Automatic accuracy measurement for
multi-modal rigid registration using feature
descriptors

Frida Hauler'*, Miro Jurisic!, Hugo Furtado!?, Umberto Sabatini®, Anne
Laprei*, Ursula Nestle®, and Wolfgang Birkfellner!-?

! Medical University Vienna, Center for Medical Physics and Biomedical Engineering,
Waeringer Guertel 18-20., 1090 Vienna, Austria
2 Medical University Vienna, Christian Doppler Laboratory for Medical Radiation
Research for Radiation Oncology, Vienna, Austria,
3 Fondazione Santa Lucia, Rome, Italy
4 Institute Claudius Regaud, Toulouse, France
5 Universitaet Klinikum Freiburg, Germany
{frida.hauler,
wolfgang.birkfellner}@meduniwien.ac.at
http://summer-project.eu

Abstract. In radiotherapy (RT) for tumor delineation and diagnos-
tics, complementary information of multi-modal images is used. Using
high ionizing radiation, the accuracy of registered volume data is cru-
cial; therefore a reliable and robust evaluation method for registered im-
ages is needed in clinical practice. Multi-modal image registration aligns
images from different modalities like computed tomography (CT) and
magnetic resonance imaging (MRI) or cone beam computed tomogra-
phy (CBCT) into one common frame of reference. The gold standard
validation methods are visual inspection by radiation oncology experts
and fiducial-based evaluation. However, visual inspection is a qualitative
measure with a range of 2-6 mm inaccuracy, it is time consuming and
prone to errors. The fiducial-based evaluation is an invasive method when
fiducial markers are fixated to bone or implanted in organs. Therefore,
in clinical practice a robust non-invasive automated method is needed to
validate registration of multi-modal images.

The aim of this study is to introduce and validate an automatic landmark-
based accuracy measure for multi-modal image rigid registration using
feature descriptors. A porcine dataset with fixed fiducial markers was
used to compare our accuracy measure with the target registration error
of fiducial markers.In addition, the robustness of our evaluation method
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was tested on multi-vendor database consisted of 10 brain and 20 lung
cases comparing the automatic landmark accuracy measure based on fea-
ture descriptors with manual landmark based evaluation.

An automatic, non-invasive method based on feature descriptors for ac-
curacy evaluation of multi-modal rigid registration was introduced. The
method can be used to provide accuracy information slice-by slice on
CT, CBCT and CT, MR-T1, -T2 weighted, MR-T1 contrast enhanced
(ce) multi-modal images.

Keywords: accuracy of multi-modal rigid registration, accuracy mea-
sure based on feature descriptors, automatic landmark based evaluation

1 Introduction

In cancer treatment, RT is one of the main therapeutic measures next to surgery
and chemotherapy. The goal of RT is to give a high dose of ionizing radiation
to target volumes while sparing the surrounding healthy tissue. To successfully
destroy the tumor cells a dose of 50 to 90 Gy is necessary, delivered in a cycle of
up to 30 daily fractions. To spare the surrounding healthy tissue and organs at
risk (OAR), utmost precision is necessary to define the tumor structures (clinical
target volume - CTV) and exact beam control is needed to deliver the high dose
to the planned target volume (PTV).

Different image modalities help the diagnosis and target volume definition pro-
viding different diagnostic information in RT. These can be anatomical images
as CT, MRI, X-rays and ultrasound (US) or functional images such as Positron
Emission Tomography (PET), functional MRI (fMRI) and single-photon emis-
sion computerized tomography (SPECT). However, no single modality can con-
tain all the diagnostic information for reliable determination and delineation of
malignant tissues.

To obtain better tumor targeting during RT treatment using complementary
information from multi-modal images, the volumes need to be aligned into same
coordinate system using 3D-3D registration algorithms. Registration is the de-
termination of an optimal geometrical transformation which aligns one dataset
(moving image) with corresponding areas in an other dataset (fixed image) taken
at various points in time or by different scanners. Registration is a wide field
with an arsenal of proven algorithms[1], but still there is a gap in defining the
accuracy of the registration which for tumor delineation is crucial.

The current gold standard validation methods of registration are visual inspec-
tion by a radiation oncologist expert and fiducial-based evaluation [2]. The visual
inspection is a qualitative measure depending on inter-observer variability be-
tween the experts and lack a standard grading of registration accuracy in clinical
practice. However, registration will be used by experts and their opinion has cru-
cial importance for validation of any evaluation method.

A more quantitative validation is based on fiducial markers applied on surface or
inside of the body. Fixed fiducials require an invasive intervention while fiducial
markers positioned on the skin can move. In any case the fiducial-based valida-
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tion is considered as a gold standard evaluation for a quantitative measure of
registration error; nevertheless in absence of datasets containing fiducial markers
a manual landmark based evaluation can be used manually annotating anatom-
ical features by radiation oncologists. This is a time consuming process prone to
intra- and inter observer variability error.

We propose a reliable, automatic and non-invasive method for measuring the ac-
curacy and robustness of the outcome of registration using feature descriptors.
For validating this method accuracy, a porcine dataset with fixed fiducial mark-
ers is used comparing our method with the target registration error of fiducial
markers. The robustness of the method was tested on 10 brain and 20 lung clin-
ical dataset. In absence of fiducial markers in patient dataset, a landmark-based
accuracy value was compared with our automated landmark based accuracy
measure.

2 Methods

2.1 Phantom Dataset

The accuracy of the automatic evaluation method was performed on a phantom
dataset of a porcine head, consisting seven fixed bone fiducial markers and a
known registration gold standard [3]. The dataset is available to the public on
http://midas3.kitware.com/midas/community/3.

The reference dataset consists of CT, CBCT with big and small field of view
(FOV) and MR-T1, MR-T2 images. The CT volumes were scanned with a Spiral
Philips CT scan consisting of 825 slices with 0.8 slice thickness, each slice con-
taining 512 x 512 pixel of 0.63 x 063 x 0.40 mm? voxel size. The CBCT images
were acquired by Elekta Synergy linear accelerator (LINAC) with two different
field of view (FOV), with 540 x 540 x 520 voxels of 0.5 mm? size and a larger
FOV of 410 x 410 x 264 voxels of 1.0 mm? size. MR volumes were acquired by
3 T Philips MR Scan, the T1 weighted images with 240 x 240 x 150 mm? image
resolution and 1 x 1 x 1.99 mm voxel size and the T2 weighted images with 192
x 256 x 39 image resolution and 0.89 x 0.89 x 3 mm? voxel size.

2.2 Patient datasets

The robustness of the method have been tested on multi-center clinical datasets
including 10 brain and 20 lung patients. The brain dataset consists of CT, MR-
T1, MR-T1 CE with Gd and MR-T2 weighted images. CT volume scanned by
GE Medical System with 512 x 512 x 95 image resolution, 2.5 mm slice thickness
and 0.97 x 0.97 x 2.5 mm? voxel size. The MR images were acquired by 1.5 T
Siemens scanner; T1-weighted and T1 Gd CE volumes with 224 x 256 FOV,
image matrix of 224 x 256 x 160 and 1 x 1 x 1 mm? voxel size with 1 mm slice
thickness. The MR-T2 weighted images of 192 x 256 x 39 image resolution, 0.89
x 0.89 x 3 mm3 voxel size and 3 mm slice thickness.

The 20 lung dataset are coming from two different centers, each patient consisting



of CT and CBCT images. 5 patient data were acquired on Siemens Medcom
Scanner, with 512 x 512 x 143 mm? image resolution and 0.97 x 0.97 x 2 mm?
voxel size; Varian Medical Cone-beam CT with 1.17 x 1.17 x 2.96 mm?® voxel
size and 384 x 384 x 52 mm? image resolution. Rest of the 15 patient data have
been scanned on Siemens Medcom Scanner, with 0.97 x 0.97 x 2 mm? voxel size
and 512 x 512 x 143 mm? image resolution and the CBCT on Elekta LINAC kv
image during the treatment with 1 x 1 x 4 mm? voxel size and 410 x 410 x 66
image resolution.

2.3 Rigid registration and pre-processing

Due to different slice thickness of multi-modal images, rigid registration is sensi-
tive to uncertainties. To avoid these uncertainties, all images were preprocessed
by re-sampling to an 1 mm? isotropic voxel size, using cubic spline interpolation.

For registration, we used a commercial software Analyze 11.0 (AnalyzeDi-
rect Inc., Visualization and Analysis Software) based on mutual information
(MI) metric; therefore the fiducial markers and our method were only used for
evaluation purposes of the registration accuracy. During registration, the CT
volume was always considered the fixed image and the CBCT or MR images the
moving image.

2.4 Evaluation of rigid registration

To validate the accuracy of registration we adapted error measures from Maurer
et al.[4].

— Fiducial registration error (FRE), the root-mean-square distance between
corresponding fiducial points after registration.

— Target registration error (TRE), the distance between corresponding points
other than fiducial points after registration.

In order to define corresponding points of the anatomical target points for TRE
calculation after registration, landmarks have been defined in two ways, found
automatically using feature descriptors and annotated manually. For porcine
phantom data, the manually annotated points on CT, CBCT and MR-T1, -
T2 images using Analyze 11.0 have been chosen based on the fact they are
not deform with the soft tissue and are visible on all used image modalities.
Manual landmarks have been annotated on reference slices which has been chosen
to contain the fiducial markers for later comparison of FRE to TRE for both
automatic and manual landmarks. (Fig. 1).

Same procedure has been applied for patient datasets, after rigidly registering
the brain (CT with MR-T1, T2 weighted,T1-Gd contrast enhanced) and lung
(CT with CBCT) images, features on both fixed and moving images are located
using the SURF algorithm from Matlab OpenSURF Computer Vision Library
[5]. The interest points as distinctive locations like corners, blobs, T-junctions
are detected by Hessian detector (Fig.1 f.-j.). The neighbourhood of every in-
terest point is represented by a feature vector. The calculation time is directly
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coronal view; 2nd row: automatic landmarks found on same slices by SURF. Fig.
a.,f-CT, b.,g.-CBCT sFOV, c.,h.-CBCT MFOV, d.,i.-MR-T1, e.j.-MR-T2.

proportional to the dimension of the descriptor, so SURF detector relies on in-
tegral images [6] and only 64 dimensions are used to reduce the computational
time. The size of the filters is set by the octave parameter. Higher octaves use
larger filters and sub-sample the image data to find larger size blobs. Increasing
the number of scale levels to compute per octave detect more blobs at finer scale.
Indifferent if the landmark have been found automatically by SURF or manually
(Fig. 2), the feature vector elements or the coordinates of manual annotation,
are matched between both images by building a correlation matrix from pair
of points which correlate in both directions inside of a maximum search radius.
The outliers from the hypothetical matches have been eliminated by RANdom
SAmple Consensus (RANSAC)(8].

Fig. 2: Brain, sagittal view. Finding the landmarks manually(1st row) and auto-
matically (2nd row), using the same matching algorithm for finding the corre-
sponding point-pairs

2.5 Validation of accuracy method

Manually annotated brain features were chosen based on features investigated
during visual inspection by radiation oncologist (Table 1). The anatomical land-
marks on lung cases have been chosen based on Grgic et al. [9], a complete
list presented in Table 2. The registered volumes have been also checked by vi-
sual inspection by a radiologist expert. For cross-validation of the quantitative



accuracy measure obtained by automated feature descriptor based algorithm a
manual landmark based evaluation was applied on 10 brain and 20 lung clinical
patient data set. Each 10th slice was manually annotated by an expert and ap-
proved by two independent radiologist. Annotation of a lung patient on CT and
CBCT image modality from three view took 2 hour and 6-8 hours for annotat-
ing a brain patient’s CT, MR-T1, -T2 weighted and MR-T1 contrance enhanced
images.

Table 1: Anatomical features annotated on brain
Visual inspection|Brain manual landmarks
Skull, near to lesion||Frontal process, Parietal bone, Sphenoidal sinus, Sphenoidal bone
Eye balls Orbital Surface, Superior orbital fissure
Sella Turcica Tuberculum Sellae, Dorsum Sellae, Anterior/Posterior clinoid process
Clivus, Zygomatic process, Articular tubercle
Head of mandible, Mandibular fossa, Squamous part, Tympanic part
Chiasma optica Intratemporal surfaces, Ramus mandible, Pterygoid fovea
Occipital candyle, Styloid process, Mastoid process

Table 2: Manually annotated features on lung
Lung anatomical landmarks

Lung apices Spine Sternum, Base of ribs

Aortic arch Heart Carina (Bronchus bifurcation)
Diaphragm Tumor

3 Results

In the pig case, the difference between the fiducial registration error (FRE) and
our accuracy measurement is in range of 1.0+ 0.5 mm on sagittal view, 1.1 +0.5
mm on coronal and 0.4 + 0.2 mm on axial view.

For all patient cases, the SURF method presents higher errors. However, the
mean of target registration error (TRE) is less than 0.5 mm compared to manual
annotated cases, even in lung cases (Fig.3).

Lung dataset (CT-CBCT)
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Fig.3: TRE comparison for SURF and manual landmarks. Left figure: TRE
calculated on each view; right figure: a cumulated value is shown between TRE

of SURF and landmark evaluation
The robustness of the SURF method is lower than the manual annotation

method (Fig. 4 ). Nevertheless, the mean difference of TRE between SURF and
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manual methods for the brain dataset is in range of 1.4 mm and 1.8 mm. The
highest difference between SURF and Manual method was observed in MR-T2
image cases.

Brain Dataset (MR-T1, -T1Gd, -T2)
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Fig. 4: Evaluation of TRE for automatic and manual landmarks of MR-T1 and

CT rigid registration on each view ) ) . )
omparing the accuracy measures from different image modalities of brain

dataset, no significant differences have been observed. All but one was below 1.5
mm in manual method case and all was below 2.0 mm for SURF.(Table 3)

Table 3: TRE of SURF vs. Manual annotation accuracy methods for all multi-
modal image modalities used for brain registration

SURF Manual

Axial — Sagittal — Coronal| Axial — Sagittal — Coronal
MR-T1 -CT 1.9mm— 1.7mm — 1.7 mm|1.3 mm — 1.2 mm — 1.2 mm
MR-T1Gd CE —CT |[1.7mm — 1.6 mm — 1.8 mm|1.0 mm — 1.0 mm — 1.0 mm
MR-T2 —CT 1.6mm —2mm—1.2mm |1.2mm — 1.9 mm — 1.5 mm

4 Discussion

The aim of this study was to define the registration accuracy by an automatic
non-invasive method which is reliable and robust enough to be suitable in the
future use in radiation therapy independent of registration metric applied be-
fore. With multi-modal image data, a huge number of surface descriptors might
appear that have no direct counterpart in the other modality, which will render
reliable point-to-point registration difficult and will also impose robustness is-
sues. Intensity - based registration, on the other hand, is known to work reliable
in many cases [3], but the lack of a quantitative measure for registration is a
known issue [10]. It therefore makes sense to combine two different methods of
aligning multi-modal image data, where one is only used to validate the other.
A future possibility might be the validation of the reverse approach, but this
is complicated by the fact that most intensity -based measures like MI do not
provide absolute values as a result of the optimization procedure which would
allow for a quantitative assessment of the registration effort. Our results showed,
SURF accuracy measure has approximately 1 mm higher errors in comparison



with FRE and TRE of landmark based evaluation. This can be considered still
acceptable, taking in consideration the non-invasiveness of the method and the
gained time. As the SURF descriptor can be considered robust, this bias can be
originated from parameter tuning of maximum search distance or the window
size of the correlation matrix during the matching of corresponding landmark
pairs. Nevertheless, the mean error found by SURF based evaluation is close to
the manual and the fiducial based accuracy value. The high standard deviation
differences between the accuracy measures gives cause for further investigation of
robustness of our method, to rank the manual error with different sigma(=1,2,3
mm) using Gaussian random distributed error and investigate if it follows the
trend of introduced error values. It would be also interesting to see how big miss-
registration can be detected by our method for registration of other anatomical
parts which can be more deformed as the head or the lung.

5 Conclusion

Based on the results obtained, we can say that an automatic accuracy measure
using feature descriptors is a promising method. Comparing the accuracy values,
measured by different methods, we can say, our approach can be considered
adequate for a non-invasive, automatic measure. In the future, we need to further
assess the robustness of our method. Also, the 2D feature based detection could
be extended to 3D features.
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