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Abstract. Malignant gliomas are highly heterogeneous brain tumors with complex an-
isotropic growth patterns and occult invasion. Computational modeling of cell migration
and proliferation has been subject of intensive research aiming at a deeper understanding
of the tumor biology and the ability to predict growth and thus improve therapy. However,
current modeling techniques follow a generative approach and make strong assumptions
about underlying mechanisms. The tumor is so far treated as homogeneous entity with
behavioral parameters extrapolated from previous longitudinal image information.
We present a novel way of approaching this problem by employing data driven, discrim-
inative modeling techniques that learn relevant features from observed growth patterns
and are able to make meaningful predictions solely on basis of local and regional tissue
characteristics at one given point in time.
We demonstrate superior performance of the proposed discriminative method (DICE score
83) compared to the state of the art generative approach (DICE score 72) on six patients
and a total of nine different time intervals. Our approach can help estimating occult
invasion as well as it can advance our understanding of the tumor biology and lead to
valuable predictions of tumor growth patterns that could guide and improve radio therapy.

1 Introduction

Malignant gliomas are biologically heterogeneous primary brain tumors with anisotropic progres-
sion at variable rates. A major problem complicating therapy decisions is the invisible invasion
margin of these tumors, that is tumor cells that migrate into the healthy brain but do not
yet cause detectable signal changes in MR. Computational modeling of cell migration and pro-
liferation can help estimating this occult invasion as well as it can aid our understanding of
biological factors in heterogeneous tumors. Treatment procedures in radio-therapy usually em-
ploy an isotropic 2 cm safety margin with brain tumors to account for occult invasion. Patient
specific predictions of tumor growth patterns could guide and improve therapy by adapting to
these anisotropic growth patterns.

Current techniques follow a generative approach and directly or indirectly model the diffusion
of tumor cells by employing the diffusion reaction equation or derived diffusion-based distance
metrics.

Swanson et al. first modeled diffusing tumor cells in dependence on the underlying tissue
type following the observation that glial cells show higher motility in white matter than in



gray matter [10]. This idea has later been extended by studies that derive the so called Tumor
Diffusion Tensor (TDT) from the Diffusion Tensor Image (DTI), thereby taking into account
the local fiber orientation [2–4, 9]. A quantitative evaluation of glioma growth simulations on
real patient data has so far only been performed by two studies [5, 9]. For a given time point
and given gross tumor volume (GTV), Mosayebi et al. estimate an infinite set of possible occult
tumor invasion margins with varying distances from the tumor by means of a diffusion-based
distance metric. In order to choose one prediction from the set of margins for their evaluation,
the authors circumvent the problem of model instantiation by choosing the optimal contour
that matches the volume gain of the future contour that is to be predicted. For the thus chosen
optimal contour the authors reported a mean Jaccard score of 59. As input, the algorithm
requires a segmentation of the ventricular system, falx cerebri and tentorium cerebelli, which
are used as growth barriers. Stretton et al. use a traveling wave formulation of the diffusion-
reaction equation to simulate tumor progression. In order to predict a subsequent time step, the
model requires two consecutive time steps for the initialization of the individual progression rate.
Unfortunately, the study included only one malignant glioma for which the authors reported a
root mean square error of 6mm considering this prediction.

A major shortcoming of the previously proposed techniques is that they treat the tumor
as one homogeneous mass, imposing rather strong assumptions on its behavior based on only
small fractions of the available image information. They cannot account for tumor progres-
sion along selective fiber tracts and do not account for the biological heterogeneity within the
tumor. Furthermore, in order to instantiate the models, longitudinal image information and
time-consuming segmentation of gray and white matter and other anatomical structures are so
far indispensable.

We propose a novel discriminative approach for tumor progression modeling that allows for
the incorporation of an arbitrary number of different sources of information such as local tissue
characteristics and regional context. The relevant aspects are identified and weighted in a data-
driven learning step that analyses growth patterns in an annotated database. Tumor progression
is then predicted for unseen cases on basis of a single time point without the need of parameter
estimation or any structural annotations. We demonstrate the advantages of our method over
the state of the art using a dataset of nine cases.

2 Methods

2.1 Patient Data

The data set consists of longitudinal data from six patients with grade IV glioblastoma showing
significant re-growth after initial resection. A total of nine acquisition pairs derived from these
patients are used in this study. T1-weighted with contrast agent,T2-FLAIR, and DTI imaging
is available for each time step. Resolutions are 0.625 × 0.625mm2 in plane, 6mm spacing for
T1 and T2, and 1.796 × 1.796mm2 in plane, 5.2mm spacing for DTI. Images have been co-re-
gistered and resampled to 1 × 1 × 3mm separately for each patient using the Medical Imaging
Interaction Toolkit (MITK) [6]. The GTV has been manually segmented in all time steps with
an iterative refinement procedure based on Tumor Progression Mapping (TPM) in order to
ensure the temporal consistency of the segmentations [11]. The time spans between the image
pairs lay between 158 and 251 with an average of 183 days.



2.2 Previous generative approach

Most simulation approaches model cell spread using the diffusion-reaction equation

∂c

∂t
= ∇(D∇c) + p(c) (1)

where c denotes the concentration of tumor cells, D the diffusion tensor and p(·) the reaction
term that models cell proliferation. In [3] Konukoglu et al. show that the proliferation rate can
be fixed and diffusion speed used to adapt the model to a patient specific case. In [9] Stretton
et al. show that using TDTs derived from patients DTIs perform superior to DTI atlas or
white-matter derived TDTs. We implemented the simulation using a fixed proliferation rate
with patient specific TDTs constructed as follows:

TDT (x) =

{
Dw(x) if FA(x) > .2

dgI else
(2)

with dg representing the diffusion constant that is used in gray matter; the FA value is used
to discriminate against gray matter. Dx is normalized by the highest eigenvalue in white matter.

The reported ratio between diffusivity within grey matter and white matter greatly varies in
literature, we tested several values and found best overall performance for a maximal diffusivity
within white matter being 20 times the diffusivity within grey matter. This parameter is of
course obtained as an optimum for all patients and therefore fix in the model as our main
interest is to investigate the general prediction accuracy on unseen cases.

2.3 Novel Discriminative Approach

We apply random forests and manually annotated training data to learn the growth patterns of
malignant gliomas [1]. Given the image data and a segmentation of the current tumor margin,
we aim at classifying the voxels that will transform to tumor versus the ones that will remain
unaffected. The relevant criteria for this decision are learned from data rather than imposed by
a generative model.

For a pair of multi-modal images (It, It+1) from two time steps t and t+1, each voxel vt in
It is represented by a feature vector x ∈ X and a label y ∈ Y, where Y consists of two labels:
’future tumor’, i.e. the corresponding voxel vt+1 in It+1 is labeled tumor and ’future non-tumor’,
i.e. the corresponding voxel vt+1 in It+1 is labeled non-tumor. From training data a classifier is
then build that estimates the probability P (x, y) for previously unseen data. The label assigned
to a voxel is the label with the highest probability for the corresponding feature vector

y = arg max
y

P (x, y) . (3)

The splitting function for each node in the random forests is a threshold on a single feature. We
use the Gini-index to determine the optimal threshold. Forest size is set to 1000 and maximal
tree depth is limited to 6 to ensure good generalization. In order to supply the classifier with
meaningful information, the vector x consists of features that represent 1) the local tissue
characteristics, 2) the regional context of the voxel, and 3) diffusion-based distance measures as
described in section 2.2.



Features representing local tissue characteristics We include normalized T1, T2-FLAIR,
and DTI derived measures (FA, MD, RD, AD, b0) with and without the application of free-water
elimination as measures describing the local tissue configuration [7].

Features representing regional context The most straight-forward way to describe the
regional relation of any voxel is using the euclidean distance of a voxel vtarget to the initial
GTV. However, biological heterogeneity and e.g. preferential growth along white matter tracts
cause tumor growth to be highly anisotropic. Therefore the likelihood of tumor progression
towards a specific voxel vtarget outside the initial GTV cannot be fully represented by such
simple distance measures.

To account for this, we introduce novel connectedness measures that are inspired by the idea
of fuzzy connectedness maps [8].

The connectedness s(·, ·) between adjacent voxels vl and vk incorporates the diffusion tensor
Dl at location vl and an arbitrary scalar map value f(·). Let vector r point from voxel position
vl to vk. The similarity of adjacent voxels is then defined as

s(vl, vk) = (‖Dl · r‖2)
−1 ·

(
e|f(vk)−f(vl)| − 1

)
(4)

where ‖Dl · r‖2 denotes the magnitude of the projection of vector r unto the diffusion tensor
Dl. This formulation allows the computation of differently weighted distance maps based on
different feature maps f(·) such as FA, MD and RD. The connectedness of two non-adjacent
voxels vGTV and vtarget is determined considering all possible paths between these voxels; each
possible path i : vGTV

0 , v1, . . . , v
target
n is assigned the cumulated value of differences between

adjacent voxels along this path:

s(i) =

n−1∑
j=0

s(vj , vj+1) (5)

Fig. 1: Feature propagation. Red denotes the tumor border. The letters represent features that
describe the tumor at that location. Blue values represent the cost for traveling through a given
voxel (to simplify visualization they are assumed to be invariant to the direction), light values
depict low costs, dark ones high costs. The arrows depict possible paths from the tumor outline
to vtarget. The green path has lowest cumulative cost, which is why it is chosen to propagate its
originating feature value.

The path i∗ with the minimum value is then chosen as the path with the highest connected-
ness between the voxels. After identifying this path, the cumulative connectedness value s(i∗)



as well as the local features at vGTV (the origin of the path, c.f. Fig. 1) are used as features in
the feature vector of vtarget.

Diffusion-based distance measure According to the above described generative approach
an additional feature map is computed using the un-thresholded result of a diffusion process.
It is to be noted that this generative map is computed with a fixed parameter set, that is, no
patient specific parameters are needed to compute this feature.

3 Results

We applied the above described methods to all data sets (acquisition pairs), training the random
forests in a leave-one-patient-out protocol. We then used these trees to predict on the data of
the unseen patient. We calculated the Dice score and Jaccard index of the predictions on basis of
It and the tumor segmentation in It+1. These scores are only computed on newly grown tumor,
voxels already marked as tumor at time point t were not considered in the evaluation. We also
calculated the RMSE between the two corresponding outlines.

To compare our method to the current state of the art, we used the diffusion model described
in section 2.2 (c.f. Fig. 2). Optimal growth rates have been determined via a leave-one-patient-
out protocol.

Fig. 3 depicts the RMSE of the diffusion model in a range of sensitivities between 45%
and 95% that were estimated by varying the growth rates. The approach shows an increasing
RMSE with increasing sensitivity. The maximum RMSE corresponds to the findings of Stretton
et al. who reported RMSE values of about 6mm [9]. The RMSE using the novel discriminative
approach is constantly below 3mm, but produces one outlier with an extremely low sensitivity.
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Fig. 2: Statistical comparison of the two methods. The novel discriminative random forest based
approach (novel) compared with previous generative approach (generative).

Fig. 4 depicts exemplary results for both methods. Our method (yellow outline) closely follows
the tumor outline in It+1 (red outline). In cases where it under- or overestimates the spiky
extensions of the tumor, it still mimics the specific growth pattern while the diffusion approach
provides a rather balloon-like outline in these regions.

Furthermore, these examples demonstrate the ability of the proposed method to infer natural
growth barriers such as the ventricles directly from the training samples (c.f. Fig. 4).
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Fig. 3: RMSE versus Sensitivity: Solid line denotes mean RMSE over all 9 predictions for the
respective sensitivities, the area denotes the standard deviation. The red dots are results using
our method. It can be seen that for increasing sensitivities the diffusion model becomes less
accurate, while our method remains accurate.
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Fig. 4: Overlay of tumor outlines on T2-FLAIR images. Intial contours from It (green), ground
truth of prediction from It+1 (red), the novel discriminative approach (yellow), and the previous
generative approach (blue) are shown. (a)-(c) depict the different outlines. (a) shows the initial
contour on T2-FLAIR at t = 0. (b) depicts the overlay of the ground truth from It+1 and the
prediction of the generative approach on T2-FLAIR at t = 1. (c) displays the overlay of the
ground truth from It+1 and the prediction our discriminative approach on T2-FLAIR at t = 1.
(d) demonstrates the ability of our approach to infer natural growth barriers such as ventricles
and sulci (see arrows) directly from the training samples.



4 Discussion & Outlook

We proposed a novel discriminative approach to learn and predict tumor growth patterns. We
evaluated this method on nine time intervals and compared it to the ground truth as well as to
the state of the art generative approach. The assessment of the generative approach (Jaccard
index of 56, RMSE of around 6-7mm) is in very good agreement with the currently available
studies on quantitative evaluation of tumor progression modelling or invasion margin estimation
on real patient data (Mosayebi et al.: Jaccard index of 59 [5], Stretton et al.: RMSE of 6mm [9]).
The newly proposed discriminative approach clearly outperforms the state of the art technique,
given the setup without manually marked growth barriers.

In comparison to generative modelling, our discriminative approach has several intrinsic
advantages. It allows for straight-forward inclusion and combination of a variety of different
features. The behavior of the tumor including the consideration of natural growth barriers and
the preferential growth direction along fibers is learned from the data. This enables an accurate
and patient-specific prediction in a clinical routine without adding the need of additional time
consuming manual annotations of growth barriers or additional longitudinal image data to es-
timate growth parameters. While the current generative models seem to cover some important
aspects of the growth patterns of malignant gliomas, the higher predictive value of our approach
suggests that the underlying mechanisms are more complex and more adequately represented by
richer sets of features beyond the diffusion tensor and FA. The presented approach can make use
of the full set of information available in the different MR modalities and will potentially fur-
ther benefit from the development of advanced feature sets. Furthermore apart from predicting
binary tumor outline the approach associates each voxel with a probability of becoming tumor
which can guide the dose application in radio therapy.

Naturally the predictive value of the proposed approach depends on the representativity and
size of the training data set. Learning from observed data, though more flexible by design, can
pose a potential weakness since its performance depends on the data set that is used to train
it. Such a method performs less good on cases that are not well covered by the training data
base, such as one outlier in Fig. 3 for which only a very low sensitivity could be achieved. In
such cases where observed samples are rare a generative model may yield better results.

In the future, we plan on extending our data base in order to cover a higher variety of
patterns that can be successfully predicted. Also, we want to follow up on a highly interesting
question that arises from our results: the analysis of variable importance measures in order to
learn more about the determining factors in malignant glioma growth. This might lead to a
better understanding of the underlying mechanisms in the progression of high grade gliomas.

Funding: This work was carried out with the support of the German Research Foundation
(DFG) within project R01, SFB/TRR 125 Cognition-Guided Surgery.
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