuracy on training datasets 

Data 
group 

Cardiac phase MAD* 
(mm) 

HD** (mm) 
Modified 
DICE 

Min error 
(mm) 

Max error 
(mm) 

Training 
data 

End Diastolic 3.19 15.35 0.129 0.00 15.33 
End Systolic 3.46 14.60 0.163 0.00 14.60 

Testing 
data 

End Diastolic 2.86 13.20 0.147 0.00 13.02 
End Systolic 2.97 13.21 0.180 0.00 12.37 

*: mean absolut distance 
**:Hausdorff surface distance 

Table 2. Segmentation accuracy on testing datasets 

Data 
group 

Statistics 
Terms 

Participant End 
Diastolic Vol-
ume (ml) 

Participant End 
Systolic Volume 
(ml) 

Participant 
Ejection 
Fraction (%) 

Participant 
Stroke Volume 
(ml) 

Train-
ing 
data 

Correlation 0.978 0.976 0.835 0.835 
Bias -16.89 -18.25 3.95 3.95 
LOA* [-84.4; 50.6 ] [-67.4; 30.9 ] [-12.5; 20.4] [-12.57; 0.47] 

Testing 
data 

 

Correlation  0.813 0.871 0.862 0.519 
Bias 0.28 -4.83 3.17 5.11 
LOA* [-69.69; 70.25 ] [-57.13 ; 47.47 ] [-7.14; 13.47 ] [-19.54; 29.75 ] 

*:limits of agreement 

4 Discussion and Conclusion: 

The proposed method yielded acceptable results for the test datasets provided. It is 
noticeable that the segmentation error of the proposed method is higher around the 
apex (Fig. 3C). This is explained by the missing signal of myocardium around the 
apex. Although using the weighting map helps to identify correctly the remaining 
parts of the LV, it cannot help to improve the segmentation accuracy in the missing 
parts.  
In this study we used the real part of the quadrature filter set to guide the propagation 
of the level set function. To some extent, the real part of a quadrature filter can be 
seen as the second-order derivative of the intensity. The zero-crossing point of the 



second-order derivative is well known as a good edge detector. However in single-
scale settings, the second-order derivative may vanish inside the heart chamber where 
the first-order derivative is constantly zero. In such areas, the propagation of the con-
tour has to be driven by a balloon force, which is designed to constantly inflate or 
deflate the region. This requires the initial seed region to be completely inside or out-
side the targeted object. By combining the multi-scale quadrature filter sets, the inside 
of LV and the myocardia will give negative and positive real parts, respectively. This 
eliminates the need for the balloon force and allows the initial seed region to be put 
partly inside and partly outside the LV. 
The motivation to use models created from cardiac CT dataset instead of the provided 
“ground truth” for US datasets is that manual segmentation of US images is less relia-
ble than that of CT images. As discussed above, in many US images, the signal 
around the apex area is very vague. Moreover, parts of the myocardium can be left 
outside the field of view of the US beam, whereas the endocardial surface is much 
clearer in CT images. 
An obvious limitation of the presented work is that the statistical shape model was 
created on a small number of subjects using only end-diastolic images. Future work 
has been planned to improve the quality of the shape model by including more sub-
jects with both systolic and diastolic phases. 
Beside this limitation of the 3D model, the proposed method also ignores the connec-
tion between systolic and diastolic phases, and performs this two-phase segmentation 
as separated tasks. Linking them together, or considering the entire 4D sequence sim-
ultaneously, will hopefully lead to more accurate results. Adapting the 4D image de-
noising method developed by Eklund et. al. [9] may potentially improve the segmen-
tation results. Another extension would be to use a 4D shape model instead of the 3D 
models. To reduce the complexity of the model representation, skeleton-based models 
proposed in [13], [17] may be used. 
In conclusion, a model-based LV segmentation method using the phase image from 
quadrature filters is proposed. Preliminary results on 3D US images are encouraging. 
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